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Abstract

An artificial neural network (ANN) procedure was used in the development of a catalytic spectrophotometric method for the determi-
nation of Cu(ll) and Ni(ll) employing a stopped-flow injection system. The method is based on the catalytic action of these ions on the
reduction of resazurin by sulfide. ANNSs trained by back-propagation of errors allowed us to model the systems in a concentration range of
0.5-6 and 1-15mgt for Cu(ll) and Ni(ll), respectively, with a low relative error of prediction (REP) for each cation:dgfR 0.85%
and RER;qy =0.79%. The standard deviations of the repeatability gnd of the within-laboratory reproducibilitysf) were measured
using standard solutions of Cu(ll) and Ni(ll) equal to 2.75 and 3.5thgkspectivelys[Cu(l)]=0.039 mg %, s[Ni(11)]=0.044 mg I,
sw[Ni(II)] =0.045 mg I"* ands,[Ni(11)]=0.050 mg I-*. The ANNSs-kinetic method has been applied to the determination of Cu(ll) and Ni(ll)
in electroplating solutions and provided satisfactory results as compared with flame atomic absorption spectrophotometry method. The effect
of resazurin, NaOH and N8 concentrations and the reaction temperature on the analytical sensitivity is discussed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction case of kinetics processes, stopped-flow techniques which
increase the residence time and thus the conversion of the
Kinetic-based methods have been continuously growing measured specig8,4]. The usual procedure is to stop the
during the last decades, together with automated techniquedlow before reactions have been completed, to monitor the
such as flow injection analysis (FIA), which have gained spe- time-dependent signal as the reaction continues in the detec-
cial analytical interest because of their simplicity, feasibil- tion cell, and to use the resulting response profile to determine
ity, high sampling frequency and low cost of reagents and analyte concentrations. The response profile is a data vector
sampleq1,2]. In order to take advantage of the performance from each of several standards, which can be arranged into
of the flow injection (FI) systems, alternative modes to the a two-way matrix, and correlated to analyte concentrations
conventional systems have been proposed including, in theusing first-order multivariate calibration methd8sg].
When the data structure is intrinsically non-linear, clas-
+ Corresponding author. Tel.: +54 342 4571164x2542; sical cql|brat|on method_s cannot. be_applled, because_ their
fax: +54 342 4571162, underlying models are linear. This kind of problem arises,
E-mail addressbonivar@fiqus.unl.edu.ar (A.L. Bonivardi). for example, when the analyte acts as the Catalyst of a kinetic
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reaction[7]. In these cases, an excellent alternative is the bath, and thus their analyses allow to maintain the needed
use of artificial neural networks (ANN$8,9]. These algo- chemical composition to achieve the required product. On
rithms are based in concepts loosely related to the behavior ofthe other hand, these determinations allow for an accurate
the human brain: the variables are assigned to mathematicatontrol of wastewater quality.
objects called neurons, and a mathematical function is asso- The aim of the present study is the optimization and ANN
ciated with the so-called intra-neural connections. A neural calibration of a kinetic methodology using a stopped-flow
network model is composed of a large number of simple pro- injection system for the determination of Cu(ll) and Ni(ll),
cessing elements or neuron nodes, organized into a sequencleased on their catalytic effects on the reduction reaction of
of layerq8]. ANNs mathematically transform aninput vector resazurin by sulfide. This reaction has already been proposed
(a vector of variables assigned to a number of neurons) intofor the determination of Se(IV[22] and Pb(Il)[23] using
an output vector through a suitable transfer function. Neural batch procedures in both cases. A recent study employs the
networks show several advantages: they do not require priorsame chemical system for the determination of Pb(ll) with
knowledge of the model-related function, leading to better a stopped-flow injection techniqyi24]. Both batch and on-
generalizations because they are able to model complex relaline analytical procedures were based on pseudo first-order
tionships. Their flexibility has been a decisive feature com- kinetic assumptions. Thus, linear relationships were assumed
pared with parametric techniques that require the assump-between the catalyst concentration and: (1) the absorbance
tion of a specific model form. In addition, ANNs avoid the changes for a fixed reaction time or (2) the time needed to
time-consuming and possibly expensive task of determinis- obtain a fixed absorbance change. This methodology was
tic model identification required for kinetic analytical stud- found to work well for the determination of analytes at low
ies. They can be adequately trained to produce quantitativeconcentration levels. In the present report, we found that the
results; in the field of analytical chemistry the back propa- catalyzed reaction mechanism did not follow a pseudo first-
gation model is the most frequently employed. Basic theory order kinetic model for the investigated cations, and that sig-
and application to chemical problems of back-propagation nificant non-linear effects were present. These effects did not
ANNSs can be found in the literatuf8,9]. Another relevant allow for a successful calibration at high concentrations using
use of ANNSs is in optimization of analytical methodologies linear relationships, and therefore ANNs were applied.
[10-13]

