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Simple Summary: Urban parks and cemeteries constitute hot spots of bird diversity in urban
areas. However, the seasonal dynamics of their bird communities have been scarcely explored at
large scales. This study aims to analyze the drivers of urban bird assemblage seasonality in urban
parks and cemeteries comparing assemblages during breeding and non-breeding seasons in the
Neotropical Region. At large scales, the seasonal change of species composition was positively
related to temperature seasonality and was higher in the Northern Hemisphere. At the landscape
scale, the seasonal change of composition decreased in sites located in the most urbanized areas.
At the local scale, sites with the highest habitat diversity and pedestrian traffic had the lowest
seasonal change of composition. The species turnover was higher in the Northern Hemisphere,
augmented with increasing annual temperature range, and decreased in urban parks. The species loss
between breeding and non-breeding seasons was negatively related to habitat diversity. Although
the surrounding urbanization lowered the seasonal dynamics of urban green areas, cemeteries seem
to conserve more seasonal changes than urban parks. Thus, urban cemeteries help to conserve the
temporal dynamics of bird communities in cities.

Abstract: Urban parks and cemeteries constitute hot spots of bird diversity in urban areas. However,
the seasonal dynamics of their bird communities have been scarcely explored at large scales. This
study aims to analyze the drivers of urban bird assemblage seasonality in urban parks and cemeteries
comparing assemblages during breeding and non-breeding seasons in the Neotropical Region. Since
cemeteries have less human disturbance than urban parks, we expected differences in bird community
seasonality between habitats. The seasonal change of species composition was partitioned into species
turnover and nestedness. At large scales, the seasonal change of species composition was positively
related to temperature seasonality and was higher in the Northern Hemisphere. At the landscape
scale, the seasonal change of composition decreased in sites located in the most urbanized areas. At
the local scale, sites with the highest habitat diversity and pedestrian traffic had the lowest seasonal
change of composition. The species turnover was higher in the Northern Hemisphere, augmented
with increasing annual temperature range, and decreased in urban parks. The species nestedness was
positively related to habitat diversity. Our results showed that a multi-scale framework is essential to
understand the seasonal changes of bird communities. Moreover, the two components of seasonal
composition dissimilarity showed contrasting responses to environmental variables. Although the
surrounding urbanization lowered the seasonal dynamics of urban green areas, cemeteries seem
to conserve more seasonal changes than urban parks. Thus, urban cemeteries help to conserve the
temporal dynamics of bird communities in cities.

Keywords: biogeography; birds; climate; macroecology; Neotropical Region; urbanization
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1. Introduction

The analysis of the temporal variation of species assemblages is one of the main objec-
tives of community ecology [1]. In recent years, several authors have highlighted the need
for more research regarding the species composition change over time, which is defined as
temporal beta diversity [2]. The component of temporal beta diversity has received scarce
attention and, in general, authors considered mainly the interannual change of species com-
position [3]. However, the focus on intra-annual changes in species composition, such as
seasonal changes, is extremely relevant for understanding how communities will respond
to impacts produced by land use and climate change.

In the case of birds, species assemblages show annual repeatable changes in composition
due to the seasonality of environmental conditions, such as duration of daytime, temperature,
and precipitation [4–6]. The seasonal change of species composition was analyzed along
latitudinal gradients, showing that resource fluctuations determine the proportion of migrant
species in assemblages [7–10]. On the other hand, the seasonal change of composition may
also be positively related to the annual pool of species recorded in a site [11,12].

Studies that measured assemblage seasonality generally were based on the proportion
of latitudinal migrants [9,13]. However, the bird assemblages’ seasonality can also be due
to fluctuations of longitudinal migrants, altitudinal migrants, or partial migrants [14–16].
Therefore, analyses that consider the seasonal change of the entire assemblage are necessary
to gain a more realistic picture of seasonal beta diversity. Moreover, studies that evaluated
the seasonal change of bird assemblages at large scales used data obtained from indepen-
dent local studies, bird distributional maps, or citizen science data such as eBird [9,12,17].
These types of data preclude analyzing local-scale variables unexplored until now, such
as habitat diversity, which is thought to decrease the seasonal change of bird communi-
ties [5,18,19]. Habitats with several vegetation strata may increase the amelioration of
microclimatic factors [20], then buffering the seasonal change of bird resources [5].

