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Received 31 March 2004; received in revised form 13 October 2004; accepted 13 October 2004
Available online 30 November 2004

A

determi-
n ns on the
r n range of
0
a d
u
s Ni(II)
i . The effect
o
©

K

1

d
s
c
i
s
o
c

f

hich
f the

the
r the
etec-
mine
ector
into

tions

las-
their

ses,
inetic

0
d

bstract

An artificial neural network (ANN) procedure was used in the development of a catalytic spectrophotometric method for the
ation of Cu(II) and Ni(II) employing a stopped-flow injection system. The method is based on the catalytic action of these io
eduction of resazurin by sulfide. ANNs trained by back-propagation of errors allowed us to model the systems in a concentratio
.5–6 and 1–15 mg l−1 for Cu(II) and Ni(II), respectively, with a low relative error of prediction (REP) for each cation: REPCu(II) = 0.85%
nd REPNi(II) = 0.79%. The standard deviations of the repeatability (sr) and of the within-laboratory reproducibility (sw) were measure
sing standard solutions of Cu(II) and Ni(II) equal to 2.75 and 3.5 mg l−1, respectively:sr[Cu(II)] = 0.039 mg l−1, sr[Ni(II)] = 0.044 mg l−1,
w[Ni(II)] = 0.045 mg l−1 andsw[Ni(II)] = 0.050 mg l−1. The ANNs-kinetic method has been applied to the determination of Cu(II) and
n electroplating solutions and provided satisfactory results as compared with flame atomic absorption spectrophotometry method
f resazurin, NaOH and Na2S concentrations and the reaction temperature on the analytical sensitivity is discussed.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Kinetic-based methods have been continuously growing
uring the last decades, together with automated techniques
uch as flow injection analysis (FIA), which have gained spe-
ial analytical interest because of their simplicity, feasibil-
ty, high sampling frequency and low cost of reagents and
amples[1,2]. In order to take advantage of the performance
f the flow injection (FI) systems, alternative modes to the
onventional systems have been proposed including, in the

∗ Corresponding author. Tel.: +54 342 4571164x2542;
ax: +54 342 4571162.

E-mail address:bonivar@fiqus.unl.edu.ar (A.L. Bonivardi).

case of kinetics processes, stopped-flow techniques w
increase the residence time and thus the conversion o
measured species[3,4]. The usual procedure is to stop
flow before reactions have been completed, to monito
time-dependent signal as the reaction continues in the d
tion cell, and to use the resulting response profile to deter
analyte concentrations. The response profile is a data v
from each of several standards, which can be arranged
a two-way matrix, and correlated to analyte concentra
using first-order multivariate calibration methods[5,6].

When the data structure is intrinsically non-linear, c
sical calibration methods cannot be applied, because
underlying models are linear. This kind of problem ari
for example, when the analyte acts as the catalyst of a k

003-2670/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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reaction[7]. In these cases, an excellent alternative is the
use of artificial neural networks (ANNs)[8,9]. These algo-
rithms are based in concepts loosely related to the behavior of
the human brain: the variables are assigned to mathematical
objects called neurons, and a mathematical function is asso-
ciated with the so-called intra-neural connections. A neural
network model is composed of a large number of simple pro-
cessing elements or neuron nodes, organized into a sequence
of layers[8]. ANNs mathematically transform an input vector
(a vector of variables assigned to a number of neurons) into
an output vector through a suitable transfer function. Neural
networks show several advantages: they do not require prior
knowledge of the model-related function, leading to better
generalizations because they are able to model complex rela-
tionships. Their flexibility has been a decisive feature com-
pared with parametric techniques that require the assump-
tion of a specific model form. In addition, ANNs avoid the
time-consuming and possibly expensive task of determinis-
tic model identification required for kinetic analytical stud-
ies. They can be adequately trained to produce quantitative
results; in the field of analytical chemistry the back propa-
gation model is the most frequently employed. Basic theory
and application to chemical problems of back-propagation
ANNs can be found in the literature[8,9]. Another relevant
use of ANNs is in optimization of analytical methodologies
[
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bath, and thus their analyses allow to maintain the needed
chemical composition to achieve the required product. On
the other hand, these determinations allow for an accurate
control of wastewater quality.

