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Abstract 

Epilepsy is a chronic neurological disorder of the brain that affects around 50 million people worldwide. The early 

detection of epileptic seizures using electroencephalogram (EEG) signals is a useful tool for several applications in 

epilepsy diagnosis. Many techniques have been developed for unscrambling the underlying features of seizures present 

in EEGs. This article reviews the seizure detection algorithms developed in the last decade. In general terms, 

techniques based on the wavelet transform, entropy, tensors, empirical mode decomposition, chaos theory, and 

dynamic analysis are surveyed in the field of epilepsy detection. A performance comparison of the reviewed algorithms 

is also conducted. The needs for a reliable practical implementation are highlighted and some future prospectives in the 

area are given. Epilepsy detection research is oriented to develop non-invasive and precise methods to allow precise 

and quick diagnoses. Finally, the lack of standardization of the methods in the epileptic seizure detection field is an 

emerging problem that has to be solved to allow homogenous comparisons of detector performance. 

 

Keywords: Epilepsy; Seizure detection algorithm; Performance 

1. Introduction 

Epilepsy is a chronic neurological disorder of the brain that 

affects around 50 million people of all ages in every country in 

the world. According to the World Health Organization (WHO), 

epilepsy is characterized by recurrent seizures, which are 

physical reactions to sudden, usually brief, excessive electrical 

discharges in a group of brain cells [1]. In the context of 

epilepsy monitoring, two types of seizure have to be considered, 

namely behavioral and electrographic. A behavioral seizure is 

defined as the clinical manifestations of epilepsy, as perceived 

by the patient, seen by an observer, or recorded on video. A 

electrographic (or electroencephalographic (EEG)) seizure is 

defined as an abnormal paroxysmal EEG pattern. In many cases, 

there is dissociation between behavior and EEG signals [2]. 

Automatic EEG seizure detection, quantification, and 

recognition have been areas of concern and research within the 

clinical, physics, and engineering communities since the 1970s. 

In clinics, for patients with medically intractable partial 

epilepsies, time-consuming video EEG monitoring of 

spontaneous seizures is often necessary. Visual analysis of 

interictal EEG is, however, time-intensive so the automated 

detection of seizures in long-term EEG records is very useful, as 

it reduces the information that a specialist has to analyze in 
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order to make a diagnosis about the type of epilepsy or to 

determine the epileptic source. The automated detection of the 

time onset and quantification of an EEG epileptic seizure is also 

useful in drug delivery systems or neurostimulation devices 

[3-6]. Another important line of research is regarding seizure 

prediction based on precursors of impending epileptic seizures. 

There is evidence that seizures are preceded by characteristic 

changes in the EEG that are detectable minutes before seizure 

onset [7]. This would allow the dynamic mechanisms 

underlying the disorder to be elucidated, as well as enable 

implantable devices to intervene in time to treat epilepsy [8-10]. 

This is a complex area that has to be treated independently. 

Some examples are given below to better explain the 

seizure detection problem. Figures 1(a) and (b) show 100- 

second records for 4 channels of a scalp EEG, with the preictal, 

ictal and postictal states shown. In Fig. 1(a), these three states 

are easy to distinguish by visual inspection whereas in Fig. 1(b), 

the epileptic seizure can go unnoticed in a first or quick 

examination by a neurologist. There is thus a need to find 

features such as amplitude, duration, and frequency that help to 

distinguish an epileptic seizure from the background. However, 

visually inspecting changes in these features and wave 

morphology is difficult, subjective, and time-consuming. The 

development of automatic tools for seizure detection from EEG 

records is thus desirable. 

This paper outlines the processing techniques and 

classifiers used for epilepsy detection. A performance 

comparison of the reviewed seizure detection algorithms is also 
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conducted. An overview of the blocks of a seizure detection 

system is given. 
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Figure 1. Examples of two epileptic seizures from CHB-MIT Scalp 

EEG database [92]. Four channels of EEG record of epileptic 

seizure of Patient 1, segments (a) 4 and (b) 15. In (a), preictal, 

ictal, and postictal states are easy to distinguish by visual 

inspection, whereas in (b), visual differences between these 

three states are difficult to discern. Black lines indicate the 

time boundaries of a seizure annotated by an expert. 

2. Detection system 

A seizure detection system can be divided into three stages: 

data acquisition and preprocessing, processing and feature 

extraction, and decision-making. The following sections 

describe these blocks. 

3. Preprocessing 

In biomedical signal processing, it is crucial to determine 

the noise and artifacts present in the raw signals so that their 

influence in the feature extraction stage can be minimized. 

EEG recordings have a wide variety of artifacts, some having a 

technical origin and others having a physiological origin [11]. 

The preprocessing stage attempts to eliminate these artifacts 

without losing relevant information. 

Noise of technical origin depends on the acquisition 

settings, which are related to the type of EEG (scalp or 

intracranial), including gain (vertical resolution), cut-off 

frequencies of high-pass and low-pass filters, characteristics of 

the notch filter, and sampling rate [12]. 

Physiological artifacts include those caused by ocular 

(electroculogram: EOG) and muscle (electromyogram: EMG) 

activity as well as heart rate (electrocardiogram: ECG), which 

overlap with the frequencies of interest in EEG seizure 

detection. Several methods have been proposed to diminish 

such interference, such as conventional filtering and artifact 

cancellation using combined reference signals [11]. 

In [13], intracranial EEG (iEEG) signals were band-pass- 

filtered between 0.5 and 100 Hz to only allow the frequencies 

of interest and a notch filter was used to remove 50-Hz power 

line noise. Saturation and movement artifacts were identified. 

Segments for which the derivative of the iEEG signal was zero 

were marked as having saturation artifacts. Movement artifacts 

were discarded using a threshold; iEEG segments containing a 

signal with amplitude of larger than 1.5 mV were considered as 

having movement artifacts. In [14], a wavelet filter that 

requires the frequency content to be limited to the 0-60 Hz 

band is used, so the EEG is band-limited to the desired band by 

convolving with a low-pass finite impulse response (FIR) filter. 