Green areas are urban habitats dominated by vegetation, which are fundamental for
biodiversity conservation within cities [21]. The role of urban parks as hot spots of bird
diversity has been largely documented [21–23]. In addition, cemeteries constitute a type of
green area within cities that also have a great potential for biodiversity conservation [24–26].
Several studies have found that bird species richness in cemeteries is similar to that in
urban parks [27–29]. However, the study of bird communities in cemeteries has been
performed mainly in Europe and North America [25,27,28,30], although recent studies have
been published in South America [29,31]. Moreover, seasonal dynamics of bird species
composition in cemeteries have been scarcely analyzed [31].

Urban areas are thought to decrease the seasonal change of bird communities due to
the constant food supply for generalist resident species and the decrease in food availability
for migrant species that feed on insects [17,32–34]. Moreover, residential areas composed
of houses with wide yards and high habitat diversity are related to an annual stabilization
of food resources and a decrease in the bird assemblage seasonality compared to rural
areas [35]. The role of environmental buffering affecting large-scale variations of the
seasonal beta-diversity in urban bird assemblages has not been evaluated yet.

The seasonal beta diversity can be partitioned into two components ([36], Figure 1):
(1) balanced variation in abundance, which describes the turnover of some individuals of
one species by the same amount of individuals of other species between seasons (Figure 1a);
and (2) abundance gradients, which describes the nestedness or loss of individuals of
different species between seasons (Figure 1b). Moreover, seasonal changes in bird com-
position may be due to the simultaneous patterns of balanced variation and abundance
gradient (Figure 1c). For example, in the hypothetical case of species dissimilarity between
seasons in a site is 0.50, 0.25 can be attributed to balanced variation in abundance, whereas
the other 0.25 can be attributed to abundance gradients. The partitioning of the seasonal
dissimilarity in turnover and nestedness components can bring more insights into the
underlying processes shaping bird communities throughout the year. The role of these two
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components on the large-scale variation of the seasonal beta diversity of bird assemblages
still remains to be studied.
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Figure 1. Schematic representation of (a) balanced variation in abundance, (b) abundance gradient,
and (c) the presence of balanced variation and abundance gradient. In (a), some species lose individ-
uals between seasons, whereas others gain individuals in the same proportion. In (b), all species lose
individuals in the same proportion between breeding and non-breeding seasons. In (c), two species
gain individuals whereas the other species lose individuals. Other hypothetical situations where
species appear or disappear between seasons are also possible (see [36]).

In this study, we present the analyses of a large-scale coordinated survey of bird
assemblages in urban parks and cemeteries of the Neotropical Region. Our study aimed
to determine the influence of large-scale, landscape, and local factors on the seasonal
composition dissimilarity. At a large scale, we expected that bird assemblages located in
areas with the highest annual climatic seasonality and near North America would have the
highest seasonal change in bird composition, given that bird assemblages of the northern
hemisphere part of the Neotropical Region have a higher proportion of migratory species
than the Southern American bird assemblages [37]. At the landscape scale, we expected
that urban parks and cemeteries located in the most urbanized areas of the city would have
the lowest seasonal bird composition change compared to those located in less urbanized
areas [38,39]. On the local scale, we expected that parks and cemeteries with the highest
habitat diversity would have the lowest seasonal change of composition [5]. Finally, we
expected that components of beta diversity, such as nestedness and turnover, would vary
differently with environmental variables.

2. Materials and Methods

This study was carried out in parks and cemeteries of 18 cities in the Neotropics
encompassing eight countries (Table S1, Figure 2). The absolute latitude of sites ranged
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between 6◦ (Medellín, Colombia) and 34◦ (Buenos Aires, Argentina), whereas altitude
varied from 10 masl (Porto Alegre, Brazil) to 3625 masl (La Paz, Bolivia). In each city,
cemeteries were selected and then parks with a similar location and size within the city
were also chosen (see Leveau [29]). This procedure resulted in a total of 36 cemeteries and
37 parks surveyed as our sampling units (Table S1, Figure 2).
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Figure 2. Location of study sites (black dots) in Latin America.

