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Abstract: Background: Natural biopolymeric matrices for developing dressings have been
extensively studied, as they may exhibit beneficial properties for wound healing. Gelatin
possesses promising structural and physicochemical properties for incorporating active
compounds (ACs). O/W emulsions are an alternative delivery system for AC with different
properties and solubilities, promoting wound healing. Objective: This study aimed to
develop gelatin films by adding silver nanoparticles and healing agents encapsulated
in an O/W emulsion to treat skin wounds. Methods: A film-forming dispersion was
prepared using gelatin and glycerol as a plasticizer, and films were obtained using the
casting technique. Emulsions with ACs (EAs) and without ACs (ECs) were incorporated
into the films. The formulations were analyzed by FESEM and characterized for their
mechanical, thermal, and swelling properties, as well as their water vapor permeability.
Results: The results showed that films with a higher amount of emulsion exhibited greater
structural rigidity and lower permeability, while films with lower amounts of emulsion
demonstrated more elasticity and higher permeability. General and organ-specific toxicity
were evaluated in zebrafish larvae. The films showed no lethal or sub-lethal effects on
the morphology or activity of the brain, heart, and liver. Conclusions: The active films
developed could provide stable support and a safe delivery system for active compounds
to treat skin lesions, minimizing the risk of infection and the need to heal a wound.

Keywords: gelatin films; silver nanoparticles; o/w emulsions; characterization

1. Introduction
Using natural biopolymers for biomedical and pharmaceutical applications has various

implications, including developing scaffolds for drug delivery, wound healing, and tissue
engineering, owing to their gelation capacity and high availability in nature [1]. Notably,
some biopolymers have good film-forming capacities, such as chitosan, starch, alginate,
carrageenan, gelatin, and pectin [2,3] Gelatin is a high-molecular-weight polypeptide, as
well as an important hydrocolloid used in various fields due to its functional characteristics,
which include water retention ability, gel formation, film formation, foam-forming ability,
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and emulsification tendency [4,5]. Its structure comprises chains of amino acids that
form a three-dimensional network held together by hydrogen bonds and hydrophobic
interactions, making it a multifunctional biomaterial [6]. Furthermore, collagen is a protein
that constitutes the extracellular matrix (ECM) and plays a vital role as connective tissue
in biological structures, serving as the source of elastin and contributing to the tissue’s
structural and physiological integrity [7]. This is why it has become relevant in developing
human skin wound dressings and biomimetic materials.

Silver nanoparticles (AgNPs) play a fundamental role in nanotechnology for their
versatile applications in the medical, cosmetic, and pharmaceutical industries. Its biocidal
properties at the nanoscale are attributed to the high fraction of surface atoms per unit of
volume, which is responsible for its activity [8,9]. As with any nanoparticles, the use of
AgNPs needs to be thoroughly analyzed and regulated to protect the environment [10].
Previous studies showed the effectiveness of AgNPs as antimicrobial agents in in vitro
studies against Staphylococcus aureus and Pseudomonas aeruginosa. In addition, their po-
tential toxicity was evaluated in zebrafish embryos and larvae, and a spectrum of AgNP
concentrations with good antimicrobial activity and no biotoxicity were found [11]. In
addition to antimicrobial agents, it is crucial to incorporate active ingredients that promote
wound healing, either through direct effects or by creating a suitable environment for the
body to respond to the presence of an injury. Examples of such components include vitamin
A, lidocaine, and sulfadiazine. Vitamin A, or retinol, is an antioxidant component that
promotes cell regeneration through direct interaction with cells or hormones that stimulate
wound re-epithelialization [12]. Lidocaine is an anesthetic component that plays a role
in signaling mechanisms that promote skin regeneration, such as directing neutrophils
and monocytes to the wound site [13]. Finally, sulfadiazine acts as a second antimicrobial
component, exerting a synergistic effect with AgNPs to prevent potential complications
from microorganism infections [14].

The design of nano- and microstructured carrier systems for encapsulating active com-
pounds is an attractive strategy for developing targeted therapies. These types of carriers,
such as liposomes, nanoparticles, dendrimers, and emulsions, must be carefully designed
because their structural characteristics will determine not only their pharmacokinetic and
biodistribution properties but also those of the active compounds encapsulated [15,16].
Medical and cosmetic industries are very interested in O/W emulsion development for the
encapsulation of diverse active compounds [17], and most of the applications are nutraceu-
tical formulations rich in ω6 and ω9 [18,19]. An interesting development for epidermal
treatments involved the use of films with O/W emulsions, as they combine the structural
advantages of biopolymers for a steady superficial matrix and the delivery advantages of
hydrocolloid systems [20,21]. Indeed, the lipid component present in the emulsion can act
as an excellent barrier, reducing the exchange of water vapor, oxygen, and carbon dioxide
between the skin lesion and the environment [22].