The aim of the present study is the optimization and ANN
calibration of a kinetic methodology using a stopped-flow
injection system for the determination of Cu(II) and Ni(II),
based on their catalytic effects on the reduction reaction of
resazurin by sulfide. This reaction has already been proposed
for the determination of Se(IV)[22] and Pb(II)[23] using
batch procedures in both cases. A recent study employs the
same chemical system for the determination of Pb(II) with
a stopped-flow injection technique[24]. Both batch and on-
line analytical procedures were based on pseudo first-order
kinetic assumptions. Thus, linear relationships were assumed
between the catalyst concentration and: (1) the absorbance
changes for a fixed reaction time or (2) the time needed to
obtain a fixed absorbance change. This methodology was
found to work well for the determination of analytes at low
concentration levels. In the present report, we found that the
catalyzed reaction mechanism did not follow a pseudo first-
order kinetic model for the investigated cations, and that sig-
nificant non-linear effects were present. These effects did not
allow for a successful calibration at high concentrations using
linear relationships, and therefore ANNs were applied.
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10–13].
Kinetic methods coupled to ANNs have been previo

pplied for analyte determinations in mixtures. Pertinen
mples are the oxidative coupling reaction ofN,N-diethyl-
-phenylenediamine with chlorophenol derivatives[14], the
imultaneous determination of methanol and ethanol
pectrophotometric enzymatic system[15], the kinetic spec
rophotometric determination of acetaminophen and ph
arbital [16], the simultaneous determination of V(IV) a
e(II) as catalysts in the redox reaction of bromate
ethyl orange[17] and the resolution of Co(II) and V(IV
ixtures[18]. The comparison of the ANN results with tho
rovided by other chemometric techniques such as prin
omponent regression (PCR) or partial least-squares (
avors the former, such as in the analysis of mixture
e(III), Co(II) and Zn(II) by displacement from their EGT
omplexes with 4-(2-pyridylazo)resorcinol (PAR)[19], and

n the resolution of ternary mixtures of antioxidants[20].
Another interesting example is the determination of m

ures of heavy metal ions at high concentrations in in
rial samples. Ni et al. have reported the simultaneous
rophometric determination of Co(II), Ni(II), Cu(II), Fe(II
nd Cr(III) in electroplating bath solutions by the inc
ion of ethylenediaminetetraacetate (EDTA) solution as c
ogenic reagent[21]. They built calibration models based
ifferent chemometric models, including ANNs, in the la
ase with good analytical performance.

The determination of Cu(II) and Ni(II), among other me
ons, is very important for the electroplating industry of
egion. The quality of electroplated products depends p
n the composition of the metal ions in the electropla
. Experimental

.1. Apparatus and flow injection manifold

Spectrophotometric UV–vis measurements were
ormed using a Perkin Elmer UV Lambda 20 spectrop
ometer, equipped with a 32�l flow quartz cell supplied b

ilmad. A personal computer for time recording and d
cquisition was used.

The flow injection manifold used is depicted inFig. 1.
n 8-channel Ismatec-IPC peristaltic pump (ISMATEC-IP
witzerland) fitted with Tygon® tubes was used to pum
ll solutions and to provide the stopped-flow. A 6-port V
heminert C22Z (VALCO, USA) injection valve was used

nject the sample into the water carrier stream. A 4-port V
heminert C22Z (VALCO, USA) injection valve was us

o perform the system cleaning operations. All the man
ubing was made of PTFE (0.5 mm i.d.).

ig. 1. FI manifold for the spectrophotometric determination of Cu(II)
i(II) with Resazurin. L: sample loop, HB: heated water bath, R: kno

eactor, D: detector, W: waste.
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A conventional heated water bath was used to keep the
knotted mixing reactor at a constant temperature.

2.2. Reagents

All the employed chemicals were of analytical-reagent
grade and solutions were prepared using deionized water.

A resazurin stock solution was prepared by dissolving
0.1100 g of resazurin (Sigma, purity 90%) in a 100 ml volu-
metric flask with water. The working resazurin solutions were
made by appropriate dilution of the stock solution, which was
stable for several months.

The sodium sulfide working solutions were made by dis-
solving the appropriate weight of sodium sulfide hydrate
(Merck, about 35% Na2S) with water. These solutions had to
be freshly prepared everyday.

The stock sodium hydroxide solution was prepared by
dissolving 40 g of sodium hydroxide (Merck, purity 99%)
in 100 ml of water. The appropriate volumes of this solution
were added to the sodium sulfide working solutions.

Standard stock solutions of copper and nickel were pre-
pared by dissolving 0.3929 g of copper sulphate pentahy-
drate (Merck, purity 99%) and nickel sulphate heptahydrate
(Merck, purity 99%) in a 100 ml volumetric flask each. Work-
ing solutions of both metal ions were prepared by appropriate
d
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of 120 s was chosen as a compromise between high instru-
mental signal and adequate analytical frequency.

Once the preset reaction time had elapsed, the pump was
turned on and the cleaning operation was performed, first with
hydrochloric acid solution and then with deionized water.
This cleaning step is of great importance to remove metal
ions away from the quartz cell. Finally, the system was ready
for a new sample injection.