2.1. Bird Surveys

We surveyed birds for 10 min using point counts within a radius of 100 m, and points
were at least 200 m apart [40]. The location of points was determined by a stratified design,
locating points in each microhabitat (wooded areas, lawned areas, etc., [29]). Surveys were
conducted during the first four hours after sunrise on weekdays only under favorable
conditions (i.e., avoiding rainy and windy days) [40]. Only birds that used the sites, eating
or perching, were counted, avoiding birds that flew high above. To ensure temporal
replication, the same observer visited each point twice during the breeding season (spring)
and twice during the non-breeding (fall) season. In the Southern Hemisphere, the breeding
season corresponded to surveys during the first 2 weeks of October and the last week of
November or the first week of December [29]. The non-breeding season corresponded
to surveys during April, May or June. In the Northern Hemisphere, October–December
corresponded to the non-breeding season, whereas April–June was the breeding season [29].
Although sites near the Equator are thought to be aseasonal, the breeding peak in sites
north of the Equator (Guatemala, Costa Rica) occurs in April [41], whereas the breeding
peak occurs during November [42] or between December and April [43] in areas south of
the Equator (like Ecuador and Peru). Point count number per site ranged between 1 and 11.
Parks and cemeteries smaller than 3 ha generally had one point, whereas the number of
points increased in larger sites.



Animals 2024, 14, 3564 6 of 15

2.2. Predictor Variables

A total of 11 environmental variables were analyzed, including local, landscape, and
large-scale characteristics (see Table 1 in [29]). Local variables included annual species
richness, habitat diversity, pedestrian traffic, habitat type (park/cemetery), and area (ha).
Annual species richness may be positively related to the seasonal change of bird composi-
tion [12], and was measured as the accumulated number of species registered in each site
during both seasons in each site (mean = 21.08 species, range = 5–56). Habitat diversity
is probably positively associated with the seasonal persistence of bird species [5] and was
estimated by calculating the Shannon index on the percent cover of the seven habitat cover
types including the percent cover of built area, tree, lawn, shrub, non-managed herbaceous
vegetation, bare soil, and water (mean = 1.29%, range = 0.30–1.78). The percent cover of
habitat components was estimated visually in each point count. This approach is better
than the use of satellite-classified images, which do not allow quantifying the vertical
stratification of vegetation. In the sites with more than one point count, the variable values
were averaged for each park and cemetery. Pedestrian traffic is thought to negatively
affect the seasonal change of bird composition [39] and was measured as the number of
pedestrians walking or standing at each point count simultaneously with bird surveys
(pedestrians/10 min) (mean = 15.18 pedestrians, range = 0.5–175.75). In sites with more
than one point, values of pedestrian traffic were averaged between points. Cemeteries
had more built cover and less pedestrian traffic than parks (Supplementary Information,
Figure S1). The area (ha) of each site was measured with the polygon function of Google
Earth Pro (mean = 11.48 ha, range = 0.33–97.60).

Landscape variables were the urbanization level around each site and the population size
of each city. The increasing urbanization surrounding green areas and population size of cities
are thought to dampen the seasonal change of species composition [33,37]. We classified the
urbanization level as “urban”, “suburban”, and “periurban” depending on the impervious
cover of each site and its location in the city (see Leveau [29]). The urbanization level was
characterized with Google Earth Pro images by measuring impervious cover in four plots
of 9 ha located in the cardinal points. Then, the four values of the impervious surface were
averaged for each site. Urban landscapes had >50% impervious cover, suburban landscapes
had <50% impervious cover, and periurban landscapes were on the city fringe. We used the
most recent census information from Wikipedia as our population size variable.

Large-scale variables were altitude (mean = 1073.78 m.a.s.l., range = 10–3625), annual
temperature range (TRANGE), annual precipitation range (PRANGE), and hemisphere.
Altitude, TRANGE, and PRANGE were obtained from Wikipedia, where information on
local weather stations was provided. TRANGE and PRANGE (mm) were calculated as the
difference between the lowest and the maximum monthly mean values throughout the year
(mean = 9.37 ◦C, range = 1.1–19.3; mean = 131.25 mm, range = 18–348.8, respectively; see
Leveau [37]). When data were not available in Wikipedia, we obtained the climatic values
from the website climate-data.org. The hemisphere was divided into North and South.

