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Abstract: Numerous studies have shown the potential effect of bioactive agents against
weeds. In this study, we developed two binary formulations with nonanoic acid, citral, or
thymoquinone as herbicides and evaluated their physicochemical properties. The presence
of the bioactive compounds in the formulations was confirmed through FTIR spectroscopy.
A dynamic light scattering study was conducted to characterize the emulsified formulations
and the size and distribution of the aggregates. In addition, thermogravimetric analysis was
performed to ensure the thermal stability of the formulations. The herbicidal activity against
Amaranthus hybridus, Lolium multiflorum, and Brassica rapa weeds was evaluated, and each
species showed different levels of sensitivity with half maximal inhibitory concentration
doses from 0.07 to 5 mM. The binary formulations negatively affected the photosynthetic
system reducing Fv/Fm values at 5 days after treatment. Lastly, the phytotoxic effect of the
formulations was tested on wheat germination, and they did not inhibit plant germination
and seedling growth at ≤5 mM after 14 days of application. The development of new
formulations with natural compounds as bioactive ingredients would allow control of a
wide spectrum of weeds through a multitarget-site effect.

Keywords: binary formulations; bioactive compounds; herbicide; natural compounds; weeds

1. Introduction
The world population growth projections indicate that higher levels of food production

will be required [1]; therefore, agricultural best management practices represent a critical
aspect of production systems. Amaranthus hybridus, Lolium multiflorum, and Brassica rapa are
common weed species in Argentina and are present in 40% of crop fields [2]. A. hybridus is
an annual Amaranthaceae weed found in tropical and subtropical regions and produces a
large quantity of seeds easily dispersed, B. rapa is an annual Brassicaceae weed found in all
continents, L. multiflorum is an annual weed found in large part of the Pampas region, and
the three species have evolved herbicide resistance [2–7]. Anyway, the management of these
weeds continues to be based on chemical control [2]. However, the increase in herbicide
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usage has been associated with environmental and human health risks [8]. Currently,
some herbicides such as atrazine have been listed as restricted in some countries [9]. An
alternative to weed control is the use of plant-based compounds. These are considered
of minimum risk due to their low toxicity, easy degradability in the environment, and
non-restricted use [9].

Numerous studies have shown the potential effect of botanical agents, such as fatty
acids, aldehydes, ketones, terpenes, and others, against weeds [10,11]. The phytotoxic
effect of essential oils (EOs) and their pure components have been studied. For example,
the herbicidal activity of pure terpenes inhibits the germination and seedling growth in
Sinapis arvensis, Amaranthus retroflexus, Centaurea solstitialis, Raphanus raphanistrum, Rumex
nepalensis, and Sonchus oleraceus. Kordali et al. [12] and Azirak and Karaman [13] reported
that the herbicidal effect of pure terpenes was higher than that of the commercial herbicide
2,4-D isooctyl ester. The effect of these terpenes has been attributed to their interference
with plant cell processes, including mitosis inhibition and decreased cellular respiration
and chlorophyll content [11].

Nonanoic acid is a saturated fatty acid derived from Pelargonium spp. EO, and it is
used as a post-emergent weed control agent [14]. Citral (geranial and neral) is an aldehyde
terpene found in the EOs of several aromatic plants, such as Cymbopogon citratus, Citrus sp.,
and Lippia sp. [15,16], and is a weed germination inhibitor [17,18]. Thymoquinone is one of
the main active compounds of the EO from black cumin (Nigella sativa) and exhibits a wide
range of activities such as pharmacological and biopesticide activities [19,20]. These active
compounds are also used in the food industry as natural antimicrobials and additives for
food preservation [21].

The objective of the current work was to develop binary formulations based on
bioactive compounds with herbicidal or biopesticide activities. An emulsifier was used
due to the volatility of the compounds [18]. In addition, physicochemical properties and
herbicidal activity against weeds were evaluated. Thus, the effect of the binary formulations
on PSII was tested. Lastly, the phytotoxic effect of the formulations was evaluated on
wheat germination and seedling growth. Therefore, the development of new formulations
with different bioactive ingredients would allow control of a wide spectrum of weeds
through a multitarget-site effect and new modes of action while causing a low impact on
the environment.