3. Methods

3.1. Experimental design

The experimental parameters of the FIA assembly that
could affect the dispersion of the signal were optimized by
changing each variable in turn, while keeping all the other
ones constant. The variables selected for optimization were
the mixing reactor length, the flow rate of reactant stream and
the sample volume size.

The influence of physicochemical variables such as con-
centrations of reactants and temperature of mixing coil was
studied using an orthogonal design[25], in which all the fac-
tors investigated were varied simultaneously. In this design,
five levels for each factor were selected and there were a to-
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ilution of the stock solutions.

.3. Glassware

All the glassware used was cleaned with detergent, ri
ith tap water followed by deionized water, soaked overn

n a nitric acid (15%, v/v) bath and carefully rinsed w
eionized water before use.

.4. Procedure

Before pumping the reagents, the whole FI system
leaned by pumping 1:1 hydrochloric acid solution du
0 min and deionized water for additional 30 min.

The water carrier and reaction components, sodium
de (in a sodium hydroxide medium) and resazurin s
ions, were all transported at the same flow rates thr
heir respective channels to the point where they were m
he mixture passed through a knotted mixing coil (250

ength× 0.5 mm i.d.) placed in the heated water bath to a
he emergent solution to reach the flow-cell completely m
nd with a uniform temperature. Reagents were pum

hrough the manifold until the resazurin absorbance was
le at a maximum value. When this latter condition
eached, 250�l of the sample solution containing Cu(
r Ni(II) were injected into the carrier. After 60 s, the fl
as stopped for 120 s. During this time the reaction
lace in the flow-cell and the conversion degree of resa
as monitored spectrophotometrically atλabs= 605 nm (slit
idth = 2 nm). The kinetic data were acquired at a rate o
er point and recorded in the computer. The reaction win
al of 25 experiments. The response selected to evalua
esign results was the absorbance change (�A) along 120 s
f reaction time. The details of the factor design are show
able 1. The optimum conditions of each of the factors w
valuated using a response surface optimization metho
lemented in the Statgraphic 3.0 statistical package.

.2. Kinetic simulation methods

The Statgraphic 3.0 statistical package and routines
en for the Matlab 5.3 environment were used to predic
etic parameters for different kinetic models.

.3. Artificial neural networks

In modeling the current calibration problem, a neural
ork trained by back-propagation of errors was used.

atter technique is attractive because of the well-defined
xplicit set of equations for weight corrections. These e
ions are applied throughout the layers, beginning with
orrection of the weights in the last (output) layer, and
ontinuing backwards towards the input layer.

The architecture of the network (number of layers, num
f neurons in each layer and neural connection mode)
ain feature influencing the flexibility of the ANN mod
efore the learning process begins, an initial architectu

he neural network must be chosen and then modified d
he learning or testing phase. A trial and error methodo
as employed to find the best architectures for all AN
sed in this work. Two parameters must be defined for
rchitecture: the learning rate constantη and the momentum
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Table 1
Factor levels in orthogonal factorial design and their optimum values for Cu(II) [6 mg l−1] and Ni(II) [15 mg l−1]

Factors Analyte Levels Optimum

Temperature (◦C) Cu(II) 34 36.5 39 41.5 44 34
Ni(II) 34 36.5 39 41.5 44 44

Resazurin (mg l−1) Cu(II) 25 30 35 40 45 45
Ni(II) 25 30 35 40 45 45

Na2S (%, w/v) Cu(II) 0.2 0.8 1.4 2.0 2.6 1.4
Ni(II) 0 .2 0.4 0.6 0.8 1.0 1.0

NaOH (mol l−1) Cu(II) 0 0.3 0.6 0.9 1.2 0.4
Ni(II) 0 0.2 0.4 0.6 0.8 0

constantµ. The former determines the speed at which the
weights change, and represents a reasonable trade-off be-
tween fast learning and converging to the lowest minimum.
The momentum constant gives the learning process a certain
capacity for inertia, enabling the network to avoid partial
minima. Both parameters are closely related, and they
were simultaneously varied to get their optimum values for
calibration purposes.

The root-mean-square (RMS) error between the targets
and the output (ANNs predicted values) was used as the pa-
rameter to stop the ANNs training process

RMS =
√∑

(Cnom − Cpred)2

I − 1
(1)

whereCnom andCpred are the nominal and predicted con-
centrations of a test group of samples respectively, andI the
number of samples.

An ANN routine developed in the Matlab 5.3 environ-
ment was applied, performing calibration and prediction us-
ing the kinetic profiles recorded by the experimental method
described above.