2.3. The Seasonal Change of Bird Composition

The seasonal change of bird composition between breeding and non-breeding seasons
was calculated using the betapart package in R version 3.6.1 [44,45]. A matrix of bird species
abundance as columns and sites as rows was used to calculate the Bray–Curtis dissimilarity
and its additive components of abundance gradient and balanced variation for each site
with the beta.pair.abund function. Bird abundance was calculated as the maximum number
of individuals detected in the two visits during each season.

Species detectability may be imperfect, particularly in assemblages with high species
richness [46]. Therefore, we used a dissimilarity index that considers unseen species
between seasons. Chao et al. [46] provided a Sørensen index based on species abundances
that includes the effect of unseen shared species between seasons. The function chaodist of
the vegan package was used [45,47].
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2.4. Statistical Analysis

Generalized linear models (GLMs) with a Gaussian distribution of errors were used to
relate the Bray–Curtis index and its two components abundance gradient and balanced
variation with the 11 predictor variables in R [44]. Although sites were nested within
cities, an analysis of the spatial autocorrelation of residuals using the Moran index in
SAM software version 4.0 [48] revealed no significant spatial autocorrelation of residuals
(p > 0.05). Models were obtained by backward elimination of non-significant variables
(p > 0.05) from the full model using the ANOVA function. A Likelihood Ratio test (LRT
test) was used to compare final models with null models (p < 0.05). R2 of models were
obtained using the function rsq of the rsq package [49]. The multicollinearity between
predictors was analyzed with car package’s vif function [50]. The generalized variance
inflation index (GVIF) that handles continuous and categorical variables was used and no
important collinearity between predictors was found. Model residuals were checked for
heteroscedasticity, but no important patterns of residuals were found. Final models were
plotted using the visreg package [51].

3. Results

A total of 281 species and 17,978 individuals were observed (see Supporting Information,
Table S2). The Feral Pigeon (Columba livia), the Eared Dove (Zenaida auriculata), and the
Monk Parakeet (Myiopsitta monachus) were the most abundant species.

The Bray–Curtis seasonal composition dissimilarity was related to TRANGE, hemi-
sphere, urban level, pedestrian traffic, and habitat diversity (Table 1; LRT = 0.98, p < 0.001;
r2 = 0.46). The seasonal change of composition was the highest in sites located in peri-urban
areas (Figure 3a) and decreased in sites with higher pedestrian traffic and habitat diversity
(Figure 3b,c). As expected, the seasonal change of composition was the highest in the
Northern Hemisphere (Figure 3d) and increased with increasing TRANGE (Figure 3e).
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The balanced variation dissimilarity was more important than the abundance gradient
dissimilarity (mean balanced variation = 0.33 vs. mean abundance gradient = 0.13), and
it was related to TRANGE, hemisphere, and habitat type (Table 1; LRT = 0.56, p < 0.001;
r2 = 0.24). Therefore, the seasonal change of composition was dominated by the turnover
of individuals between species. This turnover was higher in cemeteries than in parks
(Figure 4a), augmented in the Northern Hemisphere (Figure 4b), and was positively related
to TRANGE (Figure 4c). On the other hand, the abundance-gradient dissimilarity decreased
with increasing habitat diversity (Table 1; LRT = 0.05, p = 0.023; r2 = 0.05; Figure 4d).
Therefore, sites with lower habitat diversity had the highest difference in bird individuals
between seasons.
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The Sørensen dissimilarity abundance-based index that considers unseen species
between seasons varied significantly with urbanization level, hemisphere, and annual
temperature range (Table 1; LRT = 0.33, p < 0.001; r2 = 0.19; Figure 5). The seasonal
change of composition decreased in the most urbanized sites and increased in the northern
hemisphere part of Latin America. Moreover, the seasonal compositional change positively
correlated with the annual temperature range.
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Table 1. Results of the best final generalized linear models showing the relationship between the
environmental variables and (a) seasonal change in bird composition (Bray–Curtis dissimilarity),
(b) seasonal balanced abundance dissimilarity, (c) seasonal abundance gradient dissimilarity, and
(d) the Sørensen abundance-based dissimilarity. Level Periurban, Northern Hemisphere, and Habitat
cemetery are in the intercept. TRANGE: annual range of temperature.

