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ABSTRACT: De novo assembly of transcriptomes from species without reference genome remains a common problem in functional genomics.
While methods and algorithms for transcriptome assembly are continually being developed and published, the quality of de novo assemblies
using short reads depends on the complexity of the transcriptome and is limited by several types of errors. One problem to overcome is the
research gap regarding the best method to use in each study to obtain high-quality de novo assembly. Currently, there are no established pro-
tocols for solving the assembly problem considering the transcriptome complexity. In addition, the accuracy of quality metrics used to evaluate
assemblies remains unclear. In this study, we investigate and discuss how different variables accounting for the complexity of RNA-Seq data
influence assembly results independently of the software used. For this purpose, we simulated transcriptomic short-read sequence datasets
from high-quality full-length predicted transcript models with varying degrees of complexity. Subsequently, we conducted de novo assemblies
using different assembly programs, and compared and classified the results using both reference-dependent and independent metrics. These
metrics were assessed both individually and combined through multivariate analysis. The degree of alternative splicing and the fragment size
of the paired-end reads were identified as the variables with the greatest influence on the assembly results. Moreover, read length and fragment
size had different influences on the reconstruction of longer and shorter transcripts. These results underscore the importance of understanding
the composition of the transcriptome under study, and making experimental design decisions related to the need to work with reads and frag-
ments of different sizes. In addition, the choice of assembly software will positively impact the final assembly outcome. This selection will affect

the completeness of represented genes and assembled isoforms, as well as contribute to error reduction.
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Introduction

High-throughput sequencing of RNA (RNA-seq)! has become
the preferred method to reveal the complex landscape and
dynamics of transcriptomes since the advent of next-genera-
tion sequencing (NGS) platforms.?® One of the most popular
use cases is to generate a catalog of transcripts without genomic
information and to study gene expression using short-read
sequencing.*® In this process, RNA molecules are isolated,
enriched and reverse transcribed into complementary DNA
(cDNA). The ¢cDNA sequences are fragmented, random
primed, amplified by polymerase chain reaction (PCR), and
sequenced.® Fragmentation and PCR amplification are due to
the technical constraints inherent in short-read sequencing
equipment. The result of sequencing is millions of short reads
containing a mixture of fragments corresponding to different
parts of different transcripts. The sequencing data obtained for
each study can be affected by different variables grouped as
coming from sequencing artifacts,” experimental design,® and
biological complexity.® For example, the alternative splicing

level produces transcript isoforms and results in the appearance
of very similar short reads from shared exons.” In the presence
of a genomic reference or transcript catalog, the process of
expression quantification involves mapping and counting the
number of sequencing reads coming from each gene.

In the absence of a genomic reference, the short reads must
be assembled to recreate the sequences from which they origi-
nated. Ideally, this process can be performed taking into
account all the issues mentioned above to obtain full-length
transcripts (or isoforms). This is the computationally demand-
ing task of transcriptome assembly!®!! and it must be per-
formed using only the information contained in the reads. The
completeness and quality of the final assembly are very impor-
tant as they affect all subsequent steps of the data analysis, eg,
annotation'>!3 or quantification of the expression level.1415
The assembly process is typically accomplished by analyzing
overlaps to concatenate the reads into extended contiguous
sequences or contigs. In most cases, researchers achieve this
concatenation using De Bruijn graphs. This graph is a compact
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Table 1. Parameter setup for generating simulated datasets without sequencing errors.

DATASET NAME READ LENGTH FRAGMENT SIZE READ TYPE LOGNORMAL MAXIMUM NUMBER

(BPS) AVERAGE (BPS) (c=0) (SE / PE) STANDARD DEVIATION  OF ISOFORMS PER
(u=4) GENE

Alternative splicing 150 - SE 0.001 1/4/7/10

Expression range 150 - SE 0.001/0.01/0.1/1 1

Read length 100/150/200/250 - SE 0.001 1

Fragment size 150 300/400/500/600 PE 0.001 1

Fragment size with splicing 150 300/400/500/600 PE 0.001 10

representation of a series of nucleotide-overlapping k-mers of Materials and Methods

reads that form a directed graph structure. A k-mer is a sub-
string of size k derived from reads, 1 nucleotide shifted at a
time, resulting in a total of N - k + 1 k-mers of size k from a
read of size N. In the De Bruijn graph, each node represents
a k-mer, and the edges between the nodes indicate overlaps of
size k-1 between neighboring k-mers. The De Bruijn graph-
based assembly is sensitive to the k-mer size, since it deter-
mines the set of assembled contigs by controlling the
complexity of the graphs. In general, the choice of k-mer size
has a varying impact on different sizes and abundance in iso-
form reconstruction.16-18

Certainly, the assembly process is not error-free!®?0 and the
quality of assembly can be assessed from different perspectives.
Recent research has found species-specific differences in the
performance of assembly tools. It has also been described that
no tool delivered the best results for different data sets;?! sug-
gesting that there is a strong dependence on the conformation
of each particular sample.