Kinetic methods coupled to ANNs have been previously
applied for analyte determinations in mixtures. Pertinent ex- 2. Experimental
amples are the oxidative coupling reactionNgN-diethyl-
p-phenylenediamine with chlorophenol derivatij&4], the 2.1. Apparatus and flow injection manifold
simultaneous determination of methanol and ethanol in a
spectrophotometric enzymatic systétb], the kinetic spec- Spectrophotometric UV-vis measurements were per-
trophotometric determination of acetaminophen and pheno-formed using a Perkin Elmer UV Lambda 20 spectropho-
barbital [16], the simultaneous determination of V(lV) and tometer, equipped with a 3ﬂ flow quartz cell Supp”ed by

Fe(ll) as catalysts in the redox reaction of bromate with wilmad. A personal computer for time recording and data
methyl orangg17] and the resolution of Co(ll) and V(IV)  acquisition was used.

mixtures[18]. The comparison of the ANN results with those The flow injection manifold used is depicted fig. 1

provided by other chemometric techniques such as principal An 8-channel Ismatec-IPC peristaltic pump (ISMATEC-IPC,
component regression (PCR) or partial least-squares (PLS)switzerland) fitted with Tygof tubes was used to pump

favors the former, such as in the anaIySiS of mixtures of all solutions and to provide the Stopped-ﬂow_ A 6-port Vici-
Fe(llN), Co(ll) and Zn(ll) by displacement from their EGTA  Cheminert C22Z (VALCO, USA) injection valve was used to
complexes with 4-(2-pyridylazo)resorcinol (PAR)], and  inject the sample into the water carrier stream. A 4-port Vici-
in the resolution of ternary mixtures of antioxidaf2g]. Cheminert C22Z (VALCO, USA) injection valve was used

Another interesting example is the determination of mix- to perform the system cleaning operations. All the manifold
tures of heavy metal ions at high concentrations in indus- tybing was made of PTFE (0.5 mm i.d.).

trial samples. Ni et al. have reported the simultaneous spec-
trophometric determination of Co(ll), Ni(ll), Cu(ll), Fe(lll)

and Cr(lIll) in electroplating bath solutions by the inclu- w w
sion of ethylenediaminetetraacetate (EDTA) solution as chro- S
mogenic reageri1]. They built calibration models based on Na,S+NaOH i R

different chemometric models, including ANNSs, in the latter Resazurin

case with good analytical performance. HCI
The determination of Cu(ll) and Ni(ll), among other metal

lons, Is very important for the eIeCtrOplatlng mdUStry of our Fig. 1. FI manifold for the spectrophotometric determination of Cu(ll) and

region. The qua_"_ty of eleCtroplate(_j proijCtS depends pe_lrtly Ni(ll) with Resazurin. L: sample loop, HB: heated water bath, R: knotted
on the composition of the metal ions in the electroplating reactor, D: detector, W: waste.
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A conventional heated water bath was used to keep theof 120 s was chosen as a compromise between high instru-

knotted mixing reactor at a constant temperature. mental signal and adequate analytical frequency.
Once the preset reaction time had elapsed, the pump was
2.2. Reagents turned on and the cleaning operation was performed, first with

hydrochloric acid solution and then with deionized water.

All the employed chemicals were of analytical-reagent This cleaning step is of great importance to remove metal
grade and solutions were prepared using deionized water. ions away from the quartz cell. Finally, the system was ready

A resazurin stock solution was prepared by dissolving for a new sample injection.

0.1100 g of resazurin (Sigma, purity 90%) in a 100 ml volu-

metric flask with water. The working resazurin solutions were

made by appropriate dilution of the stock solution, whichwas 3. Methods
stable for several months.