4. Results and discussion
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Fig. 2. Resazurin reduction reaction.

product[26]. This indicates that the assumption of a first-
order kinetics for our reaction system is unfeasible, and that
a non-linear response is expected for the determination of the
Cu(II) and Ni(II) analytes.

4.2. Effect of experimental variables

The variables affecting the performance of the proposed
kinetic method for the determination of both Cu(II) and
Ni(II) were optimized. The FI variables involve the ability
to mix sample and reactants solutions automatically and
the acquisition of kinetic data from the mixed solution. The

F
a

.1. Chemical system

The reduction reaction of resazurin by sulfide in alka
olution proceeds slowly without added catalysts. It is kn
hat the reduction rate increases significantly in the pres
f trace amounts of certain metal ions. The complete kin
echanism for the reaction has not been reported. Afk
t al. have proposed that the reaction takes place in two
seeFig. 2) [23]: the first one, whose product is resorufin
ssumed to be irreversible, but the second one, the red
f resorufin to dihydroresorufin, is assumed to be rever
nd fast (i.e., both resorufin and dihydroresorufin are in e

ibrium). These authors also proposed that only the first
s catalyzed by metal ions. However, our absorbance
rofiles for both Cu(II) and Ni(II) (Fig. 3) clearly suggest

he presence of an additional, autocatalytic step by a rea

ig. 3. Absorbance–time profiles for standard solutions: 1.0 mg l−1 of Cu(II)
nd 2.0 mg l−1 of Ni(II), as indicated.



D.M. Magni et al. / Analytica Chimica Acta 528 (2005) 275–284 279

physicochemical variables include the concentrations of
reagents and the temperature of the mixing reactor that lead
to a maximum in the signal changes.

4.2.1. FI variables
The mixing reactor length was varied between 50

and 500 cm for the higher flow rate used in this work
(3.4 ml min−1). The shortest reactor length that allowed a
complete mixture of the reactants (250 cm) was chosen. For
shorter reactor lengths the mixing process was deficient and
the signals were noisy and not reproducible.

When using a stopped-flow technique, the flow rate and
the required time to stop the pump after the sample injection
are of great importance. In order to select these parameters
a standard tartracine solution was used (absorbance = 1.30
at λ = 428 nm). Water was pumped in all reagent channels
(the flow rate was varied between 0.8 and 3.4 ml min−1) and
the sample loop was filled with the tartracine solution. The
same flow rates and their corresponding stop times were ver-
ified for our chemical system and a total flow rate equal to
1.1 ml min−1 was selected. For this total flow rate, one minute
was necessary to stop the pump after the loop injection. For
lower rates the reaction began in the mixing reactor and for
faster rates the noise of the system increased.

The influence of sample volume was studied in a range of
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expected for catalytic, pseudo first-order reactions, however a
higher limit is imposed by the increase of the signal noise due
to a decrease in the detection capability of the photomultiplier
tube for high absorbance values. Consequently a resazurin
concentration equal to 45 mg l−1 was selected as the optimum
concentration value. Although the temperature is known to
have an positive effect in kinetic-based determinations, the
resulting negative effect of this factor on the signal can only
be explained from the coexistence of unknown side reactions
favoring the consumption of the analyte. Therefore, for this
study we chose the lower value obtained as optimum (34◦C).
AlthoughCS andCNaOH showed no statistical significance,
the response surface analysis for these two factors enabled us
to select their optimums: 1.4% (m/v) and 0.4 mol l−1 for CS
andCNaOH, respectively.

The response surface analysis for Ni(II) shows that three
factors (CR, CS, CNaOH) were significant for the same confi-
dence level. The model explains 94% of the total variability
and no correlation between variables was found. The effect
of resazurin concentration is similar to that for Cu(II), allow-
ing to arrive at the same conclusions. The analytical signal
increases with an increase of sulfide concentration, but the
highest limit is imposed by the undesirable on-line precipi-
tation of NiS. The NaOH concentration has a negative effect
in the Ni(II)-catalyzed reaction, and the possible range for
t ma-
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00–500�l using the said tartracine solution. It was obser
hat, for a volume of 250�l, there is a period of 10 s where t
ispersion coefficient is reasonably good (1.05≤D≤ 1.08)

o perform our experiments. The maximum signal is w
nough to obtain reproducible results, minimizing stop
rrors. With smaller loops the dispersion coefficient is lar
nd with larger ones the improvement for the dispersion
fficient is not significant and the required time to fill

oop is too long. Therefore, an injection loop of 250�l was
elected, and the pump was stopped 60 s after the samp
njected.