Some techniques, such as independent component analysis 

(ICA), are specifically used for artifact cancellation. ICA 

identifies sources, in this case artifacts present in the EEG 

signal, based on blind source separation (BSS) and separates 

them from the EEG based on their statistical independence 

[12,15]. This subject is detailed in Section 4.5. 

Another technique for artifact cancellation is adaptive 

filtering, which uses a filter that self-adjusts its transfer 

function according to an optimization algorithm driven by an 

error signal. The accuracy of the method has been evaluated 

using simulated data [16]. The method has been used to remove 

ocular artifacts from EEG [17]. Mourad et al. used a blocking 

matrix that adaptively rejects high-amplitude artifacts present 

in simulated EEG data [18]. A cascade of three adaptive filters 

based on a least mean squares algorithm has been proposed to 

remove the common noise components present in the EEG 

signal [19]. The first filter in the cascade eliminates power-line 

interference, the second removes the QRS complexes of the 

ECG signal, and the last one cancels EOG artifacts. Each stage 

uses an FIR filter, which adjusts its coefficients to produce an 

output similar to the artifacts present in the EEG. Finally, the 

output of the cascade gives an EEG signal without artifacts 

[19]. 

To remove artifacts from EEG signals, multi-way analysis 

decomposes EEG data into space-time-frequency components. 

Multi-channel EEG data has been constructed as a third-order 

tensor, an epilepsy feature tensor, with modes: time 

samples × frequency × electrodes [20]. This allows the spectral, 

spatial, and temporal signatures of an artifact to be found to 

define it using parallel factor (PARAFAC) analysis. Then, 

through multilinear subspace analysis, artifacts such as eye 

movements are removed so that the remaining data does not 

contain any activity correlated with the artifact [20]. More 

detailed definitions about tensors are given in Section 4.6. 

The preprocessing block also normalizes the signal to 

make the data comparable with those recorded by another 

acquisition system or from a different patient. An example of 

this is putting all the data in a given amplitude range, allowing 

the signals to be compared directly [21]. 
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4. Processing and feature extraction 

In an automated seizure detection system, the 

distinctiveness of the EEG signals before, during, and after a 

seizure has to be determined and evaluated. Several features 

have been identified to better describe the behavior of seizures. 

These may represent the static behavior of the signals in both 

time and space or the dynamic properties, such as chaoticity 

and non-linearity [12]. 

In this section, the terms processing technique and feature 

extraction are used interchangeably for some techniques due to 

their close relation; for example, wavelet features make 

reference to the wavelet transform (WT) of the signal. Since the 

EEG signal has non-linear and non-stationary characteristics, 

linear processing techniques have to be applied to a windowed 

version of the signal, where it is assumed to be linear and 

stationary. Even though the technique to be applied is suitable 

for this kind of signal, windowing is always used because the 

events to be detected are transitions between non-seizure, pre- 

seizure, and seizure states [21]. Some studies have analyzed 

single-channel EEG signals [22,23] whereas others have used 

multi-channel analysis to evaluate synchronization between 

EEG channels [24]. 

Selecting features that best describe the behavior of EEG 

signals is important for seizure detection and classifier 

performance. Many types of features and processing techniques 

have been proposed, including those based on time-domain 

[25,26], frequency-domain [19,33,34,13,27,28], or time- 

frequency analysis [31], energy distribution in the time- 

frequency plane [29-32], wavelet features [33-35], and chaotic 

features such us entropy [23,36]. Another technique is multi- 

way analysis, which uses feature tensors to identify seizures 

[20,37-40]. 

Most detectors use a combination of two or more 

techniques and test a given set of features with more than one 

classifier [41-43]. 

4.1 Time-domain analysis 

EEG signals are a function of time so directly estimated 

features are called time domain analysis. Often used features 

include amplitude, regularity, and synchronicity, which increase 

during epileptic events. 

Amplitude refers to the signal instantaneous energy. Its 

square is the signal power, which emphasizes changes more 

than energy but is consequently more affected by noise. This 

feature was used by Minasayan et al. [26], who combined it 

with other parameters to construct an input vector to an 

artificial neural network (ANN) classifier. Figure 2 shows an 

example of EEG signal instantaneous energy. Notice the 

remarkable increase of energy during the epileptic seizure 

(bounded by black lines). 

Regularity is obtained using an auto-correlation function, 

which measures the similarity of a signal with itself. 

Windowing analysis gives an idea of periodicity, which can be 

used to identify how regular a signal is [21]. 

Synchronicity gives an idea of how similar signals are to 

each other or what events occur at the same time. Several 

methods, such as cross-correlation and mean phase coherence, 

exit for measuring various types of synchronicity [25]. 
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Figure 2. Signal instantaneous energy, showing an increase during a 

seizure. Black lines indicate the time boundaries of a seizure 

annotated by an expert. 

Usually, time features are used in seizure detection 

algorithms. For example, relative average amplitude, relative 

average duration, and the coefficient of variation of amplitude 

are implemented in the commercial seizure detection algorithm 

Monitor [44,45]. Monitor is used as a gold standard even 

though its detection accuracy is under 80%. Therefore, 

researchers, including Saab and Gotman [46] and Aarabi [13], 

have improved these parameters. 

Acharya et al. proposed higher order spectra (HOS) 

features (specifically cumulants) from normal, interictal, and 

epileptic EEG segments for time series analysis, obtaining a 

high detection accuracy of 98.5% [47]. Other researchers 

reported achieving a 93.11% classification accuracy with 

HOS-based features [48,49]. Other works combined HOS with 

principal component analysis (PCA), achieving detection 

accuracies of over 95% [50]. 