The sodium sulfide working solutions were made by dis- 3.1. Experimental design
solving the appropriate weight of sodium sulfide hydrate
(Merck, about 35% NgB) with water. These solutions had to The experimental parameters of the FIA assembly that
be freshly prepared everyday. could affect the dispersion of the signal were optimized by

The stock sodium hydroxide solution was prepared by changing each variable in turn, while keeping all the other
dissolving 40 g of sodium hydroxide (Merck, purity 99%) ones constant. The variables selected for optimization were
in 100 ml of water. The appropriate volumes of this solution the mixing reactor length, the flow rate of reactant stream and
were added to the sodium sulfide working solutions. the sample volume size.

Standard stock solutions of copper and nickel were pre-  The influence of physicochemical variables such as con-
pared by dissolving 0.3929 g of copper sulphate pentahy- centrations of reactants and temperature of mixing coil was
drate (Merck, purity 99%) and nickel sulphate heptahydrate studied using an orthogonal desi@®], in which all the fac-
(Merck, purity 99%) in a 100 mlvolumetric flask each. Work-  tors investigated were varied simultaneously. In this design,
ing solutions of both metal ions were prepared by appropriate five levels for each factor were selected and there were a to-

dilution of the stock solutions. tal of 25 experiments. The response selected to evaluate the
design results was the absorbance charg®) @long 120s
2.3. Glassware of reaction time. The details of the factor design are shown in

Table 1 The optimum conditions of each of the factors were
All the glassware used was cleaned with detergent, rinsedevaluated using a response surface optimization method, im-
with tap water followed by deionized water, soaked overnight plemented in the Statgraphic 3.0 statistical package.
in a nitric acid (15%, v/v) bath and carefully rinsed with
deionized water before use. 3.2. Kinetic simulation methods

2.4. Procedure The Statgraphic 3.0 statistical package and routines writ-
ten for the Matlab 5.3 environment were used to predict ki-
Before pumping the reagents, the whole FI system was netic parameters for different kinetic models.
cleaned by pumping 1:1 hydrochloric acid solution during

30 min and deionized water for additional 30 min. 3.3. Atrtificial neural networks
The water carrier and reaction components, sodium sul-
fide (in a sodium hydroxide medium) and resazurin solu-  In modeling the current calibration problem, a neural net-

tions, were all transported at the same flow rates throughwork trained by back-propagation of errors was used. The
their respective channels to the point where they were mixed.latter technique is attractive because of the well-defined and
The mixture passed through a knotted mixing coil (250 cm explicit set of equations for weight corrections. These equa-
lengthx 0.5mmi.d.) placed in the heated water bath to allow tions are applied throughout the layers, beginning with the
the emergent solution to reach the flow-cell completely mixed correction of the weights in the last (output) layer, and then
and with a uniform temperature. Reagents were pumpedcontinuing backwards towards the input layer.

through the manifold until the resazurin absorbance was sta- The architecture of the network (number of layers, number
ble at a maximum value. When this latter condition was of neurons in each layer and neural connection mode) is the
reached, 250l of the sample solution containing Cu(ll) main feature influencing the flexibility of the ANN model.
or Ni(ll) were injected into the carrier. After 60, the flow Before the learning process begins, an initial architecture of
was stopped for 120s. During this time the reaction took the neural network must be chosen and then modified during
place in the flow-cell and the conversion degree of resazurin the learning or testing phase. A trial and error methodology
was monitored spectrophotometrically’ats= 605 nm (slit was employed to find the best architectures for all ANNs
width =2 nm). The kinetic data were acquired at a rate of 1 s used in this work. Two parameters must be defined for each
per point and recorded in the computer. The reaction window architecture: the learning rate constarnd the momentum
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Table 1

Factor levels in orthogonal factorial design and their optimum values for Cu(ll) [6 fh@hd Ni(ll) [15mg 1]

Factors Analyte Levels Optimum

Temperature®C) Cu(ll) 34 365 39 415 44 34
Ni(l1) 34 36.5 39 415 44 44

Resazurin (mgi') Cu(ll) 25 30 35 40 45 45
Ni(Il) 25 30 35 40 45 45

NagS (%, wiv) Cu(ll) Q2 0.8 14 20 26 14
Ni(Il) 0.2 04 0.6 0.8 10 10

NaOH (mol 1) Cu(l) 0 03 06 0.9 12 04
Ni(l1) 0 0.2 04 0.6 0.8 0

constantu. The former determines the speed at which the ?
weights change, and represents a reasonable trade-off be- N -[o] O/@b@\
tween fast learning and converging to the lowest minimum. /qoji@\o“ OH
The momentum constant gives the learning process a certain Resazurin Resorufin
capacity for inertia, enabling the network to avoid partial
minima. Both parameters are closely related, and they
were simultaneously varied to get their optimum values for "
calibration purposes. hIl