.2.2. Physicochemical variables
The selected factors were the concentration of resa

CR), the concentration of sulfide (CS), the concentration o
odium hydroxide (CNaOH) and the temperature of the ba
here the mixing reactor was placed (T).
A set of working intervals was selected from a serie

reliminary experiments which take into account certain
rative limits. In these intervals, the orthogonal design
ection3.1 and Table 1) was used to obtain an analytic
ystem that would provide greater sensitivity. Our task
o seek the four input values:CR, CS, CNaOH andT corre-
ponding to a maximum output value of decrease in resa
bsorbance (�A) for a fixed reaction time. For this purpo
e employed a surface response optimization procedur
The design analysis for Cu(II) shows that two factors w

ignificant (CR andT) at the 95% confidence level, that
odel explains 88% of the total variability and that no c

elation between variables was found. An increase of th
lytical signal by increasing resazurin concentration is t
s

his variable study was limited due to a precipitate for
ion. This behavior is attributed to the low solubility prod
f Ni(OH)2 and the consequent removal of Ni(II) ions fro

he reaction medium for the Ni(II) concentrations use
his study. The optimum signal was found in the absenc
aOH, but a concentration of 0.2 mol l−1 of NaOH was se

ected for the rest of the study in order to improve the su
olution stability. The factor temperature was not signifi
t 95% confidence level, but a positive sign was obse
n the response, and therefore the higher value (44◦C) was
dopted as desirable.

It is difficult to explain, from a thermodynamic point
iew, our operative limits for both cations in studying sulfi
nd hydroxide effects. For Ni(II) we attributed the precipi

ormation to the low solubilities of Ni(OH)2 and NiS. How
ver, in the case of Cu(II) we expected a lower working ra
or both studied factors if only thermodynamic aspects w
aken into account. A possible explanation for our more
ended experimental working range in the case of Cu(II) i
ormation of Cu(II) soluble species in alkaline medium[27],
nd this reaction can compete kinetically with the forma
f other less soluble species.

.3. Analytical features

.3.1. Kinetic calibration
We have already pointed out in Section4.1that a pseudo

rst-order kinetic mechanism cannot be employed to exp
he absorbance versus time profiles shown inFig. 3. In the
topped-flow mode, i.e. after 1 min for reaction time, and
ng low concentration of any metal cation, the value of



280 D.M. Magni et al. / Analytica Chimica Acta 528 (2005) 275–284

Table 2
Concentration and scaled PC’s scores of the training and test sets for Cu(II) and Ni(II)

Cu(II) concentration
(mg l−1)

PC1 PC2 PC3 PC4 Ni(II) concentration (mg l−1) PC1 PC2 PC3

Training set
0.75 −1 −1 −1 0.1986 1.00 −1 −1 −0.9911
1.50 −0.7240 −0.3014 1 −1 1.50 −0.7208 0.1795 1
2.00 −0.6070 0.0034 0.7911 0.6469 2.00 −0.4003 0.9286 0.0836
2.50 −0.4695 0.3513 0.3655 1 4.00 0.3155 1 −1
3.00 −0.3040 0.7624 0.0260 0.7194 7.00 0.7139 0.3498 −0.3335
3.50 −0.2237 0.8791 −0.27 −0.1125 9.00 0.7832 0.1030 −0.1786
4.00 −0.1249 1 −0.4733 −0.6749 11.00 0.9057 −0.2920 −0.0423
6.00 1 −0.7788 0.0991 0.1589 15.00 1 −0.7834 0.2538

Test set
0.50 −1.1228 −1.5689 −1.1717 4.5459 2.50 −0.1385 1.0428 −0.6488
1.00 −0.9239 −0.7561 −0.1899 −1.6187 3.00 0.0597 1.1897 −0.9227
5.00 0.1601 1.4153 −0.5493 −1.9391 5.00 0.5592 0.7397 −0.7393

absorbance was almost constant for a short time and then the
signal started to decrease. This initial “induction” period is
typical of autocatalytic reactions where the global reaction is
catalyzed by a reaction product: at the beginning the decom-
position rate of the reagent is slow but as long as the product
is formed the reagent decomposition is accelerated[26]. It is
obvious then that a step where resazurin reacts with a product
have to be involve in the whole kinetic mechanism.

Thus, we include an additional parallel step to the mech-
anism shown inFig. 2: the reaction between resazurin and
resorufin, to evaluate and to fit the new model with the exper-
imental profiles obtained for different concentrations of cat-
alyst in the range of 0.5–6 mg l−1 for Cu(II) and 1–15 mg l−1

for Ni(II) using the software packages already described in
Section3.2.

