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Influence of Surface Viscosity on Two-Dimensional Faraday Waves
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The onset for the formation of two-dimensional Faraday waves in a liquid with a viscous surface
is numerically studied. The viscous behavior of the interface due to the presence of an insoluble
surfactant, affects the surface traction and this, in turns, induces changes in the flow field. It is
shown that the formation of waves of a given wavenumber in the absence of elastic effects requires
a force that when plotted versus the Boussinesq number increases, producing a sigmoid curve.
A detailed analysis of the interfacial variables and flow fields is carried out in order to understand

this behavior.

1. Introduction

When a liquid lying on a flat solid surface is subjected
to a vertical oscillatory motion, standing waves may
appear at the free surface. The conditions for the
formation of the waves depend on the physical chem-
istry properties of the liquid and on the frequency and
amplitude of the imposed vibrations, as well as on the
depth of the fluid layer. Faraday,! who was the first to
investigate this phenomenon experimentally, also re-
ported that the frequency of the standing waves was
one-half the frequency of the external oscillation.

The study of free surface waves in a oscillating
container is of great interest in many natural phenom-
ena and engineering applications involving fluid mixing
and fluid sloshing produced by the motion of the
container. For instance, this phenomenon is important
in the transportation and storage of liquids in vessels
exposed to vibrations induced by the motion of the
carrier or by earthquakes. Another application is the
atomization of liquids, an important process to produce
a large transfer area between a gas and a liquid.
Examples of these operations are the humidification of
air in air-conditioning plants and the atomization of fuel
in diesel engines. The formation of the drops occurs
when the oscillation imposed to the system produces a
motion so intense that the amplitude of the surface
waves becomes very large and part of the liquid is
gjected toward the gas phase. In this case, the size of
the drop—which depends on the excitation frequency—
is a relevant feature because its diameter is inversely
related to the transfer area. The above considerations
show the importance of being able to predict the
generation of resonant waves at a gas—liquid interface.

Even though the literature about Faraday waves is
extensive (for an overview, see Miles and Henderson;2
Miles;? and Perlin and Schultz?*), only a few studies
consider the influence of a surface active solute on this
problem. When a surfactant is adsorbed on the interface,
the surface tension is changed and the free surface may
exhibit viscous properties; thus, the affected interfacial
balance of stresses modifies the motion of the liquid in
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the bulk and the conditions for the formation of the
waves. Very recently, Kumar and Matar®~7 presented
a full linear stability analysis of the Faraday problem
when the free surface is covered by an insoluble surf-
actant. They assumed that surface tension is a linear
function of the interfacial concentration of solute and
that there are no stresses due to surface viscosity. The
results presented by Kumar and Matar, valid for liquid
layers of arbitrary viscosity and depth, show the de-
pendence of the amplitude of the critical external
acceleration and critical wavenumber on the Marangoni
parameter. In two previous works®? we numerically
investigated the influence of the Marangoni forces on
the formation of two-dimensional Faraday waves in a
viscous fluid layer that is vibrated at 100 Hz and is
covered by an insoluble surfactant. The equations solved
in the bulk are Navier—Stokes and continuity equations
with their appropriate boundary conditions, which
include the interfacial mass balance of the surface active
agent. In the first of those articles, surface tension is
considered a linear function of the local concentration
of surfactant, whereas in the second one, a nonlinear
equation of state for the surface tension is employed,
and its influence on the onset and evolution of the waves
is analyzed.

As mentioned above, the adsorption of a surfactant
along the interface not only affects the surface tension
but also gives rise to surface shear and dilatational
viscosities. The brief review presented in the previous
paragraphs shows that the way in which surface viscos-
ity affects the formation of Faraday waves has received
almost no attention in the literature; therefore, the main
goal of this work is to study the influence of this
property. However, the following simplifying assump-
tions are made: (i) elastic effects are neglected to avoid
masking viscous effects, and (ii) shear and dilatational
viscosities are regarded as constants; i.e., they do not
depend on the concentration of the adsorbed surfactant.