The root-mean-square (RMS) error between the targets M@[@j@
and the output (ANNs predicted values) was used as the pa- o OH

rameter to stop the ANNS training process Dihydroresorufin

2 Fig. 2. Resazurin reduction reaction.
>~ (Cnhom — Cpred
I1-1

RMS = Q)

product[26]. This indicates that the assumption of a first-
order kinetics for our reaction system is unfeasible, and that
anon-linear response is expected for the determination of the

Cu(ll) and Ni(ll) analytes.

where Cnom and Cpreq are the nominal and predicted con-
centrations of a test group of samples respectively,ldahd
number of samples.

An ANN routine developed in the Matlab 5.3 environ-
ment was applied, performing calibration and prediction us- 4.2. Effect of experimental variables

ing the kinetic profiles recorded by the experimental method
described above. The variables affecting the performance of the proposed

kinetic method for the determination of both Cu(ll) and
Ni(ll) were optimized. The FI variables involve the ability
to mix sample and reactants solutions automatically and
the acquisition of kinetic data from the mixed solution. The

4. Results and discussion

4.1. Chemical system

2.6

The reduction reaction of resazurin by sulfide in alkaline 24 T
solution proceeds slowly without added catalysts. It is known [
that the reduction rate increases significantly in the presence § 22 :
of trace amounts of certain metal ions. The complete kinetic 8 20 :
mechanism for the reaction has not been reported. Afkhami § 18 |
et al. have proposed that the reaction takes place in two steps g " Flow mode | Stop-flow mode :
(seeFig. 2) [23]: the first one, whose product is resorufin, is 161 :
assumed to be irreversible, but the second one, the reduction 14L o
of resorufin to dihydroresorufin, is assumed to be reversible & Dead “me"l
and fast (i.e., both resorufin and dihydroresorufin are in equi- Yo o5 10 15 20 25 30

librium). These authors also proposed that only the first step
is catalyzed by metal ions. However, our absorbance-time

profiles for both Cu(ll) and Ni(ll) Kig. 3 clearly suggests  Fig.3. Absorbance-time profiles for standard solutions: 1.0thgfiCu(ll)
the presence of an additional, autocatalytic step by a reactionand 2.0 mgt? of Ni(ll), as indicated.

Reaction time/min
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physicochemical variables include the concentrations of expected for catalytic, pseudo first-order reactions, however a
reagents and the temperature of the mixing reactor that leadhigher limit is imposed by the increase of the signal noise due

to a maximum in the signal changes. to adecrease in the detection capability of the photomultiplier
tube for high absorbance values. Consequently a resazurin
4.2.1. Flvariables concentration equal to 45 mglwas selected as the optimum

The mixing reactor length was varied between 50 concentration value. Although the temperature is known to
and 500cm for the higher flow rate used in this work have an positive effect in kinetic-based determinations, the
(3.4mImin1). The shortest reactor length that allowed a resulting negative effect of this factor on the signal can only
complete mixture of the reactants (250 cm) was chosen. Forbe explained from the coexistence of unknown side reactions
shorter reactor lengths the mixing process was deficient andfavoring the consumption of the analyte. Therefore, for this
the signals were noisy and not reproducible. study we chose the lower value obtained as optimunmiC34

When using a stopped-flow technique, the flow rate and Although Cs and Cnaon Showed no statistical significance,
the required time to stop the pump after the sample injection the response surface analysis for these two factors enabled us
are of great importance. In order to select these parametergo select their optimums: 1.4% (m/v) and 0.4 mdi for Cs
a standard tartracine solution was used (absorbance = 1.3@ndCnaon, respectively.
at A =428 nm). Water was pumped in all reagent channels  The response surface analysis for Ni(ll) shows that three
(the flow rate was varied between 0.8 and 3.4 mimh)rand factors Cr, Cs, Cnaon) Were significant for the same confi-
the sample loop was filled with the tartracine solution. The dence level. The model explains 94% of the total variability
same flow rates and their corresponding stop times were ver-and no correlation between variables was found. The effect
ified for our chemical system and a total flow rate equal to of resazurin concentration is similar to that for Cu(ll), allow-
1.1 mlmin ! was selected. For this total flow rate, one minute ing to arrive at the same conclusions. The analytical signal
was necessary to stop the pump after the loop injection. Forincreases with an increase of sulfide concentration, but the
lower rates the reaction began in the mixing reactor and for highest limit is imposed by the undesirable on-line precipi-
faster rates the noise of the system increased. tation of NiS. The NaOH concentration has a negative effect