4.2 Frequency-domain analysis 

During an epileptic seizure, there is usually a change in 

the frequency components of the EEG signal, as shown in 

Fig. 1(a). This change needs to be quantified to provide useful 

information. To extract frequency features, the signal has to be 

described in terms of its frequency components, which is done 

using the Fourier transform. Frequency features can be used to 

isolate brain activity at different frequencies. In general, power 

spectral density (PSD) is calculated and then relevant features 

are extracted [21]. Figure 3 shows the PSD of 3 EEG segments 

of a given patient. Peaks in the bands 0.5-5 Hz and 10-15 Hz 

are present only during a seizure (grey curves versus black 

curves (no seizure)). 
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Figure 3. PSD of a seizure-free segment and two segments with 

seizures.
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Some common spectral features are average band 

frequency, maximum power [51], central, mean, and peak 

frequencies [52], and dominant frequency [13]. In general, 

studies combine frequency analysis with time and other 

features for more accurate detection due to the complexity of 

detecting seizures. 

4.3 Time-frequency analysis 

Even though time and frequency analyses are widely used 

in signal processing, they have well known disadvantages when 

applied to signals such as EEG. Time-domain analysis can be 

used to assess the exact location of events but it cannot 

distinguish which frequencies are involved in those events. 

Frequency-domain analysis differentiates the frequencies 

present in a signal but not the time moment of their occurrence. 

Due to these limitations, time-frequency analysis techniques 

have been developed. A classical method, such as 

spectrography, was used by Gabor et al. [29] and Gabor [30] to 

implement their commercial detector CNet. Other approaches 

include Gabor atoms, Wigner-Ville distribution (WVD) [53], 

and wavelet analysis, which is the most widely used for EEG. 

4.3.1 Wavelet transform 

The WT is a multiresolution decomposition of a signal 

into sub-band signals containing activity at different time scales 

achieved by passing the signal through an iterated filterbank 

structure [53]. This versatile signal processing tool captures 

transient features and localizes them in both time and frequency 

domain accurately. This transform analyzes the signal at 

different frequency bands with different resolutions by 

decomposing the signal into a coarse approximation and 

detailed information [54-56]. 

For epileptic seizure detection, many researchers have 

applied the WT. Shoeb et al. [57] used wavelet decomposition 

to construct a feature vector that captures the morphology and 

spatial distribution of an EEG epoch. Meier et al. [25] 

combined wavelet and time features as input for a support 

vector machine (SVM) classifier. Abibullaev et al. [35] tested 

various wavelet functions (db2, db5 and bior1.3, bior1.5) to 

detect and extract ictal epileptic seizure spikes. The commercial 

seizure detection algorithm Saab is based on the computation of 

the relative amplitude and the coefficient of variation of 

wavelet coefficients and a pure probabilistic classification with 

Bayesian formulation [46]. Other studies that use the WT are 

summarized in Table 1. 

Daubechies 2, 4, and 8 wavelet functions are the most 

widely used for seizure detection. The sub-band in which the 

characteristics of a particular seizure can be best distinguished 

depends on the sampling rate of the original signal. Figure 4 

shows a scalp EEG signal with a sampling frequency of 256 Hz 

and its 6-level wavelet decomposition obtained with 

Daubechies 4. The first levels of decomposition contain the 

highest frequency components of the signal while the last 

scales show the low-frequency content of the signal. Note that 

the sub-bands D5 and D6 have the highest increases in energy 

levels during the seizure bounded by black lines. In general 

terms, sub-bands of higher frequencies capture high-frequency 

artifacts similar to those resulting from muscular contractions 

while those detail signal ranging from 0.5 to 30 Hz capture 

seizure onsets [45,57]. 
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Figure 4. Daubechies 4 decomposition of a seizure EEG (scalp) signal 

with 6 levels of details (D1… D6). The sub-band ranges in Hz 

are approximately: D1 = 64-128; D2 = 32-64; D3 = 16-32; 

D4 = 8-16; D5 = 4-8; D6 = 0-4; A6 = 0-4. Black lines indicate 

the time boundaries of a seizure annotated by an expert. 

4.3.2 Wigner-Ville distribution 

The WVD is one of the most studied and best understood 

time-frequency distributions [53]. This particular distribution 

has very good resolution in both the time and frequency 

domains, and has interesting time and frequency support 

properties [15]. Tzallas et al. [32] applied the WVD to selected 

segments of EEG signals and extracted several features for 

each segment that represent the energy distribution in the 

time-frequency plane. The calculated features are fed into a 

feed-forward ANN. To reduce the dimensionality of the input 

patterns, PCA is also employed. 

Figure 5 (lower panel) shows the WVD of the EEG 

seizure segment of the upper panel; note the increase of 

amplitude (brighter colors) during the seizure. 
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Figure 5. Wigner-Ville Distribution (lower panel) of EEG seizure 

segment of the upper panel. The white ellipse bounds the 

region of the time-frequency plane that represents the seizure 

activity. 
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Table 1. List of reviewed publications, summary of classifiers, and database characteristics used by researchers. 

Reference Processing techniques Classifier type Database: Center/Hospital - EEG Type Patients 

Monitor Algorithm 

Gotman, (1982; 1990) 
Time analysis Thresholds Canada - SEEG Pediatrics 

CNet algorithm 

Gabor et al. (1996) and 

Gabor (1998) 

TF analysis/2DFFT SOM/ANN 
University of California, Davis Medical 
Center - SEEG 

NR 

Niederhauser, et al. 