To our knowledge, most research has focused on assembly
methods rather than the impact of sequencing data complexity
on de novo assembly. In the last decade, research has been con-
ducted to analyze the effect of some variables, such as sequenc-
ing depth,?? error correction,? and read length.’ These studies
highlight the importance of selecting appropriate values for
these variables, taking into account the objectives of the
experiment and the characteristics of the species studied.
Here, we analyze the impact of several variables that com-
pound the complexity of RNA-Seq data and assess how these
variables affect the completeness and quality of the assembly.
Understanding the impact of each variable is critical in the ini-
tial stages of the project design to adequately account for them.
To achieve this, we generated simulated Illumina RNA-Seq
data sets and used a set of open-source de novo assembly tools
to assess possible different outcomes. To evaluate the accuracy
of each assembly and identify the commonalities between
them, we compared the results using multiple quality metrics.
In addition, we investigated which metrics best predict assem-
bly accuracy to develop a criterion that can be applied in prac-
tice and real-world experimental designs.

A simulation test was performed by simulating Illumina data
to examine the impact of read length, fragment size, alternative
splicing, and dynamic expression range on the de novo assem-
bly of RNA-Seq data. The test comprised the following steps:
(1) generation of simulated data; (2) assembly of transcripts
using free available software; (3) calculation of metrics for
quality assessment; and (4) analysis of the obtained metrics.

Generation of simulated data

The data generation process was implemented in an in-house
Python script starting with random sampling from the Homo
sapiens genome obtained from Ensembl (GRCh38.p12),2* fol-
lowed by simulation of nonstranded sequencing reads. This ver-
sion of the H sapiens genome has 54644 genes with 160474
transcripts (113620 mRNAs and 46 854 ncRNAs) conformed
by 408659 exons. The alternative splicing events can be esti-
mated from approximately 95% of multi-exon genes.?> During
the sampling process, 3000 genes were randomly selected from
the structural annotation of the genome for each sample. The
degree of alternative splicing in the samples was controlled by
the maximum number of isoforms extracted from those availa-
ble for each gene in the structural annotation, and by consider-
ing the desired level of alternative splicing. In the simulation
process, the read length, fragment size, and transcript expres-
sion were controlled by the art_illumina software.? A lognor-
mal distribution was used to generate expression values with a
consistent mean and a variable standard deviation to allow the
desired dynamic range of expression.?” The generated datasets
and their characteristics are shown in Table 1. Each dataset was
generated by maintaining all variables constant except the tested
variable. Three independent replicates were performed for each
condition. Gene duplications were eliminated by employing the
Duplicated Gene Database (DGD)?® and keeping only 1 locus
from each family, which provided the largest predicted tran-
script. The gene deduplication process using DGD prevented
the presence of gene families from contributing to the complex-
ity of the datasets. Consequently, the bias due to gene duplica-
tions was not included in the effect of each variable tested.
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The selected variables were measured to assess the nature
and complexity level of the simulated datasets: (1) quality of
reads, (2) number of sequencing errors, (3) dynamic expression
range, (4) degree of alternative splicing, (5) size of reads and
fragments (PE), (6) sequencing depth of transcripts, and (7)
random fragment selection. The evaluation of the sequencing
quality, read length, read duplications, and random sampling
were performed using the figures obtained from FastQC? and
MultiQC.3° However, the reads were globally mapped to the
reference transcripts using Bowtie23! to determine the number
of sequencing errors and indels. Furthermore, the expression
level was estimated by counting and normalizing the mapped
reads/fragments for each transcript, with the fragments per
kilobase million (FPKIM) values acquired using RseQC.32

The sequencing errors were quantified using mpileup® and
VarScan.3* A sequencing error at a position was defined when
at least 1 nucleotide of a read differed from the reference tran-
script. The BAM files were used to analyze sequencing depth
and fragment size (PE) with RseQC. The differences in alter-
native splicing levels were assessed by obtaining all possible
alignments of at least 100 bps between the reference transcripts
using nucmer.?

Assembly of transcripts using 6 free
available software

The assembly process was performed using the 6 most popular
assembly tools with default parameters: Trinity,3¢ Bridger,”
Oases,'® Trans-abyss,’”” SOAP and IDBA-Tran® with 2
k-mer values: 25 and 31 for the first; 23 and 31 for the sec-
ond; and 23, 35,47, and 59 for the others. The selected k-mer
size ranges relate to sizes commonly used in practice for short-
read assemblies. Specifically, for Trinity and Bridger, only sizes
up to 31 were tested because it is the maximum value allowed

by the programs. Other commonly used assembly tools were
tested, including Shannon,* BinPacker,¥! and rnaSPAdes*

(Supplemental Table 1).