Although good fittings between predicted and experimen-
tal data were obtained when using the new additional step in
the mechanism ofFig. 2, it was not possible to arrive to useful
analytical relations for the determination of the studied metal
cations.

We also tested a less complex mechanism eliminating the
formation of dihydroresorufin from the new one. However,
the theoretical kinetic model did not fit properly the experi-
mental data and a non-linear relationship was found between
the Ni(II) concentration and the kinetic constant for the first
s d be
l

ction
k s of
d ina-
t

4
i-

n tical
p ear
c two
s ining

the network for each analyte. The sets ranged from 0.5 to 6
and from 1 to 15 mg l−1 for Cu(II) and Ni(II), respectively.
They were randomly divided into a training set (70% of
samples) and a test set (30% of samples) (seeTable 2). The
profiles obtained using the methodology explained above for
these samples were first compressed by principal components
preprocessing, and then used as input of an ANN trained by
back propagation of errors. Each column of the input matrix
consisted of 120 data points for each profile corresponding to
absorbance data acquired during a reaction period between
60 and 180 s. In this way, we obtained matrices composed of
11 columns and 120 rows as input data, which after principal
component compression, yielded matrices composed of 11
columns and a number of rows equal to the number of input
neurons (see scores inTable 2). The output layer was a single
node corresponding to the analyte concentration, so that
the output vectors were those corresponding to calibration
concentrations for Cu(II) and Ni(II), respectively.

The parameters used to build the ANN models were opti-
mized (seeTable 3). Different combinations of learning rates
and momentums were assayed. Learning rates of 0.5 and 0.4
were found to work well with the data sets for Cu(II) and
Ni(II), respectively. While learning rates were being investi-
gated, momentum values were also varied to find a ratio for

T
O

P

I
H
O
L
M
I
H id
O id
N

tep of the mechanism. Only Cu(II) concentration coul
inearly correlated to that kinetic constant.

We concluded that a more rigorous study on the rea
inetic must be performed to explain the results in term
eterministic models that allow us the analytical determ

ion for the catalysts.

.3.2. ANNs calibration
In view of the difficulties in obtaining the underlying k

etic mechanism which would allow us to solve the analy
roblem on a deterministic basis, a multivariate, non-lin
alibration was performed using ANNs. For this purpose,
ets of eleven calibration samples each were used for tra
able 3
ptimized parameters used for the construction of ANN models

arameters Analyte

Cu(II) Ni(II)

nput nodes 4 3
idden nodes 2 2
utput nodes 1 1
earning rate 0.5 0.4
omentum 0.5 0.6

nput layer transfer function Linear Linear
idden layer transfer function Sigmoid Sigmo
utput layer transfer function Sigmoid Sigmo
umber of iterations 4184 455
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Table 4
RMS for calibration after applying different regression models

Model Cu(II) Ni(II)

PCR PLS ANN PCR PCR PLS ANN

Region (number of sensors) 1–120 90–120 1–120 1–120 80–110 80–110 1–120
Factors 3 1 4:2:1a 2 3 3 3:2:1a

RMSC (mg l−1) 0.095 0.143 0.037 1.223 0.456 0.456 0.350
a ANN architecture.

the relative combination of the two parameters that would
give the faster optimization of the networks. Momentums of
0.5 and 0.6 were selected for Cu(II) and Ni(II), respectively.

The selected transfer function was of a sigmoid type, since
it is very versatile and appropriate for non-linear systems.
This kind of function was used in the hidden and the output
layers.

The proper number of nodes in the input and hidden layer
was investigated by trial and error by training ANN with
different architectures. The parameter used to evaluate the
different ANNs performance was the RMS value obtained
for the test sample set. For Cu(II) the minimum of RMS
occurred for four input nodes when it was varied from 3 to 6.
Varying the number of nodes in the hidden layer from 2 to 6,
for four nodes in the input one, we found that the minimum
RMS was given by two nodes in the hidden layer. To select
the best number of training epochs, error curves of RMS
values versus training epochs were built when the optimum
architecture was used. The minimum for RMS was detected
at 4184 epochs and the relative error of prediction was equal
to 0.85%.

The minimum of RMS for Ni(II) occurred when three and
five nodes were used for input layers. For the two alternatives
the number of nodes in the hidden layer was varied from 2
to 5. According to its generalization ability on the testing
s layer
n was
e in-
i yer
l were
a ini-
m ochs
a

ata,
w erify
w the
l PCs
a II).
A and
t lin-
e find
t ve-
m (II),
t plied
P sing
t f the

number of factors. For comparison purposes,Tables 4 and 5
show the results of the RMS values of the calibration (RMSC)
and the predicted concentration values, respectively, for the
different regression models. In all the cases, ANNs method-
ology gives the best analytical results, as expected.