The influence of sample volume was studied in a range of in the Ni(ll)-catalyzed reaction, and the possible range for
100-50Qul using the said tartracine solution. It was observed this variable study was limited due to a precipitate forma-
that, for a volume of 25Q.1, there is a period of 10 s where the tion. This behavior is attributed to the low solubility product
dispersion coefficient is reasonably good (105 < 1.08) of Ni(OH)2 and the consequent removal of Ni(ll) ions from
to perform our experiments. The maximum signal is wide the reaction medium for the Ni(ll) concentrations used in
enough to obtain reproducible results, minimizing stop time this study. The optimum signal was found in the absence of
errors. With smaller loops the dispersion coefficient is larger, NaOH, but a concentration of 0.2 mofi of NaOH was se-
and with larger ones the improvement for the dispersion co- lected for the rest of the study in order to improve the sulfide
efficient is not significant and the required time to fill the solution stability. The factor temperature was not significant
loop is too long. Therefore, an injection loop of 2b0was at 95% confidence level, but a positive sign was observed
selected, and the pump was stopped 60 s after the sample wasn the response, and therefore the higher valué @4vas

injected. adopted as desirable.
It is difficult to explain, from a thermodynamic point of
4.2.2. Physicochemical variables view, our operative limits for both cations in studying sulfide

The selected factors were the concentration of resazurinand hydroxide effects. For Ni(ll) we attributed the precipitate
(CRr), the concentration of sulfid€g), the concentration of  formation to the low solubilities of Ni(OH)and NiS. How-
sodium hydroxide €naon) and the temperature of the bath  ever, in the case of Cu(ll) we expected a lower working range
where the mixing reactor was placen ( for both studied factors if only thermodynamic aspects were

A set of working intervals was selected from a series of taken into account. A possible explanation for our more ex-
preliminary experiments which take into account certain op- tended experimental working range in the case of Cu(ll) is the
erative limits. In these intervals, the orthogonal design (see formation of Cu(ll) soluble species in alkaline medi{@i],
Section3.1 and Table 1) was used to obtain an analytical and this reaction can compete kinetically with the formation
system that would provide greater sensitivity. Our task was of other less soluble species.
to seek the four input value€r, Cs, Cnaon andT corre-
sponding to a maximum output value of decrease in resazurin4.3. Analytical features
absorbanceAA) for a fixed reaction time. For this purpose,
we employed a surface response optimization procedure. 4.3.1. Kinetic calibration

The design analysis for Cu(ll) shows that two factorswere ~ We have already pointed out in Sectii that a pseudo-
significant Cr andT) at the 95% confidence level, that the first-order kinetic mechanism cannot be employed to explain
model explains 88% of the total variability and that no cor- the absorbance versus time profiles showfim 3. In the
relation between variables was found. An increase of the an-stopped-flow mode, i.e. after 1 min for reaction time, and us-
alytical signal by increasing resazurin concentration is to be ing low concentration of any metal cation, the value of the
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Table 2

Concentration and scaled PC’s scores of the training and test sets for Cu(ll) and Ni(ll)

Cu(ll) concentration PC1 PC2 PC3 PC4 Ni(Il) concentration (mg) PC1 PC2 PC3

(mgl™)

Training set
0.75 -1 -1 -1 0.1986 100 -1 -1 —0.9911
1.50 —0.7240 —0.3014 1 -1 150 —0.7208 01795 1
2.00 —0.6070 00034 07911 06469 200 —0.4003 09286 00836
2.50 —0.4695 03513 03655 1 400 03155 1 -1
3.00 —0.3040 07624 00260 Q7194 700 07139 03498 —0.3335
3.50 —0.2237 08791 -0.27 —0.1125 900 07832 01030 —0.1786
4.00 —0.1249 1 —0.4733 —0.6749 1100 09057 —0.2920 —0.0423
6.00 1 —0.7788 00991 01589 1500 1 —0.7834 02538