Calculation of metrics for quality assessment

A set of 12 assembly metrics specifically interesting to our
study were selected based on previously defined metrics from
the literature and divided into 2 classes: 6 reference-based (RB)
and 6 reference-free (RF).%182043-47 The RB metrics compare
the nucleotide composition of the contigs against the reference
transcripts rather than the complete genome sequence. The
selected RB metrics were chosen to evaluate the assembly con-
tent, focusing on both completeness and correctness. We
curated a concise set of metrics to assess reconstruction and
nucleotide-level accuracy. We prioritized error quantification
metrics such as transcript coverage, collapsed contigs, and frag-
mented transcripts (Table 2). When selecting metrics, we
excluded metrics that only consider amounts of contigs and
their sizes. The RB metrics were computed using reciprocal

Table 2. Reference-based metrics definition.

METRIC NAME DEFINITION

Nucleotide specificity Proportion of correct nucleotides in
contigs

Nucleotide sensitivity Proportion of correct nucleotides in

transcripts

70% reconstructed
transcripts

Percentage of reference transcripts
covered 70% at least

Collapsed contigs Percentage of contigs that

correspond to the same transcript

Fragmented transcripts Percentage of transcripts

assembled in 2 or more contigs

Incomplete contigs Percentage of contigs with

insertions or deletions that modify
the transcript structure

BLAT* alignments between the reference transcripts and the
contigs, along with an internal Python script that considered
only alignments with an identity greater than 95%. The align-
ment length was determined by adding the length of matches,
mismatches, repmatches (matches on repetitive regions), and
indels from the results of BLAT. Based on the alignment
length, we defined a correct nucleotide as a nucleotide with an
exact match within an alignment that covers at least 50% of a
contig. In addition, the metric “70% reconstructed transcripts”
was calculated. This measurement represents the percentage of
reference transcripts that have an alignment covering over 70%
of both the transcript and the contig, with an indel length of
less than 1% relative to the alignment length.

Regarding collapsed contigs, a contig is considered col-
lapsed if it aligns with 2 or more transcripts with at least 50%
coverage over the contig and 40% coverage over each transcript.
In addition, the alignments between the contig and the tran-
scripts must overlap by more than 80%. A transcript was clas-
sified as fragmented if it is aligned with 2 or more contigs with
at least 50% coverage of each contig and 10% coverage of the
transcript. The alignment between the transcript and contigs
must have less than 5% indels. Furthermore, the alignments
must overlap by less than 20% but collectively cover more than
50% of the transcript. Finally, a contig was categorized as
incomplete if it matched at least 50% of a transcript but more
than 5% of the alignment length composed of indels. To be
classified as 1 of these 3 types of erroneous contigs, the contig
must not have been previously classified as a transcript recon-
struction with 70% coverage. For the datasets containing alter-
native splicing, in addition to quantifying transcript
reconstruction, we also calculated the percentage of assembled
genes. In this case, a gene was considered as assembled if at
least 1 transcript from that gene was classified as 70%
reconstructed.

RE metrics (Table 3) were evaluated using the values

obtained from 2 specific packages: RSEM-EVAL# and



Bioinformatics and Biology Insights

Table 3. Reference-free metrics definition.

METRIC NAME DEFINITION

RSEM assembly score
reads

Transrate assembly score

The logarithm of the conditional probability of obtaining that set of contigs given the set of

The geometric mean of all contig scores multiplied by the proportion of input reads that

provide positive support for the assembly. The contig score can be thought of as a
measure of whether the contig is an accurate, complete, nonredundant representation of
a transcript that was present in the sequenced sample

Transrate percentage of mapped fragments

Percentage of fragments that map to contigs with both reads aligning to the same contig

in the correct orientation

Transrate number of potential bridges

Total number of potential bridges in the assembly, where a bridge represents a

connection between contigs

Transrate percentage of uncovered contigs

Transrate percentage of segmented contigs
segmented

Transrate.#” The RSEM-EVAL package was used by extract-
ing the general score provided by the DETONATE software.
However, 5 statistics were considered with the Transrate pack-
age: assembly score, percentage of mapped fragments, number
of potential bridges, percentage of uncovered contigs, and per-
centage of segmented contigs. Transrate statistics are obtained
by mapping reads to contigs with SNAP* assigning multi-
mapping reads with Salmon,*® and finally checking alignments
with transrate-tools.”! It is worth noting that RE metrics were
calculated exclusively for paired-end datasets, as Transrate only

supports this type of reads.