This work aimed to develop and characterize gelatin films by adding silver nanoparti-
cles and healing agents to treat skin wounds. This development involves the incorporation
of active agents with different properties and solubilities into a single film, potentially
addressing the needs of an organism during the healing process of an injury. Additionally,
the toxicological effects will be studied using the zebrafish model, providing insights into
the potential impact of this development on living organisms.

2. Materials and Methods
2.1. Materials

The colloidal suspension of AgNPs was provided by Nanotek S.A. (nanoArgen, Acas-
suso, Argentina). Sulfadiazine (Sigma-Aldrich, St. Louis, MO, USA, EE.UU, CAS-No:
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68-35-9), lidocaine (Sigma-Aldrich, St. Louis, MO, USA, CAS-No: 137-58-6), propylene
glycol (BioPak, Lanús, Argentina, CAS-No: 57-55-6), gelatin (Sigma-Aldrich, St. Louis, MO,
USA, CAS-No: 9000-70-8), tween 80 (BioPak, Lanús, Argentina, CAS-No: 9005-65-6), and
glycerol (Anedra Research A.G., Buenos Aires, Argentina, CAS-No: 56-81-5) were acquired
from their corresponding suppliers. Olive oil, canola oil, vitamin E, vitamin A, and soy
lecithin were obtained from the local pharmacy and were suitable for human intake.

2.2. Preparation of Gelatin Films with Emulsions (O/W)

The emulsions were prepared by mixing an oil phase (cod liver oil, vitamin E, and
canola oil) with a mix of surfactant agents: Tween 80, soy lecithin, and propylene glycol
(PPG); active ingredients (silver sulfadiazine, lidocaine, and vitamin A; continuous phase:
silver nanoparticles (AgNPs) and distilled water), using the spontaneous emulsification
method following the protocol described by [23]. The proportions of the components
of the oil phase and the mix correspond to those previously published by [18,24]. An
emulsion containing the active ingredients in its composition (AE) was prepared, along
with an emulsion without active ingredients (CE). The AE was formulated by mixing the
active compounds in a 1:1:0.25 mass ratio within the oil phase. In addition, a mixture of
surfactant and AgNPs (sized between 4 and 7 nm) was prepared by dispersing AgNPs
in water at a ratio of 0.05:1 (AgNPs/water) and adding them dropwise to the oil phase at
room temperature under vigorous stirring. The CE was prepared similarly to the AE but
using a 1:1 ratio of water to PPG as the active ingredient. The emulsions were stored at
room temperature and protected from light to prevent decomposition until the moment of
their use.

The film solution was prepared using gelatin as the biopolymer at 3% w/v in distilled
water and glycerol as a plasticizer at 1.5% w/w relative to the amount of gelatin. The
gelatin was dissolved in distilled water once it reached 90 ◦C, and from that moment,
it was homogenized for 20 min by continuous stirring. The active emulsion and the
control emulsion were added to the film-forming dispersion in two different ratios: 5:1
(AE5/CE5) and 10:1 (AE10/CE10) (parts of film solution to parts of emulsion, respectively).
The resulting dispersion was poured into sterile Petri dishes and left to dry using the
casting method at room temperature until it completely dried. A control film was also
prepared, composed solely of the polymer (gelatin) and the plasticizer, which we will refer
to as “gelatin film (GF)”. For subsequent characterization, the films were conditioned
in a desiccator with 53% relative humidity (r.h.) using a saturated Mg(NO3)2 solution.
The nomenclature used throughout the work to identify the different films is described in
Table 1.

Table 1. Description of gelatin-based films.

Sample Names Description

GF Films based on gelatin without emulsion

CE5
Films based on gelatin with CE without active compounds (5:1 mass ratio, film
dispersion/emulsion)

CE10
Films based on gelatin with CE without active compounds (10:1 mass ratio, film
dispersion/emulsion)

AE5
Films based on gelatin with AE with active compounds (5:1 mass ratio, film
dispersion/emulsion)

AE10
Films based on gelatin with AE with active compounds (10:1 mass ratio, film
dispersion/emulsion)
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2.3. Physicochemical Characterization
2.3.1. Field Emission Scanning Electron Microscopy (FESEM)

The morphology of the films was examined by FESEM (Zeiss Crossbeam 340). All
samples were mounted on stubs horizontally on their surface and coated with gold before
FESEM imaging at an accelerating voltage of 3 kV.