2. Materials and Methods
2.1. Plant Materials

Amaranthus hybridus and Brassica rapa seeds were collected from weed populations
naturalized in crop fields from Tres Arroyos, Argentina (Figure 1A,B). Both species are
the most relevant herbicide-resistant weeds in Argentina; they have evolved resistance to
multiple herbicides (glyphosate and acetolactate synthase inhibiting herbicides) [2] and
frequently reach high density in crop fields (Figure 1A,B). Lolium multiflorum was supplied
by Barenbrung, Pergamino, Buenos Aires, Argentina. Seeds of Lactuca sativa L. var. crispa
and Solanum lycopersicum L. var. platense were used as model plants and obtained from
Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Argentina.
Wheat seeds of var. Tero were provided by Illinois, Argentina.
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2.2. Chemical Compounds

The bioactive compounds nonanoic acid (96%, catalog number 807167), citral (96%,
catalog number 8024890250), and thymoquinone (98%, catalog number 274666) were an-
alytical grade and purchased from Sigma-Aldrich Chemical Co. (Steinheim, Germany)
(Table 1). The soy lecithin emulsifier (35% p/p) and atrazine (positive control, 90%) were
provided by YPF S.A., Capital Federal, Buenos Aires, Argentina

Table 1. Bioactive compounds and physicochemical properties.
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Table 1. Cont.

Chemical Structures Boiling Point (◦C) Log P Solubility in Water at
25 ◦C (g/L)
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2.3. Formulations

Two binary formulations (F1 and F2) were developed as bioherbicides. F1 contains
nonanoic acid and citral (1:1), while F2 contains nonanoic acid and thymoquinone (1:1).
Due to the physiochemical properties of the bioactive agents [22] (Table 1), an emulsifier
was added.

2.4. Chemical Characterization
2.4.1. Fourier Transform Infrared Spectrometry (ATR-FTIR)

A molecular interaction study was conducted using ATR-FTIR. Spectra were recorded
with a Nicolet™ iS™10 (Thermo Scientific, Madison, WI, USA). The spectrum of each
sample was the average of three successive scans in the 4000–400 cm−1 wavenumber range
and recorded as the absorbance (calculated as the logarithm of the reflectance reciprocal).

To analyze F1 and F2 binary formulations, a drop was placed on the diamond ATR crys-
tal using a top plate and pressure arm accessories (Smart iTX accessory, Madison, WI, USA).
A spectral analysis was performed with the software Omnic version 9 (Thermo Scientific).

2.4.2. Dynamic Light Scattering (DLS) Measurements

The emulsified formulations, size, and size distribution of aggregates were deter-
mined through DLS as a function of temperature using a Zetasizer Nano-ZS90 (Malvern
Panalytical, Malvern, UK). Samples were properly dispersed in distilled water at room
temperature before their analysis to avoid multiple scattering effects. The experiments
were performed with emulsified formulations dispersed in distilled water at 25, 35, and
45 ◦C, typical summer temperatures in Argentina.

2.4.3. Thermogravimetric Analysis (TGA)

To ensure thermal stability, TGA was performed using a TGA Discovery 5500 analyzer
(TA Instruments, New Castle, DE, USA), under nitrogen flux (20 mL min−1), in platinum
pans heated up to 150 ◦C with a 10 ◦C min−1 rate and isothermal steps at 25, 35, and 45 ◦C,
typical summer temperatures in Argentina.

2.5. Herbicide Activity
2.5.1. Weed Germination Inhibition Test

The herbicidal activity of F1 and F2 was tested against weed and model plant seeds
following the methodology described by Sosa et al. [23] with some modifications. Briefly,
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4 mL of aqueous emulsions containing F1 or F2 at 0.07 to 5 mM were tested, and an
emulsifier was added to the formulation at 0.2% v/v [24]. The extracts were placed onto
9 cm diameter paper disks in Petri dishes. Then, 10 seeds of each species were placed
onto paper disks. Subsequently, the dishes were closed under the following experimental
conditions: room temperature, 26.0 ± 1.8 ◦C; relative humidity, 50 ± 9.7%; and photoperiod,
12:12. At 7 days after sowing, the seeds were considered germinated if their roots were
longer than 1 mm [25]. Emulsions without the addition of the bioactive formulation were
used as a negative control, whereas atrazine was used as a positive control because it targets
a broad spectrum of weeds (monocotyledons and dicotyledons) [24,26]. The assays were
performed in triplicates for each concentration. Half maximal inhibitory concentrations
(IC50) were determined after 7 days of exposure and were calculated using POLO PLUS
2002–2007 LeOra Software [27].