Analysis of the obtained metrics

The 2 groups of evaluation metrics (RB and RF) were analyzed
using multivariate and correlation methods. The average values
of each metric were compiled into matrices for each assessed
variable. Only the average values were used because the stand-
ard deviations were very small in all cases (considering all met-
rics, approximately 95% of the samples showed a standard
deviation of less than 5% from the average). These matrices
were examined using the R package “GGally,”? whereas cor-
relations between groups and within groups were estimated
using the Spearman coefficient. The correlation coefficients
were estimated using the results metrics for all samples together,
encompassing all variables and their levels, as well as all assem-
blers and k-mer sizes. Analyzing all the samples collectively
enabled us to derive robust correlations between metrics, inde-
pendent of the variable or assembler utilized. Principal compo-
nent analysis (PCA) was performed separately for the 2 classes
of metrics using the R package “stats.”>® Regarding PCA, only
the results with the extreme k-mer values (maximum and mini-
mum) were used for each of the assembly software to reduce
the complexity of the plot. In addition, the metric values were
scaled previously. PCA was chosen as a methodology to observe

Percentage of contigs with an average depth less than 1

Percentage of contigs with a probability greater than or equal to 0.5 of having been

the evaluation metrics collectively, rather than viewing them
separately in individual figures.

An analysis was conducted to examine the relationship
between the reconstruction level of the transcripts and frag-
ment sizes prior to sequencing. The average and standard devi-
ation of “70% reconstructed transcripts” were calculated across
the replicates for each 5% percentile of the length distribution
of reference transcripts. The impact of the fragment size on
assembling transcripts of different lengths was assessed by sim-
ulating 4 groups of datasets with varying standard deviation
values for the fragment size distribution (Supplemental Table
2). Finally, a series of graphs was generated to visualize the
reconstruction level for different forms of fragment size distri-
butions (represented by different standard deviation values)
using cumulative curves based on transcript length.

The “expression range” dataset was analyzed by calculating
the average and standard deviation of the “70% reconstructed
transcripts” across replicates for each 5% percentile of expres-
sion. This analysis aimed to investigate the relationship
between dynamic expression range and k-mer size. These data
were shown in a series of cumulative plots depicting the recon-
struction level per expression percentile, which was normalized
relative to the total reconstruction level.

Results
Simulated dataset quality and distribution

Initially, we verified the quality and composition of our simu-
lated datasets. Sequencing quality, random fragment sampling,
GC content, and read duplication degree analyses were per-
formed based on the FastQC and MultiQC plots. For all data-
sets, the sequence quality profile, as determined by read
position, showed a quality value greater than 40 with extremely
low variability. The nucleotide content per read position was
independent of the position, with a uniform distribution of
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25% for each nucleotide. This indicates accurate random sam-
pling at the read positions. The GC content histograms dis-
played an expected Gaussian distribution with a mean close to
50% (Supplemental Figure 1).

Low read duplication rates were observed (Supplemental
Figure 2), generally below 5%, except in the presence of alter-
native splicing. In datasets where all reference genes had 2 or
more isoforms, duplication values were found to be between
10% and 20%. Increased duplication was also present in the
“expression range” dataset with the highest dynamic range,
where duplications reached nearly 15%. This was attributable
to sampling limitations, as the highly expressed transcripts had
a restricted number of possible distinct fragments.

Bowtie2 yielded mapping rates of 100% in all datasets with
multimapping values below 5% and equal assignments to both
strands. The multimapping rates increased up to 75% in data-
sets with the highest degree of alternative splicing. Furthermore,
no sequencing errors were detected in any of the datasets. The
100% mapping rates were a result of intentional exclusion of
sequencing errors. Although this scenario does not necessarily
reflect real-world conditions, it was important for our analysis
as it allowed us to avoid bias due to sequencing errors. All
curves for depth as a function of relative transcript position
were as expected, with a plateau in the central region and drops
at the ends. However, for the curves that involve the “fragment
size” variable, the depth also decreased in the central regions
(Supplemental Figs. 3 and 4). In these cases, the central depth
drops were deeper and wider with increasing fragment size.
These effects of depth drops at the ends and in the middle of
transcripts were defined as sampling issues. The sampling
issues were caused by the decreasing number of possible frag-
ments in these regions. In paired-end datasets, the depth drop
effect occurred mainly in the middle of transcripts whose size
is less than twice the fragment size. In the “alternative splicing”
datasets, the total number of alignments obtained between
pairs of different transcripts using nucmer was 60 000, 120 000,
and 180000 in the datasets with up to 4, 7, and 10 transcripts
per gene, respectively. Datasets without alternative splicing had
a number of transcripts pairwise alignments of 5000 or less.
The fragment sizes obtained were as expected in all cases
(Supplemental Figure 5).

Finally, the histograms of the FPKM values followed the
expected distributions. For datasets lacking the expression
range effect, they showed similar shapes, with close expression
values and smaller expression ranges between different samples
and replicates. In contrast, the FPKIM distribution in “expres-
sion range” datasets showed different shapes, expression values,
and dynamic ranges between samples (Supplemental Figure 6).