2.3.2. Mechanical Properties

Measurements were performed using a Universal Test Instrument Megatest TC-500
series II (Megatest, San Martin, Argentina) equipped with a 30 kgf cell load, following
the ASTM D882-12 standard. The experiment was performed at 20 mm min−1, at room
temperature. Before testing, specimens measuring 50 mm × 10 mm were cut from each
formulation, and their thickness was obtained by measuring them at 5 different points with
a digital micrometer (INSIZE Co., Ltd., Xiangyang Road, Suzhou, China). The mechanical
parameters were calculated from the resulting stress–strain curves: tensile strength (TS,
MPa), Young’s modulus (YM, MPa), and elongation at break (ε, %). Three replicates were
performed for this test.

2.3.3. Swelling Capacity

The swelling behavior of the films was evaluated in distilled water at room tem-
perature. Film disks (about 7 mg) were cut for each formulation, weighed initially, and
submersed in a small container with 10.5 mL of distilled water. At different intervals,
samples were removed and carefully dried with filter paper to remove the residual water,
weighed, and submerged again. This procedure was performed until constant weight or
loss of integrity of the films. The swelling degree was expressed as water uptake, h(t),
at time t in units of g of water per 100 g dried film (d.f.) and was calculated following
Equation (1):

h(t) =
pf − p0

p0
× 100 (1)

where pf is the weight of a swollen disk at time t and p0 is the initial weight of the disk that
was measured at the beginning of the experiment. Three replicates were performed for
this test.

2.3.4. Water Vapor Permeability (Pw)

The films’ water vapor permeability (Pw) was measured using the cup method de-
scribed in ASTM E-96 with some modifications by quantifying the water vapor flux through
the film by changes in the system’s weight, owing to moisture transfer. Firstly, films were
sealed on the cups with a 53 mm diameter aperture, containing a saturated solution of
BaCl2 providing 90% r.h. Test cups were placed inside a desiccator containing a saturated
solution of NaOH, providing 10% r.h. at a constant temperature of 22 ◦C. To maintain
uniform conditions, a fan was placed inside the desiccator over the films. At the beginning
of the experiment, cup weights were recorded, and then weight loss was measured over
time using an analytical precision balance (Precisa 125 A SCS, ±10−4 g). Weight loss m
versus time t was plotted, and when the steady state (straight line) was reached, another
48 h was registered. Pw (g s−1 m−1 Pa−1) was calculated following Equation (2):

Pw =
1
A

(
∆m
∆t

)
L

∆pw
(2)

where A is the effective area of the exposed film, L is the film thickness, and ∆pw = (pw2 − pw1)
(in Pa units) is the difference in water vapor partial pressure across the film; pw1 and pw2
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are the partial pressures at the film surface outside (263.9 Pa) and inside the cup (2375.4 Pa),
respectively. Experiments were performed in duplicate.

2.3.5. Thermal Gravimetric Analysis (TGA)

The thermal stability of the materials was assessed using a thermogravimetric analyzer
(TA Instrument Q500, New Castle, DE, USA). Approximately 7 mg of each sample was
weighed in a platinum pan and heated from 30 ◦C to 700 ◦C under an inert nitrogen
atmosphere (flow rates: 40 mL min−1 in balance and 60 mL min−1 in the sample) at
10 ◦C min−1 to study the thermal degradation. To analyze the behavior of the films at
low temperatures, samples were heated from 30 ◦C to 120 ◦C at 1 ◦C min−1. The initial
degradation temperature (Ti) was determined at 15% of mass loss, and the temperature
at the maximum degradation rate (Tmax) was determined from the peak of the derivative
curves of mass loss with respect to temperature. Experiments were carried out in duplicate.

2.3.6. Differential Scanning Calorimetry (DSC)

The glass transition temperature (Tg) and endothermic enthalpy (∆H) were measured
by a Differential Scanning Calorimeter (TA Instruments Q200, New Castle, DE, USA).
Approximately 5 mg of each film was contained in hermetic aluminum pans and sealed
with hermetic lids. The heating was carried out from 30 ◦C to 120 ◦C at 10 ◦C min−1. Tg
and endothermal transitions were determined by TA Universal Analysis software (v4.5, TA
Instruments, New Castle, DE, USA), and analyses were performed in duplicate.