2.5.2. Effect of Binary Formulations on Photosystem II (PSII)

The damage on PSII of the formulations was evaluated on seedlings of A. hybridus,
because it is a main weed in a wide variety of crops worldwide [28], following the method-
ology described by Pooja et al. [29] with modifications. Briefly, 25 seedlings with 7 days
post-emergence were placed onto paper filters into plastic trays (15.5 cm × 11 cm × 4 cm).
Then, 10 mL of aqueous emulsions containing F1 or F2 at 0.07 to 5 mM and an emulsifier
incorporated into the extracts at 0.2% v/v were added into boxes. Aqueous extracts without
the addition of the bioactive formulation were used as a negative control, whereas atrazine
(5 mM) was used as a positive control. In order to avoid possible chlorosis symptoms
due to a lack of nutrients, 5 mL of nutritive solution (5.0 mM Ca (NO3) 2, 5.0 mM KNO3,
2.0 mM MgSO4, 1.0 mM KH2PO4, 20.0 µM FeNa EDTA, 5.0 µM H3BO3, 0.9 µM MnCl2,
0.8 µM ZnCl2, 0.3 µM CuSO4 y 0.01 µM Na2MoO4, pH 5.5–6.5) was added to each tray. The
boxes were placed in a culture chamber at 22 ± 2 ◦C and 50 µmol photons m−2 s−1 with
a photoperiod of 16 h. The chlorophyll fluorescence measures (Fv/Fm) were carried out
with a MINI-PAM II ©Walz fluorimeter (Effeltrich, Germany) at 1, 2, 5, 7, and 12 days after
application. The seedlings were darkened 30 min before measurements were taken.

For the experiments, three repetitions per treatment were used: Both experiments had
four treatments. Each experiment was replicated three times. The treatments were assigned
randomly to each box following a completely randomized design. The statistical analysis
for Fv/Fm data was performed using InfoStat 2008 Software through Generalized Mixed
Linear Models [30].

2.5.3. Effect of Binary Formulations on Wheat Germination and Seedling Growth

Effects of F1 and F2 on wheat germination and seedling growth were evaluated. The
experiments were conducted according to Peschiutta et al. [31] with some modifications.
F1 and F2 were added to Petri dishes at 2 and 5 mM and after 1, 7, or 14 days. Ten wheat
seeds were placed in the Petri dishes. A negative control (H2O) treatment was performed
without the addition of any active compound, and the seeds were placed onto paper disks
at the same time intervals. Then, the dishes were closed under the same experimental
conditions mentioned above. The number of germinated seeds per dish was recorded
7 days after sowing. The seeds were considered germinated if their roots were longer
than 1 mm. At that time, the leaf length of the wheat seedlings was measured. The assay
was performed in triplicates. Data were analyzed to assess normality using the Shapiro–
Wilk test, and homogeneity of the variances was determined using Levene’s test before
performing ANOVA. Tukey’s tests were used to compare the means for germination and
leaf length of seedlings between treatments through Infostat Software [30].