Estimate SE t Value p

(a) Bray–Curtis dissimilarity
Intercept 0.786 0.079 9.901 <0.001

Level—Suburban −0.069 0.058 −1.179 0.243
Level—Urban −0.126 0.045 −2.811 0.006

Habitat diversity (H′) −0.124 0.043 −2.887 0.005
Pedestrians −0.001 0.001 −1.990 0.051

Hemisphere—South −0.248 0.040 −6.127 <0.001
TRANGE 0.015 0.003 4.310 <0.001

(b) Balanced variation dissimilarity
Intercept 0.423 0.043 9.877 <0.001

Habitat—Park −0.088 0.035 −2.536 0.013
Hemisphere—South −0.208 0.049 −4.249 <0.001

TRANGE 0.012 0.004 3.036 0.003
(c) Abundance gradient dissimilarity

Intercept 0.219 0.043 5.051 <0.001
Habitat diversity (H′) −0.074 0.033 −2.267 0.027

(d) Sørensen abundance-based dissimilarity
Intercept 0.300 0.062 4.846 <0.001

Level—Suburban −0.073 0.062 −1.189 0.239
Level—Urban −0.126 0.046 −2.712 0.009

Hemisphere—South −0.145 0.042 −3.428 0.001
TRANGE 0.008 0.004 2.125 0.037
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4. Discussion

Our results showed that variables at different spatial scales were related to the seasonal
changes in bird composition of urban green areas in the Neotropics (Figure 6). As expected,
a large-scale variable such as the seasonal change of temperature was positively related
to bird composition seasonality. These results are congruent with previous studies that
suggest an important effect of temperature on the distribution and movements of avian
species in natural communities [52–55]. Moreover, our results indicated that the sites
located in the Northern Hemisphere section of the Neotropics showed a higher seasonality
of bird composition than equal latitudes in the Southern Hemisphere. At the landscape
scale urbanization level was related to bird composition seasonality. At a local scale, habitat
diversity was positively associated with the annual stability of bird composition. The
results obtained also revealed that different environmental variables were related to the
two components of seasonal compositional change, a nestedness pattern of individuals
(abundance gradient) and a turnover pattern of individuals (balanced variation).

Animals 2024, 14, x FOR PEER REVIEW 11 of 15 
 

 
Figure 6. Summary of the results found in our study. A multiscale framework shows the different 
drivers of bird assemblage seasonality in the Neotropics. The orange triangles represent the amount 
of seasonal change of species composition. At the large scale, the blue dashed line indicates the 
Equator. The seasonal change of bird composition increases with increasing annual range of tem-
perature, which is positively related to latitude (r = 0.91, p < 0.05). Moreover, the seasonal change in 
bird composition also increases in the Northern Hemisphere part of the Neotropics. At the landscape 
scale, the seasonal change is negatively related to urbanization (scales from grey to green), whereas 
at the local scale is negatively related to habitat diversity (yellow triangle). 

The annual species richness was not related to the seasonal change of species compo-
sition, suggesting that there was no sampling effect in our patterns [12]. Thus, our findings 
suggest that the seasonal beta diversity is driven by ecological mechanisms such as climate 
changes and habitat associations. 

On the other hand, the use of the Sørensen index that considered unseen species be-
tween seasons showed similar patterns to the Bray–Curtis index with the environmental 
variables. Therefore, the impacts of annual temperature range, urbanization level, and 
hemisphere on the seasonal species dissimilarity were not obscured by sampling effects 
between seasons. 

The seasonal changes of composition were positively related to the seasonal temper-
ature change, and this result agrees with others obtained in Europe and North America 
[8,9,12]. The seasonal change in temperature is related to changes in food resources for 
birds, such as plant material, insects, nectar, and fruit [6]. The compositional seasonality 
was also higher in sites located in the Northern Hemisphere. This pattern agrees with our 
hypothesis that sites located in the northern fringe of the Neotropical region, such as Mex-
ico and Costa Rica that receive an influx of Nearctic migrants in autumn–winter, have a 
greater seasonal change of bird composition than sites located in South America. 