(2003) 

TF analysis/Maximum excursion of 

JSPECT 
Thresholds Emory Epilepsy Monitoring – IEEG NR 

Reveal Algorithm 

Wilson et al. (2004) 
MP (Gabor Atoms) ANN 

Columbia P. Hospital/Universities of 
Pittsburgh and California, Davis 

Medical Center - SEEG 

Pediatrics/Adults 

Shoeb et al. (2004) Wavelet SVM Hospital NR - SEEG Pediatrics 

Kannathal et al. (2005) 

Shannon spectral entropy/ Renyi 

entropy / Kolmogorov entropy/ 

ApEn 

ANFIS Andrzejak – IEEG/SEEG Adults 

Güler and Ü beyli 

(2005) 
Wavelet ANFIS Andrzejak – IEEG/SEEG Adults 

Subasi (2005) Wavelet ANN Hospital NR - SEEG Pediatrics/Adults 

Saab Algorithm  
Saab and Gotman 

(2005) 

Wavelet Bayesian formulation 
Montreal Neurological Institute and 
Hospital, Canada - SEEG 

NR 

Grewal and Gotman 
(2005) [93] 

Time Analysis Bayesian formulation 
Montreal Neurological Institute and 
Hospital -IEEG 

NR 

Gardner et al. (2006) Energy-based statistics SVM Hospital NR- IEEG Adults 

Subasi (2006) Wavelet DFNN Hospital NR - SEEG Pediatrics/Adults 

Aarabi et al. (2006) 

Time analysis/ Frequency analysis/ 

Wavelet/ Auto Regressive 

Coefficients / Cepstral analysis 

ANN 
North Hospital of Amiens, France - 
SEEG 

Newborns 

Subasi (2007) Wavelet ANN Andrzejak – IEEG/SEEG Adults 

Adeli (2007) Wavelet/ CD/ LLE Confidence Interval Andrzejak – IEEG/SEEG Adults 

Polat and Günes (2007) Frequency analysis Decision tree Andrzejak – IEEG/SEEG Adults 

Tzallas et al. (2007) 
TF analysis (PWVD)/Energy 
distribution in TF plane 

ANN Andrzejak – IEEG/SEEG Adults 

Chan et al. (2008) Frequency analysis 
SVM/ Clustering and 

Regression Model 

RNSTM System, NeuroPace, Inc., 

Mountain View, CA - IEEG (6 patients) 
Adults 

Meier et al. (2008) Wavelet/ Time analysis SVM 
University Hospital Freiburg, Germany 

- SEEG 
Adults 

Schad et al. (2008) Time analysis Thresholds FSPEEG – IEEG (6 patients) Adults 

Deburchgraeve et al. 
(2008) 

NLEO Correlation Analysis Sophia Children’s Hospital, Rotterdam, 
The Netherlands - SEEG 

Newborns 
Wavelet Autocorrelation Analysis 

Gardner et al. (2008) Short-time energy 
Thresholds / 

Kolmogorov-Smirnov test 

The Children's Hospital of 

Philadelphia – IEEG (2 patients) 
Pediatrics/Adults 

Aarabi (2009) 
Entropy/Frequency and Time 

analysis 
Fuzzy Rules/ANN FSPEEG - IEEG Adults 

Mitra et al. (2009) 
Frequency analysis /Wavelet/Spatio- 
temporal clustering 

ANN/ Context-based Rules 
NICU of Texas Children’s Hospital - 
SEEG 

Newborn 

Ü beyli (2009) Eigenvectors  in Frequency domain MLPNN/RNN Andrzejak – IEEG/SEEG Adults 

Guo et al. (2010) Wavelet ANN Andrzejak – IEEG/SEEG Adults 

Minasyan et al. (2010) 
Frequency and Time analysis 

/Wavelet /Complexity measures 
RNN 

Medical centers from T. Jefferson, 
Dartmouth, Virginia, UCLA and 

Michigan Universities - SEEG 

Adults 

Abibullaev et al. (2010) Wavelet ANN 
Dongsan Medical Center, South Korea - 
SEEG 

Adults 

Zandi et al. (2010) Wavelet Cumulative thresholds 
Vancouver General Hospital (VGH) - 

SEEG 
Adults 

Marsh et al. (2010) Time analysis Thresholds 
The Children's Hospital of 

Philadelphia – IEEG 
NR 

Temko et al.(2011a) Frequency / Time analysis SVM 
NICU of Cork University Maternity 
Hospital, Ireland 

Newborns 

Orosco et al. (2011) 

EMD/IMF’s Energy Thresholds 

FSPEEG - IEEG Adults EMD/IMF’s Frequency / Time 
analysis 

LDA 

Yuan et al. (2011) ApEn/ Hurst exponent/ DFA ANN/SVM Andrzejak – IEEG/SEEG Adults 

Oweis and Abdulhay 
(2011) 

MEMD/ EMD t-test/Euclidean clustering Andrzejak – IEEG/SEEG Adults 

Orhan et al. (2011) Wavelet 
k-means 

clustering/PD/ANN 
Andrzejak – IEEG/SEEG Adults 

Raghunathan et 
al.(2011) 

Wavelet- Two linear time-based 
features 

Simultaneous increase of 
features 

FSPEEG – IEEG (5 patients) Adults 
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4.3.3 EMD 

Empirical mode decomposition (EMD) [58] is an adaptive 

method introduced to analyze non-linear and non-stationary 

signals. It consists in a local and fully data-driven separation of 

a signal in fast and slow oscillations. The aim of the EMD is to 

decompose the signal into a sum of intrinsic mode functions 

(IMFs). An IMF is defined as a function that satisfies two 

conditions: (1) in the entire signal, the number of extrema and 

the number of zero crossings must be equal or differ at most by 

one; (2) at any point, the mean value of the envelope defined by 

the local maxima and the envelope defined by the local minima 

must be zero (or close to zero). 

EMD has been used for epileptic seizure detection. Oweis 

and Abdulhay [59] decomposed the EEG signal in 10 IMFs and 

then extracted their local amplitude and frequency. Based on 

this local information, weighted frequencies are calculated and 

a comparison between ictal and seizure-free determinant 

intrinsic functions is performed. Methods such as the t-test and 

Euclidean clustering can be used for comparison. Orosco et al. 