Plants 2025, 14, 276 6 of 17

3. Results
3.1. Chemical Characterization
3.1.1. Fourier Transform Infrared Spectrometry (ATR-FTIR)

Figures 2 and 3 show the typical FTIR spectra of components corresponding to her-
bicidal formulations called F1 and F2, respectively. The characteristic band at 3343 cm−1

(grey area) that appears for all formulations is attributed to the O-H stretching vibration
from the nonanoic acid and emulsifier. In addition, another band from the emulsifier is
located at 3008 cm−1 (blue area) for F1 (Figure 2), related to asymmetric and symmetric
C-H stretching vibrations, whereas the band for F2 has two origins, emulsifier and the
thymoquinone, related to =C-H stretching vibrations (Figure 3). The spectrum shows the
characteristic bands at 2923.2 cm−1 (orange area) associated with the C-H ester stretching
vibration, the band at 1675.5 cm−1 (red area) is due to the stretching vibration of the ketone
and aldehyde C=O group, and the band at 1117 cm−1 (green area) is attributed to the ether
(C-O) groups. The last three bands mentioned are present in all the F1 and F2 components.
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3.1.2. Dynamic Light Scattering (DLS) Measurements

To characterize the emulsified formulations, hydrodynamic diameters were deter-
mined for each sample through DLS. F1 and F2 showed unimodal size distributions,
whereas a multimodal distribution was observed for soy lecithin emulsifier (Figure 4A).
Thus, for the temperature range involved in the experiments, the average sizes were from
800–1300 nm for the emulsifier, while F1 and F2 showed dispersion sizes of 250–550 and
170–260 nm, respectively.
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Figure 4. (A) DLS size distribution for emulsifier (E, blue), formulation 1 (F1, orange), and formulation
2 (F2, grey) at 25 (line), 35 (slashed), and 45 ◦C (dotted). (B) Temperature effect on averaged diameter
(d) for emulsifier (E, blue), F1 (orange), and F2 (grey).

The presence of nonpolar analytes (active compounds) in the formulation turned the
E dispersions into clear emulsions with unimodal distributions and lower polydispersity
indexes. In contrast, the observed change in F1 and F2 size distributions with temperature
was in line with the expected values for stable colloidal systems, with no flocculating
aggregates under our experimental conditions (Figure 4B).

3.1.3. Thermogravimetric Analysis (TGA)

TGA was used to assess the thermal stability of the formulations. Thermograms of pure
active compounds (thymoquinone, citral, and nonanoic acid), emulsifier, F1, and F2 were
obtained for comparison. Weight losses of less than 10% were observed at temperatures
under 100 ◦C for pure active compounds, except thymoquinone, which lost 17.5% of its
weight. According to previously reported thermal assays (Figure 5A), this behavior can
be the result of evaporation processes, considering the boiling point of these compounds
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and the constant N2 flux (Table 1). In contrast, Figure 5A shows that the formulation
composition did not affect significantly the recorded weight losses. In these cases, the
presence of water was responsible for the considerable weight losses at temperatures under
100 ◦C, and the final weight loss corresponded to the remaining amount of the sample,
consisting of active compounds and the emulsifier in the formulations. Lastly, the active
compounds showed adequate thermal stability at all temperatures tested.
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3.2. Herbicide Activity
3.2.1. Weed Germination Inhibition Test

Germination inhibition of weeds induced by F1 and F2 formulations is shown in
Table 2. F1 and F2 caused phytotoxic effects on all weeds; however, A. hybridus and L.
multiflorum species were the most sensitive. F1 was more active than F2 for all weeds tested,
and both formulations showed greater herbicidal activity than atrazine (positive control).



Plants 2025, 14, 276 10 of 17

Table 2. Germination inhibition of seeds after 7 days of exposure to bioactive formulations.

Treatments
A. hybridus B. rapa L. multiflorum L. sativa S. lycopersicum

IC50 (mM) 1 (95% Confidence Interval)

F1 0.07 (0.03–0.09) a 1.5 (1.3–1.7) a 0.24 (0.09–0.319) a 2.54 (2.21–2.9) a 1.33 (0.89–1.63) a

F2 0.07 (0.04–0.08) a 2.3 (1.7–2.9) b 0.14 (0.08–0.27) a 4.60 (3.36–10.00) b 0.99 (0.37–1.38) a

Atrazine 41.0 (25.1–54.1) c 300 (189.1–368.8) c 38.9 (25.1–56.1) c 383.5 (307.1–454.8) c 37.5 (15.3–49.1) c

1 Inhibition concentration (IC50) values between treatments were considered significantly different if their confi-
dence limits did not overlap. Different letters indicate significant differences. The experiment was performed
in triplicates.