Test set
0.50 —1.1228 —1.5689 —-1.1717 45459 250 —0.1385 10428 —0.6488
1.00 —0.9239 —0.7561 —0.1899 —1.6187 300 00597 11897 —0.9227
5.00 01601 14153 —0.5493 —1.9391 500 05592 Q7397 —0.7393

absorbance was almost constant for a short time and then thehe network for each analyte. The sets ranged from 0.5 to 6
signal started to decrease. This initial “induction” period is and from 1 to 15 mgi! for Cu(ll) and Ni(ll), respectively.
typical of autocatalytic reactions where the global reaction is They were randomly divided into a training set (70% of
catalyzed by a reaction product: at the beginning the decom-samples) and a test set (30% of samples) (sdxe 2. The
position rate of the reagent is slow but as long as the productprofiles obtained using the methodology explained above for

is formed the reagent decomposition is accelerf26f It is these samples were first compressed by principal components
obvious then that a step where resazurin reacts with a producpreprocessing, and then used as input of an ANN trained by
have to be involve in the whole kinetic mechanism. back propagation of errors. Each column of the input matrix

Thus, we include an additional parallel step to the mech- consisted of 120 data points for each profile corresponding to
anism shown irFig. 2 the reaction between resazurin and absorbance data acquired during a reaction period between
resorufin, to evaluate and to fit the new model with the exper- 60 and 180 s. In this way, we obtained matrices composed of
imental profiles obtained for different concentrations of cat- 11 columns and 120 rows as input data, which after principal

alyst in the range of 0.5-6 mg# for Cu(ll) and 1-15 mgt?! component compression, yielded matrices composed of 11
for Ni(ll) using the software packages already described in columns and a number of rows equal to the number of input
Section3.2 neurons (see scorestable 2. The output layer was a single

Although good fittings between predicted and experimen- node corresponding to the analyte concentration, so that
tal data were obtained when using the new additional step inthe output vectors were those corresponding to calibration
the mechanism dfig. 2, it was not possible to arrive to useful  concentrations for Cu(ll) and Ni(ll), respectively.
analytical relations for the determination of the studied metal  The parameters used to build the ANN models were opti-
cations. mized (sedable 3. Different combinations of learning rates

We also tested a less complex mechanism eliminating theand momentums were assayed. Learning rates of 0.5 and 0.4
formation of dihydroresorufin from the new one. However, were found to work well with the data sets for Cu(ll) and
the theoretical kinetic model did not fit properly the experi- Ni(ll), respectively. While learning rates were being investi-
mental data and a non-linear relationship was found betweengated, momentum values were also varied to find a ratio for
the Ni(ll) concentration and the kinetic constant for the first
step of the mechanism. Only Cu(ll) concentration could be

linearly correlated to that kinetic constant. Table 3 .

We concluded that a more rigorous study on the reaction Optimized parameters used for the construction of ANN models
kinetic must be performed to explain the results in terms of Parameters Analyte
deterministic models that allow us the analytical determina- cu(ll) Ni(I1)
tion for the catalysts. Input nodes 4 3

Hidden nodes 2 2

4.3.2. ANNSs calibration E)g;?r‘:tnrg‘orifj é oi

In view of t.he d|ﬁ|f:ult|es in obtaining the underlying k_|— Momentum 5 06
netic mechanism which would allow us to solve the analytical input layer transfer function Linear Linear
problem on a deterministic basis, a multivariate, non-linear Hidden layer transfer function Sigmoid Sigmoid
calibration was performed using ANNSs. For this purpose, two ©Outputlayer transfer function Sigmoid Sigmoid

sets of eleven calibration samples each were used for training\umper of iterations 4184 485
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Table 4
RMS for calibration after applying different regression models
Model Cu(ll) Ni(l1)

PCR PLS ANN PCR PCR PLS ANN
Region (number of sensors) 1-120 90-120 1-120 1-120 80-110 80-110 1-120
Factors 3 1 4:23 2 3 3 3:2:¢
RMSC (mg 1) 0.095 0.143 0.037 1.223 0.456 0.456 0.350

a ANN architecture.

the relative combination of the two parameters that would number of factors. For comparison purposksles 4 and 5

give the faster optimization of the networks. Momentums of show the results of the RMS values of the calibration (RMSC)

0.5 and 0.6 were selected for Cu(ll) and Ni(ll), respectively. and the predicted concentration values, respectively, for the
The selected transfer function was of a sigmoid type, since different regression models. In all the cases, ANNs method-

it is very versatile and appropriate for non-linear systems. ology gives the best analytical results, as expected.