2.3.7. Fourier-Transform Infrared Spectroscopy with Attenuated Total Reflectance
(FTIR-ATR)

The infrared spectra of the gelatin-based films were measured using a Fourier-
Transform Infrared Spectrophotometer (FT-IR) (Affinity-1, Shimadzu Co., Kyoto, Japan)
fitted with the module GladiATR (Pike technologies, Madison, WI, USA). The spectra were
obtained in duplicate, from 400 at 4000 cm−1, with an average of 45 scans at a 4 cm−1

resolution. Before each test, the humidity and the presence of carbon dioxide in the air
were compensated for with a blank spectrum. This test was performed in duplicate.

2.4. Cytotoxicity and Wound-Healing Assay

For in vitro assays, immortalized human skin keratinocyte cultures (HaCaT cell line)
were used, maintained in RPMI medium supplemented with 10% fetal bovine serum (FBS)
and 1% glutamine. To allow cell growth, they were kept in an incubator with 5% CO2 at
38 ◦C. Cytotoxicity assays were performed to determine cell viability using crystal violet
(CV), metabolic activity using MTT, and membrane integrity using neutral red uptake (NR).
The cytotoxicity study was conducted following the protocol of [11]. For the wound-healing
assay, HaCaT cells were grown to confluence in sterile 6-well plates for the cell migration
study. A wound was created using a sterile p200 pipette tip, followed by washing with
1× phosphate-buffered saline (PBS). Finally, the cells were incubated with the supernatant
from 1.5 cm film disks that had been in contact with the RPMI-supplemented medium
for 24 h. After incubation, the cells were fixed with 30% v/v formaldehyde for 10 min,
followed by incubation with 10% w/v methylene blue. Cell migration was then observed
with cytation 5 (Cell Imaging Mµlti-Mode Reader, BioteK, Córdoba, Argentina), and the
cell migration rate was measured using ImageJ software V5.1. Each cytotoxicity assay was
performed in triplicate, as was the cell migration assay. The migration rate was calculated
following Equation (3):

Migration rate =
(wound size0hpi − wound size24hpi)

24 h
(3)
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2.5. Toxicology Study in Zebrafish Model

The toxicological study of the developed films was carried out using the zebrafish
model. The protocols used were approved by the Institutional Animal Care Committee
of the National University of Quilmes, resolution CE-UNQ 2/2014, and Institutional
Committee for the Care and Use of Laboratory Animals, with the following resolution
CICUAL-UNQ 013-15. General toxicity and organ-specific studies were conducted by
incubating 5-day-post-fertilization (dpf) larvae with the supernatant resulting from the
incubation of 1.5 cm diameter film disks, previously UV-sterilized for 2 min, in 2 mL
of E3 medium. These larvae were incubated for 48 h at 28 ◦C, during which mortality,
morphological changes, cardiotoxicity, neurotoxicity, and hepatotoxicity were evaluated
according to [11,25]. The experimental design is summarized in Figure 1.
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Figure 1. Experimental design. Zebrafish larvae of 5 days post-fecundation (dpf) were incubated with
different films. Mortality, locomotor activity (neurotoxicity), cardiac rate (cardiotoxicity), necrotic liver
(hepatotoxicity), and morphological changes were studied at 4, 24, and 48 h post-incubation (hpi).

For the mortality, morphological changes, and neurotoxicity studies, this research
included 16 technical replicates and 3 biological replicates for each tested condition (n = 48
larvae in total). For the cardiotoxicity and hepatotoxicity studies, 3 replicates were per-
formed, using n = 5 for each biological replicate and a total n of 15. Technical replicates
refer to the number of wells used in each biological replicate, with each well containing
3 larvae.

2.6. Statistical Analysis

Statistical analysis was performed with the GraphPad Prism V6 statistical program,
using one-way ANOVA or two-way ANOVA tests followed by Dunnett’s or Tukey’s
multiple comparison post-test. Data were presented as a mean ± standard deviation; the
error was considered statistically significant if p < 0.05.