[52] developed two detectors based on the EMD of multi- 

channel EEG signals containing segments with and without 

seizures. The first detector computes the energy of the IMFs 

and a seizure is detected when this energy go up a threshold of 

amplitude and last more than 30s. The second detector extracts 

time and frequency features from IMFs and then performs 

linear discriminant analysis (LDA) for classification into 

seizure and no seizure states. In [60], the instantaneous area 

measured from the trace of the windowed analytic IMFs of 

EEG signals was used for the rules-based detection of focal 

temporal lobe epilepsy. The method was tested on intracranial 

EEG signals, with good detection accuracy of focal temporal 

lobe epilepsy found. 

Figure 6 shows a scalp EEG seizure record and its 6 IMFs. 

It is notable how in IMF4, 5 and 6 particular oscillations appear 

during the seizure time (black lines). Consequently, these 

functions can be used for seizure detection. The modes in 

which these distinctive frequencies appear vary because the 

EMD depends directly on the frequency content of the signal. 

This aspect makes the technique dissimilar from the WT. 

15301430 1460 Time (s) 1500
 

Figure 6. EEG scalp record and its 6 IMFs during an epileptic seizure. 

4.3.4 Matching pursuits 

Matching pursuit (MP) is an iterative algorithm that finds 

a suboptimal solution to the problem of an optimal 

representation of a signal in a redundant dictionary. MP 

decomposes the analyzed signal into a weighted sum of known 

functions which represent the oscillations and transients present 

in the signal [61]. These functions are known as Gabor atoms, 

and a set of them constitutes the Gabor dictionary. The MP 

algorithm finds the best single atom in each step and then 

subtracts the contribution of this atom from the data. This 

process continues for a fixed number of iterations or until the 

error of the residual data reaches an acceptable size. The use of 

Gabor atoms offers precise time-frequency resolution. 

This technique is implemented in the commercial seizure 

detection algorithm Reveal, developed by Wilson et al. in 2004 

[68]. A wavelet package is used as atoms instead of Gabor 

atoms in order to speed up the computation time. Connected- 

object clustering and seizure detection are performed using a 

set of ANN rules [62]. 

4.4 Chaos and dynamic analysis 

EEG signals are non-linear and non-stationary, and can be 

considered chaotic, and thus exhibit dynamic behavior. These 

signals can be characterized using tools that evaluate the state 

of chaos of a dynamic system. Entropies and Lyapunov 

exponents are effective tools for such evaluation [15]. Acharya 

et al. used recurrence plots of EEG signals to extract recurrence 

quantification analysis parameters to classify EEG signals into 

normal, ictal, and interictal classes. Good classification 

accuracy was found in differentiating the three types of EEG 

segment [63]. Adeli and Ghosh-Dastidar proposed an integrated 

approach that uses chaos theory and wavelets for EEG analysis 

[43]. 

4.4.1 Entropy 

In general, entropies are measures that give an idea of how 

disorderly a system is. From the information theory perspective, 

the concept of entropy is described as the amount of 

information stored in a general probability distribution. Higher 

entropy represents higher uncertainty and a more chaotic 

system. Recently, a number of entropy estimators have been 

applied to quantify the complexity of signals [64]. Shannon 

spectral entropy, Renyi’s entropy, Kolmogorov-Sinai entropy, 

and approximate entropy (ApEn) [65] are the most commonly 

used entropies. 

Kannathal et al. [36] applied various entropy estimators to 

EEG data from normal and epileptic subjects to compare their 

ability to distinguish normal and epileptic EEG data, they 

achieved a classification accuracy of about 90%. Aarabi [52] 

integrated ApEn and time and spectral features, extracted from 

IEEG segments, into a fuzzy rules-based system for seizure 

detection. Yuan et al. [23] used ApEn and Hurst-exponent-like 

features as inputs to classifiers based on ANN and SVM. 

4.4.2 Lyapunov exponents 

Lyapunov exponents mathematically describe the 

deterministic structure of a system. These exponents are 

statistics that quantify how much a system changes when a 
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small perturbation is introduced [21]. Smaller Lyapunow 

exponents indicate a more deterministic system. 

Adeli et al. [14] conducted a chaos analysis based on the 

wavelet decomposition of EEG signals of healthy subjects, 

epileptic subjects during a seizure-free interval, and epileptic 

subjects during a seizure. The non-linear dynamic of the original 

EEGs is quantified in the form of the correlation dimension (CD) 

and the largest Lyapunov exponent (LLE), representing system 

chaoticity, of the different sub-bands of the EEGs for the 

detection of epileptic seizures. The effectiveness of these 

indexes was investigated based on statistical significance of 

their differences between the EEG sub-bands. It was found that 

the LLE differentiates between the three groups in the lower 

frequency alpha sub-band [14]. Moreover, Adeli and Ghosh- 

Dastidar [43] presented a complete strategy for seizure detection. 

A wavelet-chaos methodology was presented for analysis of 

EEGs and EEG sub-bands for the detection of seizures and 

epilepsy. The method consists of three stages: I) wavelet 

analysis, II) preliminary chaos analysis, and II) final chaos 

analysis. They use, as before, the estimators of CD and LLE. 

They also evaluated 4 types of classifier. The method was 

applied to EEG signals from (a) healthy subjects, (b) epileptic 

subjects during a seizure-free interval (interictal EEG), and (c) 

epileptic subjects during a seizure (ictal EEG). The classification 

accuracy was higher than 95% [43]. 

4.5 Independent component analysis 

ICA belongs to a class of BSS methods for separating data 

into underlying informational components. ICA separates a set 

of signals into a corresponding set of statistically independent 

component signals or source signals. This analysis is based on 

the physically realistic assumption that if the signals in a set are 

from different physical processes, then these signals are 

statistically independent. For further reading about ICA and the 

mathematical formulation, refer to [66]. 

De Vos et al. [67] developed algorithms that decompose 

the EEG using ICA into its underlying sources. The aim is to 

remove artifacts from ECG spikes, blood vessel pulsation, and 

respiration using BSS. Then, the EEG is reconstructed without 

the corrupting sources, leading to a clean EEG. The impact of 

artifact removal was evaluated by comparing the performance 

of a previously developed seizure detector [24] before and after 

artifact removal. They obtained a high sensitivity combined 

with a good PPV and much lower false positive rate than 

previously published algorithms. 