The second assumption is made for two reasons. (a)
When elastic effects are neglected in the computations,
a very refined mesh is required to follow the large
concentration gradients generated along the interface
in the time steps previous to the formation of the
standing wave. In such a case our computer resources
will not allow us to obtain a reliable solution in a
realistic computational time. (b) A linear stability
analysis of the problem (not presented here) indicates
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Figure 1. Sketch of the physical domain, summarizing the governing equations and boundary conditions.

that the contribution of the terms representing the
interfacial viscosity dependence on surfactant concen-
tration is of minor order. Because we are going to
analyze the influence of surface viscosity on the stability
limits, the behavior of the system should be similar
whether we consider that contribution or not. Thus, the
use of constant viscosity coefficients seems to be a
reasonable assumption.

To reach our goal, we numerically solved the 2-D
motion of a viscous liquid when a finite thickness film,
covered with an insoluble surfactant, is subjected to a
vertical oscillatory motion. The numerical technique
employed is based on the finite element method for the
spatial discretization of the governing equations and
boundary conditions and on a finite difference scheme
to march in time. This technique has already proved to
be suitable to solve unsteady free surface flow problems
with and without the presence of a surface active
agent.310

The work is organized as follows. In Section 2, the
governing equations with their boundary conditions are
presented. Section 3 contains the main features of the
numerical technique employed to solve the problem. In
Section 4 the numerical solutions are presented and
discussed, and finally, in Section 5, some concluding
remarks are formulated.

2. Mathematical Model

A Newtonian and incompressible liquid with constant
viscosity (1) and density (p) lies on a horizontal plate
that is vertically vibrated with angular frequency w and
amplitude ao. The thickness of the liquid layer at rest
measured along the y-coordinate is equal to Hy and the
air above it is regarded as inviscid. A monolayer of an
insoluble surface active agent is covering the gas—liquid
interface and is responsible for the viscous properties
presented by the free surface.

To study the stability of the system, we perturb the
liquid layer with a disturbance characterized by a
wavenumber £ and a very small amplitude eHy (¢ < 1),
and we follow its evolution with time. This initial
perturbation is described by

h(0,x) = /[l — e cos(mmx)], 0 <x < 1 @}

where h(t, x) is the liquid thickness and o is the
dimensionless wavenumber. The characteristic scale
adopted for length is one-half the wavelength of the
initial disturbance (/k = 7tHy/o). Since we are consider-
ing two-dimensional waves, the fluid height is a function
of time and one spatial coordinate.

As illustrated in Figure 1, the reference frame is
attached to the oscillating wall; therefore, the periodic
acceleration induced to the liquid is added to gravity,
and the governing equations in the bulk, that is Navier—
Stokes and continuity equations, in dimensionless form
result

v _ 1o, T
at—i—vVv— Vp-I-ReV [Vv + (V)] +

1 .
E[F cos(2mt) — 1] (2)

Vv=0 (3)

In eq 2, Re = pwaH*/2ua? is the Reynolds number,
Fr = w?Hy/4nag is the Froude number, and F = aow?g
is the forcing parameter that measures the ratio be-
tween the external acceleration and gravity. In addition
to the characteristic length previously defined, time is
scaled with 27/w, velocities are scaled with wH/2a, and
stresses are scaled with p(wHy/20)2. In the reference
frame adopted, the boundary conditions for eqs 2 and 3
are those summarized in Figure 1 where u and v are
the x- and y- components of the velocity, respectively.

The liquid adheres to the solid surface; therefore, the
nonslip condition is imposed at the bottom wall. The
extension of the domain along the x-axis is one-half the
wavelength of the initial perturbation. Because we are
interested in the formation of standing waves any wavy
motion developed should be mirrored at both sides of
the domain; in consequence, symmetry conditions are
imposed at x = 0 and x = 1.