3.2.2. Effect of Binary Formulations on Photosystem II (PSII)

The effect of formulations F1 and F2 on PS II at 5 mM is shown in Figure 6. At a
concentration lower than 5 mM, no significant differences among treatments were found.
At 1 and 2 days after application, Fv/Fm values were lower for F1 and F2 compared to the
controls. At 5 days after treatments, the Fv/Fm was zero due to the seedlings exhibiting
severe damage symptoms in response to F1 and F2. However, the seedlings’ exposure to
atrazine showed a gradual decline in values of Fv/Fm from 5 to 12 days after treatment.
In contrast, the control without herbicide did not show damage to PSII during the period
evaluated (Figure 6).
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3.2.3. Effect of Binary Formulations on Wheat Germination and Seedling Growth

The effect of F1 and F2 on wheat germination and seedling growth is shown in
Figures 7 and 8. F1 and F2 were toxic 1 day after application for both concentrations.
However, at 7 and 14 days after application, no significant differences were observed in
the germination percentages for F1 at 2 mM and F1 at 5 mM compared to the control.
Both formulations applied at 2 and 5 mM did not affect wheat germination 14 days after
application (Figure 7A,B). Regarding leaf growth, both F1 and F2 at 5 mM produced growth
inhibition at 7 and 14 days after application. Less growth was observed 7 days after
application for both formulations at 2 mM, and no significant difference was observed
14 days after application (Figure 8A,B).
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4. Discussion
4.1. Chemical Characterization

The presence of active compounds and the emulsifier in herbicidal formulations (F1,
F2) was confirmed by FTIR spectroscopy through the databases [32–35].

These emulsified formulations showed narrow dispersion sizes evidencing their stabil-
ity between 25 and 45 ◦C; however, a multimodal distribution was observed for emulsifiers
through DLS measurements. Current results are consistent with the complex chemical
nature of soy lecithin emulsifier, which is composed of a vast mixture of amphiphilic com-
pounds of diverse structures, mainly phospholipids and triglycerides, enabling different
assembly options [32–37]. Soy lecithin has been successfully used as a natural emulsifier to
improve the accessibility of different lipophilic nutrients or bioactives, showing a similar
behavior [38]. Emulsification of active compounds is a key strategy in the food, cosmetic,
and pharmaceutical industries [39]. The current results obtained from F1 and F2 suggest
microphase reorganization into new colloidal arrangements [40]. The goal of this approach
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is to form stable dispersions of nonpolar additives in a polar medium (it can also be used
in the opposite way) that can be properly dozed in commercial products [41].

TGA showed adequate thermal stability for nonanoic acid, citral, and thymoquinone
in F1 or F2 at all temperatures tested. From these experiments, it can be observed that
decomposition profiles depended on the chemical nature of active molecules; for example,
citral and thymoquinone are volatile compounds and evaporate at a temperature between
45 and 165 ◦C, while nonanoic acid evaporates at 100 ◦C and above [33,42,43]. Despite
ambient conditions involving the presence of atmospheric O2, our experiments were con-
ducted under N2 flux. At high temperatures, oxygen may react with active compounds [44],
but at temperatures tested, the oxidation reactions with small amounts of atmospheric
oxygen should have a minimum impact; therefore, our results can be considered a useful
approximation to actual thermal stability [33,42,43].

4.2. Herbicide Activity

The herbicide activity of F1 and F2 was evidenced on A. hybridus, B. rapa, L. multiflorum,
L. sativa, and S. lycopersicum during the germination process, and IC50 values were from
0.07 to 4.6 mM according to the bioactive formulation and species (Table 2). F1 was more
active than F2 in B. rapa and L. sativa. No differences between formulations were detected
in the sensitivity of A. hybridus, L. multiflorum, and S. lycopersicum to both formulations.
Previous studies reported by Sosa et al. [23] showed the action of plant-derived bioactive
molecules on ryegrass (L. multiflorum) and lettuce (L. sativa) with IC50 of 0.6 and 0.7 mM,
respectively. In agreement with our results, Dudai et al. [17] found different levels of
sensitivity to citral obtained from Cymbopogon citratus EO (42.6% geranial and 32.1% neral)
depending on the plant species (IC50 from 0.00008 to 0.000116 mM).