Owerall metrics analysis

Figure 1 and Supplemental Figure 7 summarize the effects of
the assessed variables on the assembly results. Two groups of

assembly programs were distinguished based on their behavior
in the evaluation metrics. Group “A,”which included the results
from Trinity, Oases, and Bridger, had higher rates of collapsed
and incomplete contigs, lower fragmentation rates, and higher
percentages of transcripts reconstructed at 70%. In contrast,
Group “B”—which included the results of SOAP, Trans-abyss,
and IDBA-Tran— had higher fragmentation rates and lower
percentages of reconstructed transcripts. The differences
between the 2 groups become even more pronounced, particu-
larly in the presence of alternative splicing. For other com-
monly used assemblers that were tested but not included in the
analysis, we observed similar results that were within the limits
of those originally included. rnaSPAdes behaved similarly to
the tools in Group “A” (Sup Table 1), while Shannon and
BinPacker showed similar behavior to the tools in Group “B”
(Data not shown).

We examined the correlation coefficients across all assessed
variables for the metrics separately for each group: RB
(Supplemental Figure 8) and RF (Supplemental Figure 9).
However, we found remarkable correlation coefficients (greater
than 0.8 or lower than -0.8) between RB and RF metrics
(Supplemental Figure 10) included “70% reconstructed tran-
scripts” with “RSEM assembly score,” “Transrate percentage of
mapped fragments,” “Transrate number of potential bridges,”
and “Iransrate percentage of segmented contigs”; and
“Fragmented transcripts” with “RSEM assembly score” and
“Transrate percentage of mapped fragments.” The positive cor-
relation of “Transrate percentage of mapped fragments” with
“70% reconstructed transcripts” corresponded to the fact that
the presence of a greater number of reconstructed transcripts
increased the mapping percentages. Moreover, the fragmenta-
tion of contigs produced lower mapping rates because only part
of the reads could be aligned, resulting in the observed negative
correlations of “Transrate percentage of mapped fragments”
and “Fragmented transcripts.” Finally, “RSEM assembly score”
correlated positively with “70% transcripts reconstructed” and
negatively with “Fragmented transcripts,” demonstrating that
the generated model was informative for evaluating the assem-
bly correctness.

Multivariate analysis

Figure 2 illustrates the results of the PCA based on the RB
metrics, divided by the evaluated variable. The figures display
the first and most informative 2 principal components, with
vectors representing the evaluation metrics. The direction and
orientation of the vectors indicate the weight and sign of the
metrics in each principal component. The absence of alterna-
tive splicing generally resulted in high rates of reconstructed
transcripts and low error rates. Again, we could observe a clear
separation into 2 groups, which was even more pronounced in
the presence of alternative splicing. Group “A” tended to have
higher levels of reconstruction at the expense of more
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Alternative splicing

Fragment size with splicing
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Figure 1. Boxplots of the reference-based metrics (rows) for each dataset (columns), separated by assembly program. Each boxplot for every assembler
includes the results of the metrics for all samples combined, covering all levels of each variable and all k-mer sizes. For the datasets with alternative
splicing, there is a clear difference between Group “A” (Trinity, Oases, and Bridger) and Group “B” (SOAP, Trans-abyss, and IDBA-Tran), especially for the
metrics: “Specificity,” “Incomplete contigs,” “Collapsed contigs,” and “fragmented transcripts.”

incomplete and collapsed contigs. The assembly results were
grouped first by assembly program and then by k-mer size
when evaluating expression range and read length (Figure 2B
and C). This suggests that these variables had a smaller effect
on the results, especially at higher k-mer sizes. For the variable
read length, the worst results were consistently observed with
the smallest read length (100bps), while read lengths of 150,
200, and 250bp had similar outcomes. Finally, when analyzing
the variable fragment size with a standard deviation of zero
(Figure 2D and E), we found that the results improved with

smaller fragment lengths, regardless of whether alternative
splicing was present or not.

Figure 3 shows the PCA using the RF metrics. The results
were similar to those obtained with the RB metrics. Better
results corresponded to higher values for “Iransrate assembly
score,” “RSEM assembly score,” and “Transrate percentage of
mapped fragments” and lower values for “ITransrate percentage
of segmented contigs,”“Transrate number of potential bridges,”
and “Transrate percentage of uncovered contigs.” These find-
ings are in line with the observations made for the RB metrics
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Figure 2. PCA plots for reference-based metrics divided by evaluated variables. The average scaled values of each metric and only the results from the
extreme k-mer sizes (maximum and minimum) are included. The direction and orientation of the vectors indicate the weight and sign of the metrics in
each principal component. A clear separation between the groups can be observed, especially in the presence of alternative splicing (A and E), with
distinctions based on “fragmented transcripts” as opposed to “70% reconstructed transcripts” mainly represented on the PC1 dimension. The metrics
“Incomplete contigs” and “collapsed contigs” appear to be related. For the expression range (B) and read length (C) variables, the results were primarily
grouped by assembler and then by k-mer size. For the fragment size variable (D and E), better results were obtained with smaller fragment lengths.

in terms of assembly software and datasets. The best outcomes
were obtained with the largest k-mer size and smallest frag-
ment size, which further enhance the separation between
groups in the presence of alternative splicing.