The boundary conditions at the free surface include
the kinematic condition because the interface is a
material surface; thus, we have

oh oh

Py +u plall 4)
The monolayer of insoluble surfactant that covers the
interface is responsible for the viscous properties pre-
sented by the free surface that in this work is modeled
as Newtonian. Then, following Scriven!! (see also Ed-
wards et al.'2), the surface stress tensor is T® = [o +
(K(S) — ,U(S)) V(s)'V(S)] 15 4+ 2 Iu(S) D(S)’ where I® =T —
nn is the surface identity tensor, n is the external unit
normal to the interface, o is the surface tension, «© and
u® are the surface dilatational and shear viscosity
coefficients, respectively, Visy = I+V is the surface
gradient operator, v% is the surface velocity, and D
= [Vigv® + (V(gvS)T] is the rate of the surface strain
tensor. Since we are only dealing with two-dimensional



1092 Ind. Eng. Chem. Res., Vol. 44, No. 4, 2005

waves, the surface stress tensor reduces to T® = [0 +
kS + u®) Vigv®] I®, Furthermore, the following
identities hold: V(s) = t d/ds, V(s)v® = dv%/ds — 2H
v, and I = tt, where s is the arc-length measured
from x = 0 toward x = 1, t is the unit tangent vector to
the interface pointing toward increasing values of s, 2H
is the mean curvature of the free surface, and v*S) = %
t + v n is the interfacial velocity. Under these
conditions, the surface traction is given by

_d
nT_ds{

), sn|dv® on
O+(K +,u )%_2HU t (5)

As we have mentioned in the Introduction, the main
goal of this work is to study the influence of surface
viscosity on the onset of two-dimensional Faraday
waves. Then, we neglect surface elasticity—i.e., surface
tension is regarded as a constant— and we assume that
the sole effect of the surfactant is to produce a viscous
interface. Under these conditions, eq 5 can be written
in dimensionless form as follows:

— 2Hv 0)] } (6)

Bo[dv®
nT = ds{ [We ( ds

where the same symbols used in eq 5 are here employed
for the dimensionless variables. In eq 6, Bo = (¥® +
uUS)a/mHou is the Boussinesq parameter that measures
the ratio between surface and bulk viscosity, and We =
mpw?Hy3/40a? is the Weber number. Then, the normal
and tangential components of the surface traction are
T, = 2H [1/We + Bo/Re (dv%/ds — 2H v")] and T,; =
d/ds[Bo/Re (dv®/ds — 2H v9)], respectively. To analyze
the effects of surface viscosity, it should be noticed that
the quantity dv%/ds — 2H v represents the rate of
deformation of the free surface, the first term is the
surface stretching and the second one is the surface
inflation. Therefore, surface viscosity introduces an
extra term in the normal component of the traction that
depends on the changes in surface area and gives rise
to a nonzero tangential component when the free surface
presents a nonhomogeneous deformation.

The next section describes the numerical procedure
employed to solve the problem.

3. Numerical Technique

The set of governing eqs 2 and 3 with their boundary
conditions was numerically solved using a procedure
based on the Galerkin weighted residuals/finite element
method for the spatial discretization of the problem. The
time-marching scheme is a finite-difference second-order
predictor/corrector. The moving interface is followed by
means of an Arbitrary Lagrangian-Eulerian technique
known as the spines method.!? Since this methodology
has been employed in several previous works, only its
main features are described next. Further details
concerning the numerical procedure can be found
elsewhere.8710.13

The physical domain (in the x-y plane) is tessellated
into a structured mesh of nine-node quadrilaterals,
which are isoparametrically mapped into the unit
square (in the &-n plane, 0 < &, # < 1). The primary
unknowns are the velocity and pressure fields, and the
free surface location; velocities and pressures are ap-
proximated by mixed interpolation: biquadratic basis
functions (¢*(£,7)) are employed for the x- and y- velocity
components and bilinear basis functions (y*(&,n)) are

employed for the pressure. In the spine technique the
free surface height is approximated by a quadratic
interpolation: A(t,&) = Y2 hi(t)¢i(E), with hi() being
the time-dependent length measured along the i-th
spine, that here is a straight line perpendicular to the
solid wall. The spines form the lateral sides of the
elements, while the other two sides automatically adjust
to the shape adopted by the free surface.