Other researchers proposed automatic methods for artifact 

removal from epileptic EEG signals that combine BSS and 

wavelet denoising (WD). The goal is to find the optimal 

combination of BSS, classification, and WD. These works 

attempt to find the optimal order that the techniques have to be 

applied in order to not miss relevant information about seizures. 

They concluded that the first processing step should be BSS (to 

identify artifact sources) and then WD (to eliminate additive 

noise) [68,69]. 

4.6 Tensors 

The most frequent computational models used to 

reconstruct complex systems, such us epileptic seizure behavior, 

are bimodal, i.e., those that only consider row-column 

relationships. In contrast, multi-way modeling techniques 

(tensor models) can analyze multimodal data, which capture 

much more information about complex behaviors. In particular, 

tensors can be very powerful tools for modeling dynamic 

systems. Tensors are multidimensional arrays (also called 

n-dimensional cubes) ideally suited for the multi-way analysis 

of multimodal data [70]. 

Tensor models have been applied to epilepsy detection. 

Acar et al. constructed multi-channel EEG data as a third order 

tensor (epilepsy feature tensor) with modes time 

samples × frequency × electrodes using a PARAFAC model 

and then employed these components to define a seizure. 

Seizure origins are localized based on the spatial signature of a 

seizure extracted from a PARAFAC model. The preliminary 

results indicated that the features of an artifact and a seizure 

can be extracted using multi-way analysis of multi-channel 

EEG data arranged as a three-way tensor. Nevertheless, there 

exist many research directions for improving and generalizing 

the results with their proposed method [20,37,38]. De Vos et al. 

proposed a three-way array tensor of EEG signals with 

dimensions (channels × time × scales) and developed a method 

using PARAFAC or canonical decomposition (CP) in order to 

detect the onset [39] and the source localization [40] of 

epileptic seizures. CP can be considered as the higher-order 

variant of factor analysis. It uniquely decomposes EEG into a 

series of distinct ‘atoms’, which represent in an ideal situation 

distinct brain sources. The CP method was tested on simulated 

data and proved to be a fast method for delineating the ictal 

onset zone and to be more sensitive than visual interpretation of 

ictal EEGs. 

4.7 Feature selection 

Generally, selecting the best features for classification is 

critical for classifier performance. For example, if two or more 

features are correlated, they represent redundant information 

that may confuse the classifier. 

Some basic statistics, such as average power, mean, 

entropy, and standard deviation of the wavelet coefficients in 

each sub-band, are used to reduce the dimensionality of feature 

vectors [33,71-73]. One-way analysis of variance (ANOVA) is 

a collection of statistical models used to analyze the differences 

between group means in which the observed variance in a 

particular variable is partitioned into components attributable to 

different sources of variation [74]. The Mann-Whitney Test is 

used like a non-parametric test that compares the mean values 

of two different data populations combined with the Lambda of 

Wilks (LW) criterion [52]. LW measures the ratio between 

within-group variability and total variability, and is a direct 

measure of the importance of the variables. Mihandoost et al. 

used the Markov random field (MRF) to select the best features. 

Class separability is utilized as a criterion to select suitable 

features; that is, the between-class distance is maximized 

whereas the within-class distance is minimized. In this method, 

non-linear mapping from the input space to the output space is 

utilized [75].
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Feature reduction techniques specific to the used 

processing method have been proposed, such as those applied 

for extracting the correct number of components in a 

multilinear model like residual analysis, visual appearance of 

loadings, the number of iterations of the algorithm, core 

consistency, etc. In [20], the core consistency is used for 

finding the number of components of a PARAFAC model that 

best describe a seizure signature. Mutual information, a 

measure of linear and non-linear interdependence between 

features [76], is also used as a feature selection criterion. 

Minasayan et al. utilized this technique to implement an 

algorithm for automatic feature selection to built a mutual 

information feature selector that evaluates mutual information 

between individual features and outputs (class labels), and 

selects those features that have maximum mutual information 

with outputs and are not redundant [26]. The Euclidean 

distance was used by Orhan et al. as a dissimilarity measure in 

a k-means algorithm computed according to the distribution of 

wavelet coefficients [77]. 

5. Classification algorithms 

Once the previously described stages of the detection 

system have been carried out and assuming that the features 

extracted are suitable for distinguishing between non-seizure 

and seizure EEG states, the information is used to decide the 

class to which the features belong to. A decision-making stage 

and classification of the data in the feature space are thus 

required. This step is a global process that encapsulates a 

strategy for determining what features to select, how to 

combine them in order to optimize the system performance. 

The objective of classification is to describe a boundary 

between the classes and to label them based on their measured 

features. The classifier can be as simple as fixing a threshold 

for features or more sophisticated, such as machine learning 

algorithms. In a multidimensional feature space, this boundary 

is converted into a separating hyperplane. The purpose is to 

find the hyperplane that has the maximum distance from all the 

classes. 

Several clustering and classification techniques have been 

developed. Among them, association rules, ANNs, LDA, 

hidden Markov modeling (HMM), k-means clustering, fuzzy 

logic, and SVMs have been applied to epileptic seizure 

detection. The mathematical foundations of these techniques 

have been developed and are well explained in the literature. 

Therefore, only brief descriptions and seizure detection 

applications are given below. 

Association rules are used to inspect the feature set and 

establish simple relationships between the features. Thresholds 

are often used to make decisions. Gotman proposed the 

Monitor algorithm [44,45], which uses the thresholding of time 

features (amplitude, duration, and coefficient of variation of 

amplitude) to detect seizures. Schad et al. [78] propose a 

threshold of local slopes in EEG signals to make the seizures 

detections. Niederhauser et al. [31] employed a threshold for 

time frequency features. Gardner et al. [79] also did so but with 

a short time energy. Mitra et al. [41] established a set of rules 

(different from thresholds) for artifact rejection, followed by 

rules for assessing overall seizure quality. Other researchers 

also used association rules for seizure detection [52,80,81]. 