Tmnscripz‘ and gene reconstruction evaluation

In the absence of alternative splicing, the average percentages
of transcript reconstruction ranged from 62.8% to 76.5% for

the minimum k-mer size, and from 73.5% to 96.3% for the
maximum k-mer size. However, for the maximum degree of
alternative splicing, the percentages decreased to a range of
11.6% to 46.4% for the minimum k-mer size, and of 17.9% to
48.7% for the maximum k-mer size. In the case of the frag-
ment size dataset with alternative splicing, the reconstruction
levels ranged from 14.5% to 52.5% for the minimum k-mer
size, and from 21.3% to 55.6% for maximum k-mer size. In
addition, the average percentage of assembled genes in the
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Better results were consistently obtained with shorter fragment lengths, regardless of the presence of alternative splicing and k-mer sizes.

alternative splicing dataset with the higher degree of splicing
ranged from 44.5% to 91.3% for the minimum k-mer size, and
between 61.3% and 93.5% for the maximum k-mer size.
Moreover, in the fragment size dataset with splicing, the per-
centage of assembled genes ranges from 36.1% to 85.3% for
the minimum k-mer size and from 51.2% to 88.9% for the
maximum k-mer size. The higher percentages of assembled
genes corresponded to the assembly programs classified under

Group “A.

Transcript reconstruction as a function of
expression level

The relative transcript reconstruction levels were plotted
against the expression level (Figure 4). The plot shows the
challenges of assembling low-expression transcripts. The lower
expression percentiles at the minimum k-mer size for Oases,
SOAP, and Trans-abyss assemblers gave the better results.
However, these differences did not yield significant results, as
indicated by the Mann-Whitney test. It is worth noting that
Trinity and Bridger exhibit a difference of 6 and 8, respectively,

between the maximum and minimum k-mer sizes, while the

other programs show a difference of 36. In addition, IDBA-
Tran generates the De Bruijn graph by iteratively considering a
range of k-mer values and constructing the contigs stepwise.
This strategy of IDBA-Tran could potentially account for the

results obtained.

Transcript reconstruction as a function of
transcript size

Figure 5 presented the reconstruction levels as a function of the
length of the reference transcripts. It is important to note that
all datasets used for Figure 5 had a standard deviation of zero
for the distribution of fragment sizes. As the fragment size
increased, the percentage of smaller transcripts that could be
reconstructed decreased. This phenomenon was observed
across different assemblers and can be attributed to the deep
sampling problem illustrated in Supplemental Figure 3 and
Supplemental Figure 4. For instance, at a fragment size of 400
bps, no assembler was able to reconstruct transcripts up to the
10th percentile. As the fragment sizes increased to 500 and 600
bps, this threshold shifted to the 15th percentile. Supplemental

Figure 11 illustrates the reconstruction level as a function of
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transcript length percentile for the datasets described in
Supplemental Table 2. Evidently, the reconstruction level of
short transcripts improves with an increase in standard devia-
tion, irrespective of the assembler used. For the fragment size
datasets of 300 and 400 bps, a standard deviation of 50 bps or
greater yielded better results compared with the best outcome
achieved in the absence of a standard deviation (300 bps).
Similarly, for the datasets of 500 and 600 bps, a standard devia-
tion of 100 bps or greater led to improved outcomes compared
with the scenario without a standard deviation.

Discussion

In this work, we evaluated the effects of 4 variables on the com-
pleteness and quality of transcriptome assembly using error-
free simulated datasets from the Human Genome Project. We
selected a set of RF and RB metrics to evaluate the assembly
results. The same test was performed using rnaQUAST** a
newly developed tool, by computing a comprehensive set of RB
metrics that yielded similar results (Supplemental Figure 12).
By measuring the correlations between the used metrics, we
gained further insights into which metrics are better predictors
of assembly quality. Our correlation analysis revealed that the
RFE metrics “RSEM assembly score,” “Iransrate percentage of
mapped fragments,” “Transrate number of potential bridges,”
and “Transrate percentage of segmented contigs” provide valu-
able information for predicting the degree of fragmentation

and reconstruction, but not for assessing collapsed and incom-
plete contigs. It is important to note that recent studies empha-
size the importance of using a consistent set of metrics for the
systematic evaluation of assembly results.’'® Rather than
reducing the evaluation to a single value, a comprehensive
study takes into account the weighting of different metrics,
ensuring a most accurate assessment of assembly quality.204445
This approach allows for a more comprehensive understanding
of the strengths and limitations of different assembly methods.
The selected metrics can then serve as valuable decision sup-
port for selecting execution parameters and comparing the
results obtained from different methods. Multivariate analysis
and charts have proven to be good options for looking at a set
of metrics as a whole and capturing the relationships and inter-
actions between the different metrics, providing a more holistic
perspective on assembly quality. The correlated RF metrics
identified in our analysis can be used to evaluate assemblies,
while also considering the consistent results obtained from
multivariate analysis using both RB and RF metrics.