F1 was prepared with two bioactive agents, citral and nonanoic acid, and previous
research reported that citral reduces cell division, disrupts mitotic microtubules and cell
plates, and inhibits cell elongation by damaging cortical microtubules, whereas nonanoic
acid causes loss of membrane integrity and rapid cell death [18,44–46]. Meanwhile, F2
consists of nonanoic acid and thymoquinone, and the mechanism of action of thymoquinone
as an herbicide has not been determined. Herrera et al. [19] have reported insecticidal
activity of this bioactive through acetylcholinesterase inhibition. The structure–activity
research showed that topological and/or physicochemical properties can be related to
the biological effects on pests. Herrera et al. [47] proposed that electronic descriptors of
terpenes, such as the orbital electronegativity of the carbonyl group, are associated with
enzyme inhibition in pests. Hence, F1 and F2 may be developed as promising herbicides
against weeds and used in organic farming systems.

Current work demonstrates that the injuries caused by F1 and F2 on the photosynthetic
apparatus of A. hybridus were greater than those caused by atrazine treatment (Figure 6).
The measurement of Fv/Fm has been used to estimate the damage to the PSII [29,48,49]. In
non-senescent and mature leaves, the values of Fv/Fm are about 0.8 [50]. For the genus
Amaranthus, values of 0.72 were found for unstressed leaves [51]. In this study, the maxi-
mum values of Fv/Fm for the control treatment were about 0.7, and it was 0.1 1 day after the
F1 or F2 treatment (Figure 6). Concerning the effects of EOs and their pure compounds on
plant physiology, several studies reported a reduction in the chlorophyll content [11,18,52].
The studies of fluorescence emission analysis of photosynthetic apparatus have been used
to determine the mode of action of new herbicides [53,54].

Several studies found that some EO compounds can be phytotoxic against crops [55,56];
however, crop selectivity is a desirable trait in the development of herbicides, and the effects
of F1 and F2 on wheat germination and seedling growth were approached in the current
work. Both formulations were tested in pre-planting treatments, and they did not affect
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wheat germination when the sowing took place 7 or 14 days after application, depending
on the formulation and concentration (Figure 7A,B). Regarding leaf growth, both F1 and F2
at 5 mM produced growth inhibition of wheat seedlings at 7 and 14 days after application.
Less growth was observed at 7 days after application for both formulations at 2 mM, and
no significant differences were observed at 14 days after application (Figure 8A,B). It is
necessary to know the EO potential effect on food crops to determine the planting time at
which phytotoxicity does not affect the crop. In this sense, Synowiec et al. [57] reported
that caraway or peppermint EOs can selectively inhibit the growth of Echinochloa crusgalli
but not that of maize plants. Ibañez and Blázquez [58] pointed out that oregano EO is
the most harmful for cucumber and tomato seedlings, whereas rosemary EO is the least
harmful for seed germination in these seedlings. This study, conducted on a laboratory
scale, showed the stability and persistence of the formulations over time. We determined
that after 14 days of application, the formulations did not inhibit wheat germination or
growth of seedlings.

5. Conclusions
Two herbicidal formulations were developed on plant-based compounds. We demon-

strated that the functional groups of the active compounds in both binary formulations
were maintained, showing unimodal size distributions and thermal stability at the tem-
peratures tested. The formulations were non-selective and controlled a broad spectrum
of species (monocotyledons and dicotyledons); however, A. hybridus and L. multiflorum
were the most sensitive. The binary formulations of nonanoic acid/citral and nonanoic
acid/thymoquinone negatively affected the photosynthetic system of A. hybridus. The
phytotoxic effect of the formulations was tested on wheat germination, and they did not
inhibit plant germination and seedling growth after 14 days of application. However,
further research should consider the validation of the effectiveness of F1 and F2 at the field
scale. New herbicide formulations developed with different bioactive ingredients would
control a wide spectrum of weeds through multitarget-site effects, new modes of action,
and a low impact on the environment.
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