3. Results and Discussion
3.1. Field Emission Scanning Electron Microscopy (FESEM)

Images of the films and the micrographs obtained by FESEM showed the homoge-
neous and rough surface of control films (Figure 2A). In contrast, films with incorporated
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emulsions exhibited a heterogeneous surface with no brittle areas and some bubbles
(Figure 2B,E). These results are consistent with the observations made by [26]), who in-
dicated that the incorporation of emulsions into gelatin films generates changes in the
uniformity of the structures of the resulting films due to the interaction of the emulsion
droplets with the matrix. On the other hand, [27] also observed the presence of rough
surfaces when incorporating Pickering emulsions in a gelatin film matrix. Gelatin generates
foam when shaken to form the film-forming dispersions and might produce bubbles in the
matrix. This could be solved by homogenizing the dispersions at a lower stirring speed;
however, longer stirring periods could cause the dissolution of the emulsions, as observed
in Figure 2B,E. The spots observed in Figure 2B could be related to the rupture of the emul-
sion droplets, caused by a destabilization process resulting from their incorporation into
the film dispersion. Previous studies indicated that the control emulsion (CE) is less stable
than the active emulsion (AE) [23]. Differences in the structures of films could be attributed
to the emulsion/film-forming dispersion ratio used in each formulation. Figure 2C,D show
films with homogeneous surfaces. The film in Figure 2C exhibits wrinkles in its structure,
possibly due to the film’s arrangement when mounted on the stub for microscopy and
subsequent metallization.
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3.2. Mechanical Properties

The use of gelatin in composite films is limited by several factors, including low
stability, poor mechanical strength, and low elasticity. Many studies have been carried
out to solve these weaknesses by adding different compounds into the formulation. Thus,
modifications in gelatin films are essential to minimize those limitations [28]. The values
corresponding to tensile strength (TS), Young’s modulus (YM), and elongation at break (ε%)
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of the different films are presented in Table 2. Films prepared using different blend ratios of
gelatin have been found to exhibit mechanical parameter values both higher and lower than
those observed in this study. Moreover, comparing data with other research is challenging
due to variations in experimental factors such as the source of gelatin (bovine, porcine,
chicken, or fish), as well as differences in formulation and film-conditioning techniques [29].
All formulations showed changes in the mechanical properties of films, with an increase in
TS, YM, and ε% compared to control (GF). For AE emulsions, an increase in TS, YM, and
ε% was observed as the proportion of active compounds was increased in the formulation.

Table 2. Mechanical parameters of films. The same letters in the data reported in columns mean
non-significant differences. Statistical analysis was performed using one-way ANOVA followed by
Tukey’s post-test (p ≤ 0.05).

Sample TS (MPa) YM (MPa) ε (%) Thickness (mm)

GF 2.2 ± 0.4 a 0.04 ± 0.01 a 46 ± 13 a 0.042 ± 0.003 a

AE10 3.6 ± 0.6 ab 1.7 ± 0.4 b 257 ± 20 b 0.053 ± 0.003 b

CE10 3.9 ± 0.6 b 1.7 ± 0.5 b 338 ± 21 c 0.057 ± 0.002 b

AE5 6.2 ± 0.5 c 7.6 ± 0.8 c 302 ± 32 c 0.075 ± 0.002 c

CE5 2.6 ± 0.8 a 3.9 ± 0.7 d 306 ± 20 c 0.075 ± 0.005 c

The TS parameter showed higher values when the emulsions were incorporated,
increasing by 80% to 182% compared to GF. TS is related to the hardness of the material
structure, and it was observed that this increased with the addition of the emulsions,
indicating that the structures offer excellent resistance to deformation. Additionally, YM
exhibited higher values when the emulsions were incorporated into the gelatin matrix. A
general analysis of YM across the formulations ranked them as AE5, CE5, AE10, CE10, and
GF, indicating that the structures provide greater rigidity in the elastic zone. Similarly, the
ε% values increased with the presence of the emulsions in the formulations, ranked as
CE10, CE5 ≈ AE5 ≈ AE10, and GF. This suggests that the structures demonstrate enhanced
deformability throughout the tensile-specific deformation curve. The higher ductility of the
material was reflected in the total deformation during both the elastic and plastic phases,
shown by the incremental values with the addition of the emulsion. The incorporation
of the emulsion may have a plasticizing effect, as the emulsion droplets interfere with
the formation of intermolecular junctions between peptide chains [30]. However, the
interaction between polymer chains was also observed by the increase in material resistance.
This behavior could be attributed to the breakage of some emulsion droplets, releasing
oil into the matrix and increasing the interaction between hydrophilic chains. Studies
have observed similar trends while incorporating liquid oils into hydrophilic biobased
films [31,32].

3.3. Swelling Capacity

The water absorption capacity of the different films can be seen in Figure 3; for all
conditions studied, a progressive increase in the swelling degree of the films was observed
due to the water retained in their structure.