The global analysis of the assembly metrics showed that
alternative splicing had the greatest negative impact on tran-
script reconstruction. The quality analysis showed that varia-
tions in alternative splicing increase the biological complexity
of the datasets, leading to high levels of read duplication, mul-
timapping rates, and the number of alignments between refer-
ence transcripts. Recent studies on plant and animal genomes
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have shown that almost all multi-exonic genes in vertebrates
and up to 70% of multi-exonic genes in plants have alternative
splicing isoforms.’¢ These high percentages indicate that
alternative splicing is widespread in real-world samples.
However, the effects of other evaluated variables such as read
length, fragment size, and expression range were comparatively
more moderate. This behavior could be clearly observed in the
PCA and boxplots, where the effects of splicing were stronger
than the effects of k-mer size and other variables. The metrics
most affected by alternative splicing were “70% reconstructed
transcripts,” “collapsed contigs,” and “incomplete contigs,”
which can be attributed to the challenge of resolving very simi-
lar transcripts. While the dependence of assembly on splicing
level has been investigated in Chang et al® with similar results,
the effects of variables were not independently evaluated.
Increasing read length, without sequencing errors, in single-
end data improved the assembly but had limitations on its
length, as obtained in previous studies.” Individual analysis of
metrics showed minimal changes between 200 and 250 bps
read lengths, with some metrics showing even worse results at
250 bps. The PCA plots showed that the results at 150, 200,
and 250 bps were close to each other and different from the
results at 100 bps. However, these differences could deepen at
the minimum contig length of 200 bps. In this case, the

distribution of the transcript length should be taken into
account due to sampling issues, especially for transcripts whose
length is comparable to the read length.

Regarding variations in the dynamic range of expression, it
was observed that samples with smaller standard deviations
(0.001, 0.01, and 0.1) are minimally separated from samples
with a standard deviation of 1. In general, the results improved
for all the metrics as the k-mer size increased, regardless of the
evaluated variable. This finding agrees with previous reports
that suggest smaller k-mer sizes can theoretically only lead to
better reconstruction of transcripts with low expression lev-
els.101721 However, we did not find significant differences in
reconstruction for the lower percentiles of expression with
respect to k-mer size. It is worth noting that previous studies
have reported contrasting results,'* with higher reconstruc-
tion levels observed in the lower percentiles of expression, using
small k-mer sizes. It is important to consider that these studies
did not control for the effects of different variables on tran-
scriptome complexity. They used real data and experimentally
quantified transcript expression with RPKIV. Reads per kilo-
base million has been shown to be inconsistent, because it does
not account for all the biases inherent in transcriptomic data-
sets, such as relative abundance.5” Based on our results, we can
state that no differences were observed for the expression levels
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tested in this study, which had an average minimum expression
of 1X and a 5th percentile of 10X. However, it is possible that
differences in reconstruction occur at more extreme minimal
expression and k-mer values.

When analyzing the assays with different fragment sizes, it
became clear that the reconstruction of shorter transcripts
became more difficult with increasing fragment size. This phe-
nomenon was not specific to a particular software but rather a
general characteristic of the assembly process. Despite the
expectation that increasing the size of the Illumina fragments,
which contain more information, would lead to better results,
the evaluation metrics deteriorated in the opposite way. One
would anticipate that larger fragments would allow resolution
of regions that are difficult to assemble with shorter fragments,
such as determining the order of exons in different isoforms.1738
The decrease in sequencing depth within the central region of
transcripts poses a limitation in correctly assembling tran-
scripts. This sampling issue is particularly relevant when the
length of transcripts is equal to or shorter than twice the frag-
ment size. For instance, with a fragment size of 600 bps, we
found this problem with transcripts of sizes around 1200 bps
and smaller. It is important to note that the zero values for
standard deviation in fragment size distributions do not reflect
real-world scenarios, where distributions typically exhibit
standard deviations around a mean value. Generally, efforts are
made to minimize the standard deviations in fragment sizes, as
this information is crucial for accurate assembly. By introduc-
ing a nonzero standard deviation, smaller fragments were gen-
erated, leading to increased depth uniformity and, consequently,
improved assembly results. Furthermore, the observed trend
indicated that larger average fragment sizes required larger
standard deviation values to achieve better assembly results.
Similar reasoning can be applied as a hypothesis to explain the
minimum threshold of read length, considering the relative
abundances of transcripts that are comparable in size with the
read length. In transcriptomes with a higher abundance of
smaller transcripts, optimal read lengths and fragment sizes
tend to be smaller. The results of Chang et al’ indicate that dif-
ferent organisms may have varying optimal read sizes for tran-
scriptome assembly. In their study, they found that a lower
threshold read size of 75 bps was sufficient for Saccharomyces
cerevisiae, while H sapiens and Mus musculus required a larger
read size of at least 150 bps. This read size threshold can be
attributed to several factors, including differences in the distri-
butions of transcript size between the organisms. H sapiens and
M musculus have larger transcript size distributions that are
similar to each other, while § cerevisiaze has a comparatively
smaller transcript size distribution. As a result, S cerevisiae can
achieve satisfactory assembly results with shorter reads, whereas
larger transcriptome organisms require longer reads to ade-
quately capture their complexity.