This kind of function was used in the hidden and the output  Fig. 4summarizes the predicted concentrations by the best

layers. ANNSs versus nominal concentrations for calibration and test
The proper number of nodes in the input and hidden layer sets for Cu(ll) and Ni(ll), respectively.

was investigated by trial and error by training ANN with

different architectures. The parameter used to evaluate the4.3.3. Predictions for the validation sets

different ANNs performance was the RMS value obtained  The optimal ANN calibrations found for each analyte were

for the test sample set. For Cu(ll) the minimum of RMS applied to the prediction of the concentrations of the compo-

occurred for four input nodes when it was varied from 3to 6. nents in six synthetic samples for both Cu(ll) and Ni(ll),

Varying the number of nodes in the hidden layer from 2 to 6, corresponding to two validation sets. For this purpose, trip-

for four nodes in the input one, we found that the minimum licate measurements of each sample were made using our

RMS was given by two nodes in the hidden layer. To select method, thus the resulting profiles were evaluated by ANNSs.

the best number of training epochs, error curves of RMS Triplicate determinations were also performed for the vali-

values versus training epochs were built when the optimum dation sets using flame atomic absorption spectrophotometry

architecture was used. The minimum for RMS was detected (FAAS). These results are collectedTliable 6for both Cu(ll)

at 4184 epochs and the relative error of prediction was equaland Ni(ll).

to 0.85%. A convenient way to establish whether bias is absent or not
The minimum of RMS for Ni(ll) occurred when three and  for the determination in both cases is to draw the elliptic joint

five nodes were used for input layers. For the two alternatives confidence region (EJCR) for the slope and intercept when

the number of nodes in the hidden layer was varied from 2 plotting Cpred,ANNs-kin VErsusCpred,Faas [28]. Fig. 5 shows

to 5. According to its generalization ability on the testing these regions for the determination of Cu(ll) and Ni(ll), re-

set, curves of the RMS versus the number of hidden layer spectively. As can be seen, both ellipses contain the theoret-

nodes were made. When the number of hidden nodes wascally expected value of (1, 0), indicating that the method is

equal to 2, for three nodes in the input layer, RMS was min- accurate.

imized. Analogous curves for five nodes in the input layer

let to larger RMS values. Hence three and two nodes were4.3.4. Predictions on real samples

adopted for input and hidden layers, respectively. The mini-  The present methodology was applied to two electroplat-

mum for the RMS values curves was detected for 455 epochsing solutions from a local industry containing Cu(ll) or Ni(ll).

and the relative error of prediction was equal to 0.79%.
Despite of the inherent non-linearity of these kinetic data, —

we also evaluated different regression linear models to verify 2 °[ Cull 1 14} Ni()
whether ANNS results are better than those obtained from theE 5t 12
linear models. We first used PCR models with the same PCSE 4| 10
as in the case of ANNSs for both cations, Cu(ll) and Ni(ll). & al sl
After applying a forward selection procedure only three and § 6l
two components, respectively, were significant for these lin- g 2 al
ear models. A moving window strategy was applied to find g 1t 2|
the most informative range of data, finding only animprove- £ L. . . . . | o
0o 1 2 3 4 5 6 0 2 4 6 8 10 12 14 16

ment of the results for the Ni(ll) analyte. In the case of Cu(ll),
the full range of data gave the best results. We also applied

PLS models th'mlzed by the moving '\NII"1dOW Strategy' using Fig. 4. ANNSs predicted concentrations)j calibration set and (+) test set
the cross-validation procedure to assist in the selection of thesor cu(i) and Ni(l), as indicated.

Nominal concentration/mg I!
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Table 5

Predicted concentration values of Cu(ll) and Ni(ll) for training and test sets after applying different regression models

Cu(ll) (mg 1) Ni(ll) (mg1—1)

Actual PCR (1-126) PLS(90-120)  ANN (1-120} Actual PCR (1-120) PCR (80-110) PLS (80-110) ANN (1-120}

Training set
0.75 0.76 0.62 0.75 .00 215 110 110 108
1.50 1.47 1.62 1.52 .80 072 154 154 162
2.00 1.94 2.06 1.96 .20 063 159 159 199
2.50 2,52 257 2.48 .a0 456 452 451 374
3.00 3.19 3.17 3.08 .00 852 7.36 7.35 718
3.50 3.50 343 3.49 .00 956 814 813 877
4.00 3.85 3.74 3.97 100 1128 1136 1135 1159
6.00 6.01 6.04 6.00 160 1309 1490 1489 1442

Test set
0.50 0.22 0.12 0.51 .80 184 226 226 254
1.00 0.94 0.90 0.97 .80 260 308 307 296
5.00 4.80 4.64 4.99 .80 663 616 616 502