Fig. 4summarizes the predicted concentrations by the best
ANNs versus nominal concentrations for calibration and test
sets for Cu(II) and Ni(II), respectively.

4.3.3. Predictions for the validation sets
The optimal ANN calibrations found for each analyte were

applied to the prediction of the concentrations of the compo-
nents in six synthetic samples for both Cu(II) and Ni(II),
corresponding to two validation sets. For this purpose, trip-
licate measurements of each sample were made using our
method, thus the resulting profiles were evaluated by ANNs.
Triplicate determinations were also performed for the vali-
dation sets using flame atomic absorption spectrophotometry
(FAAS). These results are collected inTable 6for both Cu(II)
and Ni(II).

A convenient way to establish whether bias is absent or not
for the determination in both cases is to draw the elliptic joint
confidence region (EJCR) for the slope and intercept when
plotting Cpred,ANNs-kin versusCpred,FAAS [28]. Fig. 5 shows
these regions for the determination of Cu(II) and Ni(II), re-
s oret-
i d is
a

4
plat-

i I).

F et
f

et, curves of the RMS versus the number of hidden
odes were made. When the number of hidden nodes
qual to 2, for three nodes in the input layer, RMS was m

mized. Analogous curves for five nodes in the input la
et to larger RMS values. Hence three and two nodes
dopted for input and hidden layers, respectively. The m
um for the RMS values curves was detected for 455 ep
nd the relative error of prediction was equal to 0.79%.

Despite of the inherent non-linearity of these kinetic d
e also evaluated different regression linear models to v
hether ANNs results are better than those obtained from

inear models. We first used PCR models with the same
s in the case of ANNs for both cations, Cu(II) and Ni(
fter applying a forward selection procedure only three

wo components, respectively, were significant for these
ar models. A moving window strategy was applied to

he most informative range of data, finding only an impro
ent of the results for the Ni(II) analyte. In the case of Cu

he full range of data gave the best results. We also ap
LS models optimized by the moving window strategy, u

he cross-validation procedure to assist in the selection o
pectively. As can be seen, both ellipses contain the the
cally expected value of (1, 0), indicating that the metho
ccurate.

.3.4. Predictions on real samples
The present methodology was applied to two electro

ng solutions from a local industry containing Cu(II) or Ni(I

ig. 4. ANNs predicted concentrations: (©) calibration set and (+) test s
or Cu(II) and Ni(II), as indicated.
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Table 5
Predicted concentration values of Cu(II) and Ni(II) for training and test sets after applying different regression models

Cu(II) (mg l−1) Ni(II) (mg l−1)

Actual PCR (1–120)a PLS (90–120)a ANN (1–120)a Actual PCR (1–120)a PCR (80–110)a PLS (80–110)a ANN (1–120)a

Training set
0.75 0.76 0.62 0.75 1.00 2.15 1.10 1.10 1.08
1.50 1.47 1.62 1.52 1.50 0.72 1.54 1.54 1.62
2.00 1.94 2.06 1.96 2.00 0.63 1.59 1.59 1.99
2.50 2.52 2.57 2.48 4.00 4.56 4.52 4.51 3.74
3.00 3.19 3.17 3.08 7.00 8.52 7.36 7.35 7.18
3.50 3.50 3.43 3.49 9.00 9.56 8.14 8.13 8.77
4.00 3.85 3.74 3.97 11.00 11.28 11.36 11.35 11.59
6.00 6.01 6.04 6.00 15.00 13.09 14.90 14.89 14.42

Test set
0.50 0.22 0.12 0.51 2.50 1.84 2.26 2.26 2.54
1.00 0.94 0.90 0.97 3.00 2.60 3.08 3.07 2.96
5.00 4.80 4.64 4.99 5.00 6.63 6.16 6.16 5.02
a Region (number of sensors).

Table 6
FAAS and ANNs-kinetic method results for the validation sets for Cu(II) and Ni(II)

Analyte FAASa (mg l−1) ANNs-kinetic methoda (mg l−1)

Average concentration (Cpred,FAAS) Standard deviation Average concentration (Cpred,ANNs-kin) Standard deviation

Cu(II) 0.53 0.016 0.59 0.020
1.34 0.002 1.26 0.024
2.20 0.012 2.22 0.018
2.74 0.014 2.64 0.036
4.63 0.014 4.44 0.051

Ni(II) 1.20 0.006 1.10 0.012
1.70 0.013 1.52 0.014
2.05 0.020 2.33 0.027
2.70 0.038 2.79 0.042
3.63 0.025 3.56 0.038
4.51 0.045 4.53 0.108

a n= 3.