Based on the results, it was possible to identify that the AE5 and CE5 conditions
incorporated more water in their structure than the AE10 and CE10 conditions and that
the GF is located at intermediate points of the tested samples. The ability of the films to
incorporate water depends on the physicochemical factors of the medium, the matrix, or
its modification due to the incorporation of different components [33–35]. In this study,
the absorption capacity changed as the structure of the base film was modified. The
characteristics of the films mentioned before would help the absorption of exudates found
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in wounds when suppurating, as a result of an injury and subsequent release of bactericidal
and healing components, promoting cell regeneration [7]. The swelling capacity of the films
did not exceed 400% of their initial weight in the tested conditions, being able to maintain
their structure without breaking or losing integrity; notably, the assay was performed
in extreme conditions since a wound would not exude as much liquid. After 72 h of
incubation, the films reached equilibrium; they did not incorporate more water into their
structure, indicating their maximum swelling capacity. Differences were not significant for
most conditions, except for the AE5 sample that showed more water absorption capacity.
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3.4. Water Vapor Permeability

An ideal wound dressing should provide a proper environment for the healing process.
Therefore, it must have specific properties, such as flexibility, adherence, and permeability
to water vapor [7]. The water vapor permeability (Pw) data are presented in Table 3.
Some studies have reported that, for hydrophilic films, water vapor permeability increases
significantly with the increasing thickness of the films under study [22]. In this work,
Pw increased significantly for gelatin films with emulsion in the formulations compared
to the control. When comparing results for films with emulsion, it was observed that
higher amounts of emulsion (AE5/CE5) resulted in slightly higher Pw values. However,
their thicknesses were greater than those of the AE10/CE10 samples, so it was not possible
to conclude that the emulsion increased the Pw of the films. When films with equal
concentrations of emulsion were compared (same thickness), it was noted that the presence
of the active compound slightly increased the permeability value (though not significantly),
likely due to the release of some oil from the emulsion without the active compound, which
made the matrix more hydrophobic. Other studies have demonstrated that emulsions with
active compounds are more stable than those without [11]. Regarding the required Pw for
wound dressing, it has been reported that commercial dressings, such as Biobrane (silicon
and nylon), have a value of 23 g/m2·h·kPa, Omiderm (polyurethane) 83 g/m2·h·kPa, and
Op-site (breathable dressing and waterproof) 8 g/m2·h·kPa. The results of this study,
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expressed in the same units, ranged between 13 and 17 g/m2·h·kPa, indicating that they
are adequate for such applications in terms of Pw and represent a sustainable alternative.

Table 3. Water vapor permeability of films. A statistical analysis was conducted using one-way
ANOVA followed by Tukey’s post hoc test (p ≤ 0.05). Identical letters in the reported data within
each column indicate no significant differences.

Sample Pw 10−10(g s−1 m−1 Pa−1) Thickness (mm)

GF 1.43 ± 0.02 a 0.032 ± 0.03 a

AE10 2.50 ± 0.01 b 0.053 ± 0.003 b

CE10 2.34 ±0.01 b 0.057 ± 0.002 b

AE5 2.70 ± 0.01 b 0.075 ± 0.002 c

CE5 2.60 ± 0.02 b 0.075 ± 0.005 c

3.5. Thermal Gravimetric Analysis (TGA)

Thermograms analyzed by TGA scanned between 30 ◦C and 700 ◦C showed that the
films suffered a multistep degradation (Figure 4), with a weight loss as a function of temper-
ature (Figure 4A) and the derivate of the percentage of weight as a function of temperature
(Figure 4B). The main temperatures that occurred during film degradation are described
in Table 4. Thermogravimetric analyses showed a displacement of initial temperature
(Ti) in all conditions with respect to GF. This initial temperature was calculated as a 15%
weight loss. Then, Tmax was determined as the temperature peak from the derivate curve
(Figure 4B). GFs presented two main peaks centered at 280 ◦C and 305 ◦C, but formulated
films presented three main peaks that appeared at temperatures near 300 ◦C, 380 ◦C, and
440 ◦C (Figure 4B). Formulated samples containing emulsion exhibited a decrease in the
degradation rate compared to those containing GF, and this demonstrated that the emul-
sion incorporation results in increased thermal stability [27,36,37] in agreement with other
authors. Then, a comparison between AE and CE conditions revealed that films under AE
displayed lower degradation temperatures than those under CE. This phenomenon may
be elucidated by the presence of metallic particles in the formulation, which may serve as
internal heat sources within the film, internally increasing the temperature throughout the
study and thus facilitating the degradation process.
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Table 4. Initial and maximum degradation temperatures corresponding to the films. Temperature
error: ±1 ◦C.