The increased urbanization surrounding each site decreased the bird composition 
seasonality, supporting the results obtained by other authors worldwide [17,32,39,56]. 
This reduction of seasonality in the most urbanized areas could be related to two main 
factors: (1) the increased dominance of omnivorous and resident species that can take ad-
vantage of the food resources provided by humans year-round [33,39,56]; and (2) the de-
creased presence and abundance of migratory species, which have lower food resources 
in the most urbanized areas and are more affected by human disturbance [37,57,58]. 

At the local scale, sites with increased habitat diversity had more annual stability of 
bird composition. On the one hand, this result agrees with the patterns found by Karr [5], 
who postulated that habitat diversity buffered the seasonal changes of food resources. In 
urban green areas, sites with high habitat diversity are usually composed of several exotic 
tree species that provide food resources throughout the year, unlike native tree species 
with a marked productive season of food resources [33]. On the other hand, our results 
could be related to the habitat preferences of migrant species, which prefer the dominance 
of a particular habitat type instead of a diversity of habitats. For example, several North 
American migrants wintering in Mexico City, such as Yellow-rumped Warbler (Setophaga 

Figure 6. Summary of the results found in our study. A multiscale framework shows the different
drivers of bird assemblage seasonality in the Neotropics. The orange triangles represent the amount of
seasonal change of species composition. At the large scale, the blue dashed line indicates the Equator.
The seasonal change of bird composition increases with increasing annual range of temperature,
which is positively related to latitude (r = 0.91, p < 0.05). Moreover, the seasonal change in bird
composition also increases in the Northern Hemisphere part of the Neotropics. At the landscape
scale, the seasonal change is negatively related to urbanization (scales from grey to green), whereas
at the local scale is negatively related to habitat diversity (yellow triangle).

The annual species richness was not related to the seasonal change of species composi-
tion, suggesting that there was no sampling effect in our patterns [12]. Thus, our findings
suggest that the seasonal beta diversity is driven by ecological mechanisms such as climate
changes and habitat associations.

On the other hand, the use of the Sørensen index that considered unseen species
between seasons showed similar patterns to the Bray–Curtis index with the environmental
variables. Therefore, the impacts of annual temperature range, urbanization level, and
hemisphere on the seasonal species dissimilarity were not obscured by sampling effects
between seasons.

The seasonal changes of composition were positively related to the seasonal tem-
perature change, and this result agrees with others obtained in Europe and North Amer-
ica [8,9,12]. The seasonal change in temperature is related to changes in food resources for
birds, such as plant material, insects, nectar, and fruit [6]. The compositional seasonality
was also higher in sites located in the Northern Hemisphere. This pattern agrees with
our hypothesis that sites located in the northern fringe of the Neotropical region, such as
Mexico and Costa Rica that receive an influx of Nearctic migrants in autumn–winter, have
a greater seasonal change of bird composition than sites located in South America.
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The increased urbanization surrounding each site decreased the bird composition
seasonality, supporting the results obtained by other authors worldwide [17,32,39,56]. This
reduction of seasonality in the most urbanized areas could be related to two main factors:
(1) the increased dominance of omnivorous and resident species that can take advantage
of the food resources provided by humans year-round [33,39,56]; and (2) the decreased
presence and abundance of migratory species, which have lower food resources in the most
urbanized areas and are more affected by human disturbance [37,57,58].

At the local scale, sites with increased habitat diversity had more annual stability of
bird composition. On the one hand, this result agrees with the patterns found by Karr [5],
who postulated that habitat diversity buffered the seasonal changes of food resources. In
urban green areas, sites with high habitat diversity are usually composed of several exotic
tree species that provide food resources throughout the year, unlike native tree species
with a marked productive season of food resources [33]. On the other hand, our results
could be related to the habitat preferences of migrant species, which prefer the dominance
of a particular habitat type instead of a diversity of habitats. For example, several North
American migrants wintering in Mexico City, such as Yellow-rumped Warbler (Setophaga
coronata) and the Wilson’s warbler (Cardellina pusilla), have been more frequent in sites
with increased tree cover [59]. Similarly, several South American migrants that summer in
Central Argentina, such as the Brown-chested Martin (Progne tapera) and the White-rumped
Swallow (Tachycineta leucorrhoa), prefer open areas [60–62].