When the standard Galerkin weighting procedure is
applied to egs 2 and 3 and their boundary conditions, a
system of nonlinear ordinary differential equations is
obtained. The time-marching scheme employed to solve
this system consists of a second-order predictor-corrector
finite difference formulation.!* The time derivatives are
approximated by the trapezoid rule and the system of
nonlinear algebraic equations obtained is solved by
Newton iteration at each time step. This loop is initial-
ized with the approximate solutions for velocities and
free surface coefficients provided by an Adams—Bash-
forth predictor, while pressures are initially set to the
value of the previous instant of time. The time-step size
is adjusted according to the method of Crisfield!® in
order to meet the convergence criterion adopted (the
mean square root of the error in the Newton loop must
be smaller than 107%) in a predetermined number of
iterations. At the end of this procedure, all the variables
are simultaneously obtained for each time step.

3.1 Mesh Adoption. To obtain a proper representa-
tion of the flow field, the following criteria were used to
adopt an appropriate finite element mesh: (i) the mesh
is refined near the oscillating wall and in the vicinity
of the free surface so that the boundary layers can be
resolved, and (ii) the number of elements in the
x-direction is adjusted to get an accurate description of
the interfacial variables.

A mesh with 20 elements in the x- direction and 7
elements in the y- direction was found suitable for all
the numerical experiments performed in this work. The
results of some of the numerical tests carried out are
illustrated in Figure 2. The tangential component of the
surface traction as a function of x (Figure 2a) and the
magnitude of the velocity vector at x = 0.5 (Figure 2b)
are shown for two different tessellations and several
instants of time along a cycle. These two variables were
considered appropriate to determine the quality of the
mesh; the first one because it depends directly on
surface viscosity and the second one because it is useful
to analyze the flow at the boundary layers. The curves
depicted in Figure 2a and b clearly show that a more
refined mesh does not change the predictions.

4. Results

As previously mentioned, the properties of the inter-
face can be largely modified when the free surface of a
liquid layer is covered with an insoluble surfactant. This
is particularly important for deforming interfaces be-
cause the concentration gradients of adsorbed surfact-
ants associated with surface deformations give rise to
local variations of interfacial properties. The aim of this
work is to analyze the influence of surface viscosity on
the formation of two-dimensional Faraday waves. Even
though interfacial properties (o, ¥, and 4®) should
depend on the interfacial concentration of surfactant,
in this work we neglect this dependence, and assume
that they are constant. Thus, in the system under study,
the Marangoni traction is absent and the effect of the
surfactant is just to produce nonzero surface viscosity
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Figure 2. Mesh refinement tests. (a) Spatial distribution of the
tangential component of the surface traction, and (b) magnitude
of the velocity vector at x = 0.5, for several equally spaced instants
of time along a cycle. The results pertain to Re = 24.87, We =
2.818, Fr = 2.544, oo = 1.26, Bo = 1, and F = 15.

coefficients. Consequently, in this Section results are
presented as a function of the Boussinesq number which
is the only dimensionless parameter required to describe
the influence of the surface active agent.

An important issue in this problem is to detect the
minimum force required to form waves of a particular
wavenumber. We expect the value of this force to be
affected by the viscous properties of the interface; to
study how it depends on the Boussinesq number we
performed numerical experiments in which the value
of this parameter was widely varied. With this purpose,
we first defined a reference case (RC) characterized by
Bo = 0, the other parameters being as follows

o Re = 39.478, o® We = 5.6375, a. Fr = 3.206

This particular set of dimensionless numbers corre-
sponds to typical values of the physicochemical proper-
ties of the system:

p = 1000 kg/m?®, u = 0.025 Pa s, o, =
0.055 N/m, Hy=10"°m, w =200 7 s
To complete the characterization of the RC, a par-

ticular value of the wavenumber was selected. In this
work, o was fixed equal to oc, that is the wavenumber
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parameters of the system have the same value as in RC.

corresponding to the onset of the instability when
interfacial viscous effects are absent. The critical condi-
tions were detected by constructing the stability map
shown in Figure 3. Every point in this chart represents
the outcome of a single simulation starting with the free
surface slightly perturbed according to eq 1 with
€ = 0.001 and the liquid at rest. Crosses denote unstable
cases (the initial amplitude of the oscillation does not
decay to zero along the computation), while circles
indicate stable ones (the initial amplitude of the oscil-
lation decays to zero along the computation).