Formulation Ti (◦C) Tmax1 (◦C) Tmax2 (◦C) Tmax3 (◦C)

GF 145 280 305 -

AE10 140 325 385 435

CE10 160 270 380 440

AE5 155 310 390 431

CE5 180 310 345 400

3.6. Differential Scanning Calorimetry (DSC)

DSC thermograms of the different formulations can be observed in Figure 5. From
the graph, it was possible to determine the glass transition temperature (Tg) and the
endothermic transition (∆H) corresponding to the denaturation of collagen triple-helix
structures and the denaturation temperature (Td) [38,39].
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As shown in the DSC thermogram (Figure 5) and Table 5, a shift of the Tg towards
higher temperatures of the CE and AE films with respect to the GFs was observed. This
behavior could be attributed to the emulsions’ incorporation, which might hinder gelatin
chain movements, increasing this temperature. However, the incorporation of the active
principles did not play a preponderant role in this behavior since both AE and CE behave
similarly under the same conditions.

Table 5. Glass transition temperature (Tg, ◦C) and endothermic transition (∆H, J/g).

Formulation Tg (◦C) ∆H (J/g)

GF 57 4.236
AE10 62 5.043
CE10 62 4.835
AE5 67 6.758
CE5 65 6.653

The increase in the formulated samples’ enthalpy indicated that the emulsion formu-
lations require more energy to undergo the phase transition. On the other hand, the AE
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formulations presented higher ∆H values than the CE formulations, implying that the
emulsion’s bioactive compounds stabilize the samples.

3.7. Fourier-Transform Infrared with Attenuated Total Reflectance (FTIR-ATR)

The spectrum of the GF and all formulations are shown in Figure 6. All spectra were
similar in the interval of 1700–700 cm−1, which correspond to the amide I at ~1631 cm−1

(C=O stretching/COO-coupled hydrogen bond), amide II at ~1548 cm−1 (bending vibration
of the N-H group and C-N stretching), and amide III at ~1237 cm−1 (vibrations in the C-N
and N-H planes of bound amides and CH2 to glycine) [40,41]. The band from 1034 to
1038 cm−1 in all samples corresponds to the OH groups from glycerol. An increase in
the height of the peaks of the amides and the hydroxyl groups with respect to those of
the based films was observed, which corresponds to interactions between the structural
polymer and the components of the emulsions. The absorption bands between 2853
and 2924 cm−1 were attributed to lipids and hydrophobic substances in the emulsion’s
active compound and oil phase. Also, the region at 1200–900 cm−1 was attributed to
stretching modes of carbohydrate molecules and side groups (C-O-C, C-OH, and C-H)
and ~1742 cm−1, corresponding to the carbonyl group from fatty acids coming from the
emulsified oil [42]. At higher wavelengths, the signals found at 3200–3500 cm−1 correspond
to the vibrational stretches of O-H and N-H groups from the hydrogen bonds within the
matrix chains (gelatin) [43,44]. The results showed a change in the behavior of the GF
chains upon incorporating the emulsions. This change is reflected in the increased intensity
of characteristic signals, such as those at 3200–3500 cm−1, which correspond to the matrix,
and those at 1700–1500 cm−1, associated with amine groups. These changes could indicate
interactions between the amino acids that make up the matrix and the active ingredients,
as well as the appearance of new signals, suggesting interactions between the different
components of the emulsions and the biopolymer.
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3.8. Cytotoxicity and Wound-Healing Assay

Keratinocytes are cells found in the outermost layers of the skin, making them the
primary recipients of damage in the event of an injury. Therefore, they play essential roles
in the various stages of the healing process (hemostasis, inflammation, proliferation, and
remodeling) [45]. They have a cross-activation system of the immune system through
membrane receptors and pathogen recognition, and they send pro-inflammatory signals
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that activate cell proliferation and maturation, which are crucial for wound healing [46].
This is why, when designing a treatment for skin injuries, it is important to evaluate the
cytotoxicity of the potential treatment on this type of cells. Upon evaluating different
films in HaCaT cell cultures, we observed that they did not cause a loss of cell viability as
determined by CV (Figure 7A). Additionally, there were no changes in cellular metabolism
measured by MTT, except for the base film (GF), which caused an increase in mitochondrial
activity, possibly attributable to the protein-based matrix of the film (Figure 7B). This could
be over-nourishing the cells, leading to heightened metabolic activity. The integrity of the
plasma membrane showed no damage that would prevent the incorporation of neutral red
into its structure (Figure 7C). As a positive control for cell toxicity, EDTA 15 mM was used,
known from the literature as an anion chelator that induces cell death. In line with this, we
observed that this control affected cell viability, metabolic activity, and membrane integrity
in the three assays conducted.
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To evaluate if the films promote cell migration, facilitating wound closure in vitro,
a gap was created in HaCaT cell layers, and then the cell migration rate was calculated
using the ImageJ software based on images taken at 0 hpi and 24 hpi. The active film
AE5 demonstrated the fastest wound closure, followed by the active film AE10, the films
without active ingredients (CE10 and CE5), and finally, the base film (GF) (Figure 7D).
These results outperformed other biopolymer-based wound-healing developments, such
as the chitosan films by [47,48] polymeric films, which also showed lower wound closure
efficiency compared to our active films. This indicates that the active films effectively
promote wound closure, highlighting their potential use in human wound healing.
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3.9. Toxicology Study in Zebrafish Model