When the relationships between features are complex, 

automated methods for finding them are required. Techniques 

such as LDA [52], fuzzy logic [33,36,55], and k-means 

clustering [83] are used for epilepsy detection (see Table 1). 

The most commonly used classifiers in the last decade are 

based on ANNs, following by SVMs. 

ANNs are a mathematical analogy of the low-level 

functions of biological neurons. In an ANN, knowledge about 

the problem is distributed in each functional unit (neuron) and 

connection weights of links between neurons. The neural 

network has to be trained to produce the desired mapping. In 

the training stage, feature vectors are used as inputs and the 

network adjusts its variable parameters, the weights and biases, 

to establish the relationship between the input patterns and 

outputs. Due to their capability of learning from given patterns, 

ANNs are very useful for classification tasks such as seizure 

detection [54] or epileptic spikes [84]. Studies that have applied 

ANNs to seizure detection are listed in Table 1. 

SVMs have been used to find the hyperplane for 

multidimensional data. The basic idea behind the SVM is to 

find a hyperplane in a feature space that optimally separates 

two classes. SVM yields a unique solution that can be shown to 

minimize the expected risk of misclassifying unseen examples. 

Training algorithms use the solution of a well known 

optimization problem constrained to quadratic programming 

that is computationally efficient and yields global solutions 

[83]. Like ANNs, SVMs are widely used for epilepsy detection, 

as listed in Table 1. 

6. Performance of seizure detectors 

Numerous methods and algorithms have been proposed to 

automatically detect epileptic seizures. However, there is no 

standardized performance assessment framework. The 

performance of seizure detection algorithms should be 

compared using the same dataset. The metrics employed to 

compare seizure detection systems vary from publication to 

publication, with different terms sometimes used to name a 

given measure. In [85], some classic performance metrics for 

epilepsy detection are described. There is no consensus about 

how to report the results; some studies report results as an 

average over training and testing data, some report results 

obtained on testing data only. In addition, some report results 

by averaging over sick and healthy subjects, whereas some 

report results individually for each category. 

Some recent works have begun to overcome this problem. 

Varsavsky et al. [21] proposed some guidelines for validating a 

detection algorithm and describe a database of scalp and 

intracranial EEGs validated in St. Vincent’s Hospital, 

Melbourne, Australia. Furthermore, they applied four 

commercial algorithms (Monitor, CNet, Reveal, and Saab) to 

the dataset and evaluated and compared the performance of 

these detectors following their guidelines. They reported true 

positive rates in a range of 71% to 76% and false positive rates 
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in a range of 9.65 to 2.24 per hour [21]. 

In addition, Temko et al. [86] conducted a very complete 

review of the performance metrics used for EEG-based 

neonatal seizure detectors; they describe a classification 

defined as Epoch-based metrics and Event-based metrics. They 

proposed a metric called the mean false detection duration 

(MFDD). Then they report the performance of the detector 

developed in Temko et al. [87] using different the different 

metrics and show how the performance varies according how it 

is expressed. Some related work was conducted by Snyder et al. 

[88], who evaluated the statistics of a practical seizure warning 

system. 

6.1 Comparison of seizure detector performance 

As mentioned previously, it is very difficult to compare 

seizure detection algorithms. Table 1 show a summary of 

databases used in the reviewed works and their characteristics. 

To compare published algorithms, works using the same 

dataset are grouped and their performance in terms of accuracy 

(ACC), average detection rate (ADR), false detection rate 

(FDR), sensitivity (SEN), selectivity (SEL), and specificity 

(SPE) are summarized in Tables 2 and 3. The two validated 

EEG databases most used by researchers are briefly described 

below. 

Table 2. Performance of detectors that use FSPEEG database. 

Reference Number of patients Metrics 

Schad et al. 

(2008) 
FSPEEG-IEEG (6 patients) 

SEN = range between 

38% and 77% with 
FDRmax 

Aarabi et al. 
(2009) 

FSPEEG-IEEG 

SEN = 68.9% 

SPE = 97.8% 
SEL = 58.9% 

ADR = 82.8% 

Orosco et al. 

(2011) 
FSPEEG-IEEG 

SEN = 41.4% 
SPE = 79.3% 

SEN = 69.4% 
SPE = 69.2% 

Raghunathan 

et al. (2011) 
FSPEEG-IEEG (5 patients) 

SEN = 87.5% 

SPE = 99.82% 
ADR = 93.66% 

6.1.1 Freiburg seizure prediction EEG database 

The Freiburg seizure prediction EEG (FSPEEG) database 

contains invasive EEG recordings of 21 patients (13 males, 8 

females, age = 29.9 ± 11.9 years) suffering from medically 

intractable focal epilepsy. In 9 patients, the source of epilepsy 

is located in the temporal lobe; 6 suffer from frontal focal 

epilepsy; and 1 has parietal epilepsy. The other 5 patients have 

two epileptic sources. The data were recorded during invasive 

pre-surgical epilepsy monitoring at the Epilepsy Center of the 

University Hospital of Freiburg, Germany [89]. In order to 

obtain a high signal-to-noise ratio and fewer artifacts, and to 

record directly from focal areas, intracranial grid-, strip-, and 

depth-electrodes were used. The EEG data were acquired using 

a Neurofile NT digital video EEG system with 128 channels, a 

256-Hz sampling rate, and a 16-bit analog/digital converter. 

Notch or band-pass filters were not applied in the acquisition 

stage. The available data include only 6 intracranial EEG 

channels (3 focal and 3 extrafocal electrodes). This database 

contains the annotations of the beginning and ending time of 

the seizures made by experts. Table 2 summerizes the 

performance of detectors that used the FSPEEG database. 

Table 3. Performance of detectors that use Andrzejak database. 