An unstable region can be clearly distinguished in
Figure 3, where the solutions are characterized by a
subharmonic motion of a surface wave with a length
equal to twice the extension of the computational
domain. The threshold conditions are indicated by the
symbol @, and they are approximately located at (F¢ =
11.9, a¢ = 1.26). This particular wavenumber (o0 = o¢
= 1.26) together with the values of the parameters
indicated in Figure 3 defines the reference case em-
ployed in the numerical experiments performed to
disclose the influence of the Boussinesq number.

4.1 Effect of Surface Viscosity on Stability Lim-
its. The way in which surface viscosity affects the onset
of the instability was studied by computing solutions
with Bo varying between 0.01 and 10* or, equivalently,
for (k9 + u®)) between 0.623 x 1073 sp and 623 sp (see
refs 12 and 16); the values of the remaining dimension-
less parameters being those defining the RC. From these
computations—in which several values of F were ex-
plored for each Bo selected—we obtained the minimum
acceleration (F),) required to form waves with wave-
number o¢ as a function of the Boussinesq number.
Results are depicted in Figure 4 and they show that F),
presents a sigmoid behavior. In fact, results reported
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Figure 5. Temporal evolution of interfacial variables near the threshold for (a) (Bo = 0.01, F = 12.25), (b) (Bo = 1, F = 15), and (c¢) (Bo
=100, F = 18). From top to bottom, maximum absolute values of normal and tangential components of surface velocity, maximum absolute
values of normal and tangential components of surface traction, and free surface position at the surface ends. The dots in the figures of
the bottom row are equally spaced in time and are for future reference.

in this figure show that the larger variations of F,, occur
in the neighborhood of Bo = 1, and that there are
limiting values of the Boussinesq number beyond which
viscous effects are not noticeable. Outside these bounds
F,, remains almost constant (Bo = 0.01 and Bo = 100
in the present case). At Bo = 1, the minimum accelera-
tion is about 1.25 times the critical acceleration required
to form a wavy interface for a clean system, while for
Bo = 100, F,, is 50% higher than the case without
surface viscosity.

Interfacial viscosity not only modifies the normal
component of the surface traction but also gives rise to
a nonzero tangential component. Therefore, it is ex-
pected that the magnitude of the interfacial flow vari-
ables should depend on the Boussinesq number and that
this dependence might be associated with the changes
experienced by the minimum acceleration required to
form waves as Bo is varied.

4.2 Time Variation of the Interfacial Variables.
To gain further knowledge about the phenomena in-
volved in the formation of the surface waves when
surface viscosity is not negligible, the time evolution of
several interfacial variables for some of the numerical
experiments illustrated in Figure 4 is analyzed. The
selected cases are Bo =0.01 —F =12.25,Bo=1—F =
15, and Bo = 100 — F = 18, and the corresponding
results are illustrated in Figure 5a, b, and ¢, respec-
tively. Each column of Figure 5 shows, from top to
bottom, the maximum absolute values of the normal and
tangential components of the surface velocity, the
maximum absolute values of the normal and tangential
components of the traction vector, and the liquid height
at the free surface ends. In these figures, dashed lines
are used to illustrate the evolution of the selected
variables during one-half of the cycle.

A close inspection of the evolution of the interfacial
variables in Figure 5 leads to the following conclu-
sions: when Boussinesq varies between 0 and 1 the

more sensitive variable is the tangential component of
the interfacial traction (see Figure 5a and b), which is
about 40 times larger for Bo = 1 than for Bo = 0.01. To
a smaller extent, the tangential component of the
surface velocity is reduced by almost one-half within the
same range of Bo. On the other hand, when Bo is larger
than 1 (see Figure 5b and c), the magnitude of both the
surface velocity and the free surface deflection show that
the motion of the system is slowed. In particular, there
is a striking reduction of v% when the Boussinesq
number varies between 1 and 100.

Another feature of the results reported in Figure 5 is
that the liquid motions in the bulk and near the free
surface are almost in phase (see the evolutions of
h(t,x = 0, 1) and v°* and compare them with that of
v%); this is in contrast with the phase shift associated
with the elastic effects of an insoluble surfactant.8?