Pedestrian traffic was negatively related to the seasonal composition dissimilarity.
Therefore, sites with the highest pedestrian traffic had a more stable annual bird species
composition. Pedestrians may supply food resources, such as pieces of bread, to generalist
species, thus allowing these species to be present year-round. On the other hand, pedes-
trians may disturb and exclude migratory birds, thus lowering the seasonal dynamics of
species composition.

The decomposition of the Bray–Curtis dissimilarity index in their additive compo-
nents showed that balanced variation had a higher proportion of the total composition
dissimilarity than abundance gradient, indicating a predominant turnover of individuals
of different species between seasons. This turnover increased in areas with higher tempera-
ture seasonality and in the Northern Hemisphere. At least two processes could be driving
the patterns observed. Firstly, the arrival of latitudinal migrants to a site is associated
with some species’ departure, which makes longitudinal or altitudinal movements [63–65].
Secondly, resident species have behavioral changes throughout the year, forming flocks
during winter and concentrating in particular areas [65–67]. Therefore, the concentration of
species in particular sites and their absence in other sites where the winter migrants are
present may result in an annual turnover of individuals.

The balanced variation was higher in cemeteries than in parks. Therefore, cemeteries
had a higher turnover of individuals of different species between breeding and non-
breeding seasons than parks. Parks have more pedestrian traffic than cemeteries, and
pedestrian traffic was shown to affect negatively the presence of migrants [57,68]. Thus, a
lower proportion of migrants can decrease the seasonality of bird communities in urban
parks. On the other hand, higher pedestrian traffic in parks could be related to more food
provided by humans to resident omnivorous species, which stabilizes the seasonal change
of bird composition.

The abundance gradient decreased with increasing habitat diversity, suggesting that
sites with less habitat diversity or dominated by a habitat component increased the individ-
ual loss or gains between seasons. Sites dominated by a habitat component, such as trees
or grass, are probably visited by migrants but are scarcely used by residents year-round.
On the other hand, due to migrants using the food surplus not consumed by residents in a
given habitat type [9,10], the greater the proportion of the vegetation layer may result in a
greater amount of food surplus, and thus of migrants.

This study could be improved by more accurate habitat diversity measurements. For
example, the use of remote sensors such as LIDAR (Light Detection and Ranging) may be
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useful to measure the 3D structure of urban habitats [69]. On the other hand, this study
compared bird compositional seasonality of two types of urban green areas. More insights
about the effect of urbanization on the seasonality of bird communities could be obtained
by comparing urban habitats with natural habitats.

5. Conclusions

Our results revealed that a multiscale framework is necessary to understand the sea-
sonal change of bird communities facing the actual global change crisis (Figure 6). Climatic
variables along the year were the main drivers of the seasonal change in urban species
composition in the Neotropics. Additionally, the larger seasonal changes of bird communi-
ties were found in the North Hemisphere section of the Neotropics, possibly because these
communities are receiving a significant influx of Nearctic migrants. Our analysis revealed
that local and landscape variables, such as habitat diversity and urbanization surrounding
each park and cemetery, drove the seasonality of bird composition.

The partitioning of composition seasonality revealed that the two components, bal-
anced variation and abundance gradient, were related to different environmental drivers.
The dominant pattern was balanced variation dissimilarity, showing that in the Neotropics
the turnover of individuals of different species between breeding and non-breeding seasons
was the predominant driver of assemblage seasonality in urban areas. On the other hand,
habitat diversity was negatively related to the abundance gradient dissimilarity, suggesting
that sites with several habitat components stabilized bird composition’s seasonal change.

The results obtained highlight the importance of considering not only the spatial
diversity of birds but also the temporal component of diversity. Therefore, the conserva-
tion and restoration of green areas in cities of the Neotropical Region must consider the
seasonal changes of bird communities, as well as their geographical location and local-scale
habitat features.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani14243564/s1, Table S1: Environmental information of the
cities included in the analysis and with the amount of parks and cemeteries surveyed in each city;
Table S2: List of species recorded in urban parks and cemeteries of Latin America during breeding
and non-breeding seasons. Numbers are the mean abundance per site, standard deviation and
number of sites where species were recorded. Figure S1: Boxplots showing the two variables that best
discriminated between parks and cemeteries in urban areas of the Neotropics, based of Discriminant
function analysis (Correctness rate = 0.8). (a) Percent cover of Built, and (b) Pedestrian/10 min.
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