The in vivo toxicity analysis of the different films was evaluated at 4, 24, and 48 h
post-incubation (hpi). The films showed no mortality in any of the tested larvae except
for the base GF, which was lethal at 48 hpi with 100% mortality. Although this result was
unexpected, the films incorporating the different emulsions improved the performance of
the base film in the toxicological studies. The morphological changes were studied at 48 hpi
(Figure 8A,B). The films containing the emulsions did not cause marked morphological
changes under the different conditions, unlike the GF, which presented the highest score,
without being able to differentiate which anomalies were present specifically; nevertheless,
these anomalies led to the absence of heartbeats. For the films with emulsions, the main
detected effects were the presence of an opaque liver and the absence of the swim bladder.
However, these effects were observed in a low percentage of individuals, showing a
minimal impact on the population.
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The study of spontaneous swimming in zebrafish larvae is intrinsically linked to
neuronal activity, making this model an important tool for studying neurotoxicity. This is
because, at 48 h post-fertilization (hpf), the larvae have developed neurons, a spinal cord,
and neurotransmitter projections that are in their optimal functioning state when testing a
treatment [49,50]. When evaluating the neurotoxic effects of our films, it was determined
that GF induces a deterioration of locomotor activity, which progresses as the incubation
time increases, with 100% loss of movement at 48 hpi (Figure 8C). However, this effect
cannot be attributed to neurotoxicity, as the larvae were dead by the end of the study. It may
be due to a combination of symptoms that led to the total deterioration of the larvae. On
the other hand, when AE and CE films were compared, there was no marked difference in
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behavior, a conclusion reinforced by statistical analysis; analyzing the differences between
conditions, they did not show significant differences.

Since most medications are processed in the liver, studying treatments’ effects on this
organ is crucial. Therefore, this study examined the preservation of liver anatomy and
its functions. It revealed that some larvae exhibited opaque areas in the liver at 48 hpi,
indicating a potential future development of total tissue necrosis when exposed to AE and
CE films.

Therefore, evaluating the effect on heartbeats of the films (Figure 8D), although it is a
topical application, its potential disposal and environmental impact imply that studying
this animal model is of vital interest. The treatment of the films was compared with the
control, showing that the AE films did not exert a cardiotoxic effect on the larvae at 48 hpi
under any conditions. However, arrhythmia was observed in larvae treated with CE5 films,
with increased heartbeats. Finally, as seen previously, the GF showed a total absence of
heartbeats due to lethality, resulting in 100% larval death.

Toxicological studies in this model showed that the GF exhibited acute toxicity, associ-
ated with the progressive deterioration of the larvae and their death at 48 hpi. However,
these effects were not observed with the incorporation of emulsions in the AE and CE
films, making this system a promising candidate for potential human biocompatibility and
environmental friendliness.

4. Conclusions
An innovative composite system was developed based on gelatin as a matrix and

O/W emulsions as carriers containing silver nanoparticles, sulfadiazine, lidocaine, and
vitamin A as healing agents to treat skin lesions. This novel film offers a sustainable
protective delivery system of active compounds and stable medium, supporting our main
goal of diminishing the frequency of dressing exchange, avoiding the risk of infection,
and mainly reducing periodic clinic visits. The water vapor permeability results indicated
that the formulated films are suitable for wound dressings. Mechanical properties were
affected by the addition of the emulsion, but no detrimental changes were found. In vitro
studies indicated that the developed films do not exhibit cytotoxicity in a skin cell line
and, importantly, promote a higher rate of cell migration for wound closure. In vivo assays
demonstrated that the films are not toxic to zebrafish larvae, positioning this development
as a potential candidate for application in skin wounds. Based on the results, our best
formulation was AE5, which exhibited the best physicochemical properties. Notably, since
zebrafish are environmental bioindicators, the fact that the films resulted in non-toxicity is
essential for their use and eventual disposal.
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