A preliminary dilution step of each solution was needed for
the analysis of these analytes. Each diluted sample spiked
to 1.5 mg l−1 for Cu(II) and 2.5 mg l−1 for Ni(II) was also
analyzed. The results were compared with those obtained us-
ing FAAS technique as a reference method.Table 7shows
the excellent recovery results for ANNs-kinetic method and
the t-values indicate that there are not statistical significant

differences between the concentration values determinate for
both methodologies and analytes, at the 5% level.

4.3.5. Repeatability and reproducibility studies
In order to determine the method repeatability and

the within-laboratory reproducibility as a measure of
intermediate precision some guidelines provided by the

Table 7
Determination of Cu(II) and Ni(II) in electroplating bath samples

Analyte Samplea FAAS (n= 4) ANNs-kinetic method (n= 4) t

Average (mg l−1) R.S.D. (%) Average (mg l−1) R.S.D. (%)

Cu(II) Dilute sampleb 0.700 1.60 0.686 2.90 1.227
Spiked dilute samplec 2.19 0.27 2.24 2.40 1.875
Recovery (%) 99.3 103

Ni(II) Dilute sampleb 2.71 3.02 2.76 6.09 0.536
Spiked dilute samplec 5.21 1.04 5.24 2.06 0.493
Recovery (%) 100 99.2

a From an electroplating bath solution supplied by Cromados S.A. Company.
b Dilution factor equal to 1:40,000 for Cu(II) and 1:20,000 for Ni(II).
c Sample spiked to 1.5 mg l−1 for Cu(II) and 2.5 mg l−1 for Ni(II).
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Fig. 5. Elliptic joint confidence region for the slope and intercept of the
regression of predicted vs. nominal concentrations. The cross marks the
theoretical (1, 0) point.

official literature were followed[29]. The basic experimental
setup consisted in measuring five replicates during three
consecutive days on a standard solution of analyte. Standard
solutions containing 2.75 and 3.5 mg l−1 for Cu(II) and
Ni(II), were respectively chosen.

The ANOVA analysis for Cu(II) shows that the residual
mean squares (s2

r ), named the mean squares within-days, is
equal to 0.0015 mg2 l−2 and represents the repeatability con-
ditions. The within-laboratory reproducibility,s2

wr, is equal
to s2

r + s2
between, wheres2

betweenrepresents the variance due
to the between-day effect and it was determined using the
following expression:

s2
between=

MSbetween− MSwithin

nj

(2)

wherej is the number of replicates for each day. Thus,s2
wr for

Cu(II) was computed to be 0.0020 mg2 l−2. The conclusion
is that the repeatability standard deviation is 0.039 mg l−1

and the within-laboratory reproducibility standard deviation
is 0.045 mg l−1.

The same ANOVA analysis for Ni(II) led to a re-
peatability standard deviation equal to 0.044 mg l−1 and a
within-laboratory reproducibility standard deviation equal to
0.050 mg l−1.

4
rk,

t ugh
t artz
c idly
a (i.e.
u or
N e re-
s this
w fore,
a rate
s order

to remove the cations adsorbed over the inner wall surface of
the quartz cell. This cleaning process is very time-consuming
and defines the analytical frequency of the method. We found
that a HCl (1:1) solution was able to remove both Cu(II) and
Ni(II) in 1.5 and 4.5 min, respectively. After the latter peri-
ods, a rinsed step of 1 min was added for both cations. In this
way, the analytical frequencies for Cu(II) and Ni(II) were in
8 and 6 samples h−1, respectively.

5. Conclusions

We developed a method based on the alkaline reduction
of resazurin by sodium sulfide for the catalytic determina-
tion of Cu(II) and Ni(II), using a combination of stopped-
flow injection analysis, molecular absorption spectropho-
tometry and neural network data processing. The method
is simple, inexpensive, and reliable. It can be applied for
the routine analysis of Cu(II) and Ni(II) using inexpensive
instruments.

The use of a neural network approach proved to be an
excellent tool for the optimization and calibration processes
without the use of deterministic models for the kinetic mech-
anism of that complex reaction involving catalytic metal ions.
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.3.6. Analytical frequency
In the stopped-flow methodology employed in this wo

he sample remains into the flow cell for a period long eno
o produce contamination of the internal walls of our qu
ell. It is well known that metal ions can be easily and rap
dsorbed only on deprotonated silanol surface groups
nder basic conditions)[30]. These cations [e.g. Cu(II)
i(II)] can accumulate along successive runs, and wer
ponsible of the drift of the analytical signal detected in
ork when no cell cleaning process was applied. There
cleaning step involving an acid solution able to regene

ilanol groups is necessary after each determination, in
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