To provide further details on the evolution of the
interfacial variables, we analyze the spatial distribution
of the free surface height, the normal and tangential
components of the surface velocity, the rate of deforma-
tion of the free surface, and the tangential component
of the interfacial traction along the free surface. These
variables for selected instants of time along a cycle of
the standing wave formed are illustrated in Figure 6
a—c, where curve 1 corresponds to the first instant of
time marked with a dot in Figure 5, curve 2 corresponds
to the third instant of time, and so on.

Results concerning A(¢, x) show that the oscillation
amplitude of the free surface diminishes with Bo, and
that the interface presents a sinusoidal shape along the
whole cycle in all the cases considered. The distribution
of the normal component of the surface velocity follows
the free surface configuration. As expected, v?” is nearly
zero when the free surface amplitude is nearly maxi-
mum (curve 1), it is positive when the free surface moves
upward, and negative otherwise (curves 2 to 5), and
attains a maximum when the free surface is almost flat



Ind. Eng. Chem. Res., Vol. 44, No. 4, 2005 1095

04815 046, 0.42- ©
0.46 ¢ 0.44]
0.4 ]
0.42. 0.41
_ 042] . _
X X 0.40 e
£ 040] g £ 040l
0.38 0.381
0.36 0.36+ 0.39-
0.34
0.34
0.0 0.0 0.0
X X X
0.06-
0.2
: 0.0443..
4
0.14= 0.02
3 3 2 0.00]
& & 0.0 g;'
-0.02-
0.1
-0.04-
02 -0.06
0.0 0.0
X
4] LT ...
0,05 6.0x10*
40x10*
_ 0.00 2.0x10% /
S X = 0.0
5 & L0.05 £ 20x10™]
-4.0x10™*
-0.10 -6.0x10™
. . : : . .0x10™ . . . .
00 02 04 06 08 10 8010 02 04 06 08 10
X X X
0.3
— ] 2.0x10°
g x5 02 g 7" s
= = 0.1 = 1.0x10°
S & & 4
= 3 00{g T 0-0-§_._.
~N & N
& . 011 o -1.0x10°
=2 3 .02 2 B
& & & 2.0x10°
3 3 -0.31 K= 3
= -3.0x10°
0.4 R
00 02 04 06 08 10 A0 02 04 06 08 10
X X X
0.00104 0.041 0.021
0.014
0.0005 = 00 <
=3 £ S 00045
~ =~ 0.00 =
0.0000 & . -0.014
-0.02+ i 0024 0 T [
-0.0005 . . . . . : : : : ,
0.0 00 02 04 06 08 10 00 02 04 06 08 10
X X X

Figure 6. Temporal evolution of the spatial distribution of several interfacial variables at the stability limit for (a) (Bo = 0.01,
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correspond to every other instant of time marked with dots in Figure 5.

(see curve 2). Also, as we have already pointed out (see
Figure 5), the magnitude of this variable diminishes
with Bo, especially when this parameter changes be-
tween 1 and 100.

The distributions of v% during the cycle are quite
similar for the two smaller values of Bo considered in

this analysis. In fact, in both cases the distribution is
nearly parabolic with the vertex located close to the
midpoint of the computational domain; however,
this variable is somewhat smaller for Bo = 1 than for
Bo = 0.01. A radical change occurs for Bo = 100; in this
case not only do the velocity profiles have an asymmetric
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The other dimensionless numbers correspond to RC. (a) Wave amplitude, (b) surface stresses, (c) surface velocities, and (d) derivative of

the rate of surface deformation.

shape but the surface velocity is also negligible during
the whole cycle. From these illustrations it can be
inferred that the derivative of the surface velocity along
the interface diminishes when the Boussinesq number
varies between 1 and 100; that is, the surface stretching
diminishes with Bo and consequently, its contribution
to the total deformation of the interface should also be
smaller.

The rate of deformation of the free surface depends
on the stretching, quantified by dv%/ds, and on the
inflation, quantified by 2Hv%. Results, reported in the
fourth row of Figure 6, show that this variable be-
comes smaller as the interfacial viscosity increases and
that it is almost negligible for a very viscous interface
(Bo = 100). Moreover, these results together with those
illustrated in the previous rows of this figure also point
out that the rate of deformation is largely determined
by the surface stretching, and that this quantity be-
comes negligible at large values of the Boussinesq
number.