2 Region (number of sensors).

Table 6

FAAS and ANNs-kinetic method results for the validation sets for Cu(ll) and Ni(ll)

Analyte FAAS (mg 1) ANNSs-kinetic method (mg 1)
Average concentratiorChred,Faa9 Standard deviation Average concentrati®réd, ANNs-kin Standard deviation

Cu(ll) 0.53 0.016 0.59 0.020
1.34 0.002 1.26 0.024
2.20 0.012 2.22 0.018
2.74 0.014 2.64 0.036
4.63 0.014 4.44 0.051

Ni(ll) 1.20 0.006 1.10 0.012
1.70 0.013 1.52 0.014
2.05 0.020 2.33 0.027
2.70 0.038 2.79 0.042
3.63 0.025 3.56 0.038
4.51 0.045 453 0.108

an=3.

A preliminary dilution step of each solution was needed for differences between the concentration values determinate for
the analysis of these analytes. Each diluted sample spikedboth methodologies and analytes, at the 5% level.

to 1.5mgt? for Cu(ll) and 2.5mgt?! for Ni(ll) was also

analyzed. The results were compared with those obtained us4.3.5. Repeatability and reproducibility studies

ing FAAS technique as a reference methdable 7shows In order to determine the method repeatability and
the excellent recovery results for ANNs-kinetic method and the within-laboratory reproducibility as a measure of
thet-values indicate that there are not statistical significant intermediate precision some guidelines provided by the

Table 7

Determination of Cu(ll) and Ni(ll) in electroplating bath samples

Analyte Samplg FAAS (n=4) ANNs-kinetic methodr{=4) t

Average (mgt?t) R.S.D. (%) Average (mgit) R.S.D. (%)

Cu(ll) Dilute samplé 0.700 1.60 0686 2.90 1.227
Spiked dilute sampfe 2.19 0.27 224 2.40 1.875
Recovery (%) 938 103

Ni(11) Dilute samplé 271 3.02 276 6.09 0.536
Spiked dilute sampfe 521 1.04 524 2.06 0.493
Recovery (%) 100 92

2 From an electroplating bath solution supplied by Cromados S.A. Company.
b Dilution factor equal to 1:40,000 for Cu(ll) and 1:20,000 for Ni(ll).
¢ Sample spiked to 1.5 mg? for Cu(ll) and 2.5 mgt? for Ni(ll).
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T T T T to remove the cations adsorbed over the inner wall surface of

04r 1 the quartz cell. This cleaning process is very time-consuming

0.2k . and defines the analytical frequency of the method. We found
that a HCI (1:1) solution was able to remove both Cu(ll) and

0.0 - ] Ni(ll) in 1.5 and 4.5 min, respectively. After the latter peri-

ods, arinsed step of 1 min was added for both cations. In this
way, the analytical frequencies for Cu(ll) and Ni(ll) were in
8 and 6 samplestt, respectively.

Intercept
<)
N

0.4} 1
0.6 1
08}t _ 5. Conclusions

06 o8 10 12 14 16 We developed a method based on the alkaline reduction

Si . . . . .
ope of resazurin by sodium sulfide for the catalytic determina-

Fig. 5. Elliptic joint confidence region for the slope and intercept of the 0N Of Cu(ll) and Ni(ll), using a combination of stopped-
regression of predicted vs. nominal concentrations. The cross marks theflow injection analysis, molecular absorption spectropho-
theoretical (1, 0) point. tometry and neural network data processing. The method
is simple, inexpensive, and reliable. It can be applied for
official literature were followe¢R9]. The basic experimental  the routine analysis of Cu(ll) and Ni(ll) using inexpensive
setup consisted in measuring five replicates during threeinstruments.
consecutive days on a standard solution of analyte. Standard The use of a neural network approach proved to be an
solutions containing 2.75 and 3.5mgl for Cu(ll) and excellent tool for the optimization and calibration processes
Ni(ll), were respectively chosen. without the use of deterministic models for the kinetic mech-
The ANOVA analysis for Cu(ll) shows that the residual anism of that complex reaction involving catalytic metal ions.
mean squaresd), named the mean squares within-days, is
equal to 0.0015 ng —2 and represents the repeatability con-
ditions. The within-laboratory reproducibilityZ,, is equal
10 52 + 52eneen WHETESsZoneenf€PrESENtS the variance due
to the between-day effect and it was determined using the
following expression:
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