Reference Database Metrics 

Güler and Ü beyli 

(2005) 

Andrzejak- 

IEEG/SEEG 
ACC = 98.68% 

Kannathal et al. 

(2005) 

Andrzejak- 

IEEG/SEEG 
ACC = 90% 

Adeli (2007) 
Andrzejak- 

IEEG/SEEG 
Not comparable with others 

Polat and Günes 

(2007) 

Andrzejak- 

IEEG/SEEG 
ACC = 98.72% 

Subasi (2007) 
Andrzejak- 

IEEG/SEEG 
ACC = 95% 

Tzallas et al. 
(2007) 

Andrzejak- 
IEEG/SEEG 

ACC = 100% 

Chua et al. (2008) 
Andrzejak- 

IEEG/SEEG 
ACC = 88.78% 

Guo et al. (2010) 
Andrzejak- 

IEEG/SEEG 
ACC = 99.6% 

Ü beyli (2009) 
Andrzejak- 

IEEG/SEEG 

ACCRNN = 98.15% 

ACCMLPNN = 92.9% 

Oweis and 

Abdulhay (2011) 

Andrzejak- 

IEEG/SEEG 

ACCEMD = 94% 

ACCMEMD = 80% 

Orhan et al. (2011) 
Andrzejak- 

IEEG/SEEG 
ACC = 96.67% 

Yuan et al. (2011) 
Andrzejak- 

IEEG/SEEG 
ACC = 96.5 % 

6.1.2 Andrzejak database 

The Andrzejak database contains data obtained at the 

Department of Epileptology, University of Bonn, Bonn, 

Germany [90]. The data consist of five sets (denoted A-E), each 

containing 100 single-channel EEG segments of 23.6-s duration. 

These segments were selected and cut out from continuous 

multi-channel EEG recordings after visual inspection for 

artifacts. Sets A (eyes open) and B (eyes closed) consist of 10-20 

system surface EEG recordings of five healthy volunteers. Sets 

C, D, and E are from five patients in the intracranial EEG 

archive of pre-surgical diagnosis. Set D was recorded within the 

epileptogenic zone, and set C was recorded from the 

hippocampal formation of the opposite hemisphere of the brain. 

Sets C and D contain only activity during seizure-free intervals, 

whereas set E only contains seizure activity. All EEG signals 

were recorded with the same 128- channel amplifier system, 

using an average common reference (omitting electrodes 

containing pathological activity (C, D, and E) or strong eye 

movement artifacts (A and B)). After 12-bit analog-to-digital 

conversion, the data were recorded at a sampling rate of 

173.61 Hz. The band-pass filter setting was 0.53-40 Hz 

(12 dB/oct). This database also has annotations by experts for 

the seizures’ time bounds. 

Table 3 shows the performance metrics of the detectors 

that used comparable sets of the Andrzejak database. A review 

of works that used these signals was made by Tzallas et al. 

[91]. 

7. Conclusion 

The automated detection of epileptic seizures from EEG 

records has improved with technology. In the reviewed works 

for this survey, most researchers used either the WT or entropy. 
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The WT and its combination with other techniques, such as 

chaos, decomposes the signal in different fixed scales related to 

the sampling rate of the signal, with the aim of isolating the 

normal EEG rhythms from epileptic ones, as shown in Table 1. 

Measures of entropy are used to quantify the level of order (or 

disorder) of the EEG signal during a seizure. The EMD method, 

an adaptive decomposition that depends on the frequency 

content of the signal (instead of a fixed cut-off frequency, as for 

a wavelet), has been increasing adopted as an alternative to 

classical time-frequency techniques. Recently, epilepsy 

detection has utilized multi-way modeling techniques or tensor 

models that can analyze multimodal data, which capture much 

more information about complex behaviors. This method 

allows more than two domains to be analyzed simultaneously, 

such as with a three-way array epilepsy feature tensor, with 

modes: time samples × frequency × electrodes. 

ANN classifiers are the most commonly used to figure out 

the patterns described by extracted features. They are used to 

achieve learning about EEG seizures in order to distinguish 

them from EEG segments free of seizures. A similar method 

with the same objective is SVM learning, which has been 

demonstrated to be faster and easier to implement than ANN 

with comparable performance results. SVM is thus slowly 

replacing ANNs in detection. 

Progress in epilepsy detection research follows two main 

lines. One is the development of methods that allow non- 

invasive and precise detection for diagnostic applications. The 

principal difficulty to overcome is the presence of artifacts that 

overlap the signal of interest. The other one is in the 

neurostimulation and drug delivery field, where the recording 

and therapy are necessarily invasive but the aim is to achieve 

onset detection and seizure quantification with maximum 

exactitude. 

Another important issue in the epileptic seizure detection 

field is the need for a standardization of methods. First, the 

unification of metrics used to evaluate detector performance is 

needed in order to make homogenous comparisons. Second, 

some guidelines are required for the EEG record type (scalp or 

intracranial) and as well as the duration of these records (it is 

not the same testing the detector in a record of a few seconds 

that in a one of an hour long) used to the implementation and 

testing the algorithms. In general terms, a good epilepsy 

detector should show at least 80% sensitivity and specificity. 

For drug delivery systems, the performance must be 100%, 

whereas for alarm systems, it could be lower. In Table 2, the 

values of SEN are given, but Schad et al. reported a range of 

values whereas researchers reported an average for all cases 

[78,13,82,52]. Moreover, these four authors also show other 

metrics, but some of them are different so it is difficult to state 

which of these detectors shows the best performance. 

Raghunatan et al. reported the highest SEN and ADR values 

[82]. In Table 3, almost all works use the ACC as a metric, with 

values ranging from 88% to 100% (for Tzallas et al.) [32]. 

Therefore, the standardization of the evaluation metrics used 

for detectors is important. Some researchers have begun to 

establish guidelines and to look for consensus in the scientific 

community to achieve these objectives. 
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