From a very simple calculation, it is easy to conclude
that the normal component of the traction (eq 6) mostly
depends on capillary effects, the contribution of the
surface viscosity term being negligible. On the contrary,
surface viscosity is responsible for the nonzero tangen-
tial component of the traction that opposes the non-
uniform deformation of the free surface and, conse-
quently, the motion of the fluid (see the third and last
rows of Figure 6). Figure 6 shows that Tnt rapidly
increases with Bo when this parameter is smaller than
one indicating that v® and its derivatives diminish
slower than the rate at which Bo is augmented. How-
ever, the opposite is true for larger values of Bo, and
Tnt begins to decrease when the surface viscosity is
augmented.

A more general picture of the influence of Bo can be
obtained by examining how the interfacial variables
change during a cycle. For that purpose Figure 7
portrays the maximum absolute values of the wave
amplitude, the surface velocity, the traction, and the
derivative of the rate of interfacial deformation along s
versus Bo, for the cases already considered in Figure 4.
Results illustrated in Figure 7 show that all these
variables, except the tangential component of the trac-
tion, have similar trends: they slightly increase or
remain constant in the range of Bo between 0.01 and
0.1 and they decline rapidly for larger values of this
parameter (see Figure 7a—d). Since both capillary
stresses and maximum amplitude of the surface wave
are closely related to the magnitude of the normal
component of the velocity, the similarity between these
three curves is reasonable. A closer examination of this
figure for Bo larger than 100 reveals that the wave
amplitude, the two components of the surface traction,
and the normal component of the interfacial velocity are
approximately proportional to Bo~Y2, while the tangen-
tial component of the surface velocity is proportional to
Bo™1.

The curves depicted in Figure 7c point out that the
tangential component of the surface velocity decreases
faster than the normal component, a result that was
previously reported in this section. From this figure, it
can be noticed that the ratio between MAX|v%*| and
MAX|v%| is approximately equal to 2, 9, 60, and 1300
when the Boussinesq number is equal to 1, 10, 100, and
104, respectively. Results not reported here show that
the contributions of the surface stretching (dv%/ds) and
the surface inflation (2Hv") to the total rate of surface
deformation are of the same order when Bo = 100;
moreover, within this range of the Boussinesq param-
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eter both quantities are nearly inversely proportional
to Bo. Since the tangential component of the surface
stress decays with Bo~12, it can be concluded (see eq 6)
that the derivative of the rate of deformation along the
tfree surface must be approximately proportional to
Bo732, as it is shown in Figure 7d. Thus, the rate of
interfacial deformation rapidly tends to become uniform
as the Boussinesq number is augmented, a result also
suggested in the fourth row of Figure 6.

The graph corresponding to MAX|T,;| vs Bo is some-
what different. At first, a larger value of Tnt is associ-
ated with the presence of a more viscous interface; in
fact, results reported in Figure 7b show that MAX|T ;|
rapidly increases until it attains a maximum near
Bo = 10. Nevertheless, if the surface viscosity is too
high, an increment of this property will produce a
smaller value of the tangential component of the trac-
tion. Having in mind that Tt is the product of Bo times
the derivative of the rate of surface deformation the
trend followed by this variable becomes evident: Figure
7d shows that the rate of surface strain is fairly constant
when Bo is smaller than one, and that it decreases
rapidly—approximately as Bo~¥2—when Bo is larger
than 10; therefore, the product (i.e., Ty;) should vary as
Bo and as Bo~2 when this parameter is small and large,
respectively. The curves portrayed in Figure 7b show
that the two components of the surface stress decrease
with a very similar slope, MAX|T),,| being approximately
equal to 2MAX|T,;| for Bo = 100.