Conclusions
The evaluation of de novo transcriptome assemblies has been a
topic of frequent study; however, there is still a lack of

knowledge regarding the impact of variables that compound
these datasets on assembly results. In this study, we present a
comprehensive assessment of RNA-Seq datasets complexity
using 6 commonly used de novo assembly tools and controlled
simulated data. We selected a set of 4 variables that affect the
biological and technical complexity of the RNA-Seq data.
Subsequently, we created different datasets to explore the
effects of each variable and their interactions. Simulated data
were employed instead of real data to ensure knowledge of the
true transcriptome and maintain control over each variable’s
contributions to the complexity. Although simulated datasets
may not fully reflect the complexity of real transcriptomes, they
are valuable for isolating and examining the individual effect of
each variable on transcriptome assembly.

Among the variables evaluated, alternative splicing level
emerged as the variable with the most negative impact on
assembly results as it leads to increased biological complexity.
While the presence of alternative splicing strongly affected the
percentage of transcript reconstruction, the decreases in the
percentage of reconstructed genes were not as significant.
These results are relevant in real-world scenarios and should be
considered in subsequent analysis steps, such as expression
quantification. In general, the programs of Group “A,” consist-
ing of Trinity, Oases, and Bridger, achieved better results in
terms of reconstruction of genes and transcripts in datasets
with high complexity. Among these programs, Trinity stands
out as the one with the best performance in most cases.
Regardless of the variable being evaluated, higher assembly
results were consistently obtained when the k-mer size was
increased. However, the evaluation of the degree of reconstruc-
tion as a function of expression level did not reveal a significant
performance advantage for smaller k-mer sizes for the tran-
scripts with low expression levels. It is important to note that
these evaluations could be extended to include the lower
extremes of the expression distributions, and adjust the relative
abundance of lower-expressed transcripts, to fully understand
and generalize their effects.

The multivariate analysis of RB metrics allowed the inte-
gration and comparison of results across samples. In addition,
the RF metrics employed yielded similar results to the RB met-
rics. The RF metrics, including “RSEM assembly score,”
“Transrate percentage of mapped fragments,” “Transrate num-
ber of potential bridges,” and “Iransrate percentage of seg-
mented contigs,” derived from probabilistic models of
assemblies or by analyzing the results of mapping reads to con-
tigs. Here, the RF metrics showed their potential for use in
real-case comparisons. Finally, multivariate analysis proved to
be a valuable tool for comparing assemblies, as it considers
multiple metrics simultaneously.

Increases in read length and fragment size enhanced assem-
bly results by providing additional information. However, dif-
ficulties arose when encountering sampling issues, particularly
impacting the reconstruction of transcripts shorter than twice
the read or fragment size. The sampling issues resulted from
the number of fragments of size N that can be obtained from a
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transcript of size M. These sampling issues resulted in depth
drops at the ends of the transcripts and, in the case of paired-
end reads, also led to depth reductions in the middle of the
transcripts. Optimal size values for reads and fragments depend
on the size distribution of the transcripts, what is related to the
level of alternative splicing, and the size and number of exons
within the sample. Notably, the results improved by increasing
standard deviation and working with fragments of different
sizes. Larger reads and fragments facilitated the resolution of
splicing isoforms by capturing information about the order of
exons, while smaller ones were necessary to achieve uniform
depth. Considering the sampling issues resulting in variations
in sequencing depth across regions of transcripts, and in a real
scenario where the distribution of transcript sizes is unknown,
it is advisable to generate at least 2 libraries with different frag-
ment sizes to achieve a uniform depth across transcript posi-
tions. For example, one could utilize a paired-end library with
long fragment sizes (600 bps) along with another single-end
library with short reads (150 bps).
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