When results illustrated in Figures 7 and 4 are
considered together, the following conclusions can be
drawn. At values of Bo smaller than one the increase
of surface viscosity has little effects on the interfacial
variables, except for the tangential interfacial stress
that augments almost linearly with Bo. Since this is the
only noticeable change observed, it is understandable
that an increasing applied force would be needed to keep
the unstable waves when the interface becomes more
viscous. However, when the value of Bo is close to 10
the behavior of the system changes completely: the
tangential interfacial velocity rapidly diminishes with
interfacial viscosity and the rate at which the applied
force has to increase to maintain the unstable waves is
reduced. Thus, at about Bo = 100 a point is reached
where the tangential velocities are negligible and the
velocity field becomes perpendicular to the interface. It
seems that once this occurs, an increase of surface
viscosity cannot produce further qualitative changes in
the flow field and the critical excitation F),, becomes
constant as reported in Figure 4.

The influence of the Boussinesq number on the
velocity field can be better understood by analyzing the
streamlines depicted in Figure 8, corresponding to
Bo=0.01-F=1225,Bo=1—F =15, and Bo = 100
— F = 18. The selected instants of time are equally
spaced and correspond to those marked with dots in the
last row of Figure 5. The pictures portrayed in Figure
8 clearly show that the streamlines near the surface are
closer to each other for the lowest value of Bo (Figure
8a). They come apart as Bo becomes larger (Figure 8b
and c) indicating that the motion of the liquid in the
vicinity of the interface is relatively less important when
the free surface is very viscous. Also, the streamlines
gradually become more perpendicular to the interface
when Bo is augmented in agreement with the results
previously presented. Finally, these illustrations and
those presented in Figure 5 confirm that the motions

of the liquid in the bulk and along the free surface are
almost in phase.

5. Final Remarks

In this work a mathematical model of a Newtonian
liquid film with uniform interfacial viscosity subjected
to an oscillatory vertical movement of constant fre-
quency is presented and numerically solved. The nu-
merical technique employed is based on the finite
element method and a suitable parametrization of the
free surface to simultaneously resolve the system of
governing equations at each time step. The time-
marching scheme made use of a second-order predictor-
corrector technique applied with a finite difference
formulation.

The results obtained show, for waves of a particular
length, how the minimum imposed acceleration has to
be increased to keep the induced standing waves when
the surface viscosity is augmented. The predictions
indicate that the applied force follows a sigmoid curve
with a minimum value for a clean interface; i.e., with
no interfacial viscosity, and a maximum when the
interfacial viscosity is large enough so that the inter-
facial tangential motions result strongly restricted.
Moreover, the information provided by the numerical
technique about the interfacial variables and flow fields
for the different values of the Boussinesq parameter
considered helps to understand the trend followed by
F,, vs Bo.

Though the cases analyzed only consider a uniform
value of the interfacial viscosity, results of a linear
stability analysis—not yet published—indicate that con-
tributions of the terms representing the interfacial
viscosity dependence on surfactant concentrations are
of minor order.
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Nomenclature

Dimensionless Groups

Bo = Boussinesq number, (u*® + «S)o/muH,.

F = ratio between the external acceleration and gravity,
aow?/g.

Fr = Froude number, w?Hy/4mo0g.

Re = Reynolds number, pwxHy*2u0?.

We = Weber number, mpw2H3/4003.

Latin Symbols

ao = amplitude of the external vibration (m).

H = dimensionless mean surface curvature.

H, = thickness of the liquid layer at rest (m).

h = dimensionless liquid height.

k = wavenumber (m™1).

n = outward unit vector normal to the free surface.
p = dimensionless pressure.

s = arc length measured from x = 0 toward x = 1.
T = stress tensor (N m—2).

T,, = normal component of the surface traction.
T,: = tangential component of the surface traction.
t = dimensionless time.

t = unit tangent vector to the free surface.

u = x-component of the velocity vector.

v = y-component of the velocity vector.

v = dimensionless velocity vector.



v = normal component of the interfacial velocity.
v% = tangential component of the interfacial velocity.

Greek Symbols

o = dimensionless wavenumber.

k¥ = surface shear viscosity (kg s71).

u = liquid viscosity (kg m~! s71).

u'® = surface dilatational viscosity (kg s™1).

p = liquid density (kg m~3).

o = surface tension (N m™1).

o = angular frequency of the external vibration (s71).
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