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Abstract
Attention shapes our consciousness content and perception by increasing the probability of becoming aware and/or better encoding a 
selection of the incoming inner or outer sensory world. Engaging interoceptive and exteroceptive attention should elicit distinctive 
neural responses to visceral and external stimuli and could be useful in detecting covert command-following in unresponsive patients. 
We designed a task to engage healthy participants’ attention toward their heartbeats or auditory stimuli and investigated whether brain 
dynamics and the heartbeat-evoked potential (HEP) distinguished covert interoceptive–exteroceptive attention. Exteroceptive attention 
yielded an overall flattening of the power spectral density (PSD), whereas during interoception, there was a decrease in complexity, an 
increase in frontal connectivity and theta oscillations, and a modulation of the HEP. Subject-level classifiers based on HEP features 
classified the attentional state of 17/20 participants. Kolmogorov complexity, permutation entropy, and weighted symbolic mutual 
information showed comparable accuracy in classifying covert attention and exhibited a synergic behavior with the HEP features. PSD 
features demonstrated exceptional performance (20/20). Command-following was assessed in five brain-injured patients with a modified 
version of the task. An unresponsive wakefulness syndrome/vegetative state patient and a locked-in syndrome patient demonstrated a 
willful modulation of the HEP and together with the explored brain markers suggest that patients were complying with task instructions. 
Our findings underscore the importance of attentional mechanisms in shaping interoceptive and exteroceptive sensory processing and 
expand the framework of heart–brain interactions employed for diagnostic purposes in patients with disorders of consciousness.
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Significance Statement

We show that directing attention to heartbeats or sounds induces distinct brain responses, enabling the identification of covert atten
tion to internal or external stimuli at the individual level. In a small group of brain-injured patients, we tested the potential of our task 
and the brain markers explored to detect command-following in patients with disorders of conscious. We show evidence of attention- 
driven changes in the cortical responses to heartbeats and brain dynamics during interoceptive–exteroceptive attention in a patient 
with unresponsive wakefulness syndrome and in a locked-in syndrome patient, suggesting higher levels of residual consciousness 
than conveyed behaviorally.
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Introduction
The brain continuously monitors the bodily and environmental 
signals, and the interplay between interoception and exterocep
tion determines whether a change in the system comes from 

within or from outside, triggering and shaping appropriate allo

static and behavioral responses (1–3). Although visceral signals 

are typically diffuse and not accessible to our conscious experi

ence, interoception is considered to have a decisive role in 
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perception, homeostatic responses, and motivational behaviors 
(4–7). Recent research has demonstrated that bodily rhythms 
contribute to general brain dynamics influencing cognition at 
multiple time scales (8–10). Furthermore, certain theories of con
sciousness propose that the monitoring of visceral information 
provides the first-person perspective required to define the limits 
between oneself and the outside, enabling internal and external 
awareness (4, 11).

Interoceptive attention
Attention has been described as a general mechanism that in
creases the detection of a desired signal while suppressing 
the response to irrelevant stimuli (12, 13). The modulatory ef
fect of attention on sensory processing has been consistently 
shown for top-down attention on sound (14, 15), touch (16), 
vision (17, 18), olfaction (19), and taste (20). Crucially, visceral 
information can not only be passively filtered by the brain 
but attention can also be directed toward bodily signals in a 
process known as interoceptive attention (5) impacting its 
cortical representation, which has been evidenced during in
teroceptive attention to respiratory cycle (21), and to the 
heartbeats (22).

The heartbeat-evoked potential
The heart has been the preferred candidate to assess the ef
fects of interoceptive attention at the individual level. The 
heartbeat is triggered by a dynamical pacemaker that is modu
lated by efferent brain pathways and informs the brain by as
cendant pathways (23, 24), of which subjects are normally 
unaware. Brain response to the heartbeats can be measured 
by averaging time-locked electroencephalogram (EEG) activity 
to the electrocardiogram (ECG) waveform R peak (25). The re
sulting heartbeat-evoked potential (HEP) is considered to re
flect the cortical processing of heart activity with and without 
awareness (26). The amplitude of the HEP is modulated by di
recting attention to the heart (22, 27, 28), correlates with the 
accuracy in heartbeat detection (28, 29), and decreases with 
sleep depth (30).

Brain dynamics during interoceptive 
and exteroceptive attention
Multiple processes related to top-down attention, such as re
source allocation, dynamical focus, inhibition, and selection, 
have been associated with cortical oscillations and their entrain
ment (31–35). While brain dynamics of sensory processing have 
been extensively studied in the context of top-down attention 
for various exteroceptive modalities, investigations specifically 
comparing the electrophysiological response during interoceptive 
attention to the heart and exteroceptive attention remain limited. 
Two studies based on visual and heartbeat detection tasks re
ported a trade-off between the HEP amplitude and visually evoked 
potentials during interoceptive attention, accompanied by an in
crease in parieto-occipital alpha power (36, 37). In intracranial re
cordings, increases in high-frequency oscillations (35–110 Hz) in 
interoception-related cortical regions during heartbeat tapping 
and an increase in lower frequencies (1–35 Hz) when participants 
were tapping following an external rhythm have been observed 
(38). Together, these results suggest that time locked and ongoing 
brain dynamics during interoceptive and exteroceptive attention 
can provide information on whether attention is oriented toward 
the internal or the external world.

Perceptual learning and attention
Casting attention to a specific sensory channel may also enhance 
the representation of a stimulus that individuals are not actively 
scanning or may even be unaware of. An interesting case is pos
ited by the perceptual learning of statistical regularities in noise. 
In the auditory modality, it has been shown that cross-trial repe
titions of identical white noise fragments can result in persistent 
memory formations as indexed by participant’s detection accur
acy (39, 40), memory-evoked potentials (41), and intertrial phase 
coherence (ITPC) in the delta band (41, 42). Although the random 
white noise snippets have no semantic information or salient 
spectral features, their encoding is long lasting (39), and brain sig
natures of a mnemonic response are elicited even when the repe
titions are unbeknownst to the participants (41, 43). Evidence on 
the effects of attention on implicit learning of these random 
acoustic patterns suggests that diverted attention hinders percep
tual learning of the repetitions (43). Accordingly, orienting atten
tion toward bodily rhythms should result in a worse encoding of 
these inconspicuous regularities, reflecting interoceptive or ex
teroceptive attention despite stimuli being hidden and orthogonal 
to task demands.

Covert attention in unresponsive patients
As specified above, cortical and cardiac responses to external and 
internal stimuli are influenced by attention and could therefore be 
used to detect covert attention. Developing measures of covert at
tention at the individual level can have major clinical implications 
as it could be applied to improve the detection of command- 
following responses (44–46) in noncommunicative patients, such 
as patients who suffer from disorders of consciousness (DoC) 
(47). Assessing the level of awareness in these patients poses a sig
nificant challenge as expertise is required to differentiate between 
reflexes and volitional behavior (48) and overt responses may be 
impaired (49). Indeed, the distinction of unresponsive wakeful 
syndrome, also referred to as vegetative state (UWS/VS), charac
terized by arousal without purposeful responses, from the minim
ally conscious state (MCS), where signs of intentional behavior are 
occasionally present, leads to significant misdiagnosis rates (50). 
Moreover, some patients show a dissociation between behavior 
and brain response, referred to as cognitive motor dissociation 
(51), where residual consciousness can only be detected by func
tional neuroimaging methods. Finally, patients with locked-in 
syndrome (LIS), who are conscious but cannot show responses 
due to severe paralysis, may initially be misdiagnosed as UWS/ 
VS (52). In this clinical scenario, active paradigms that measure 
command-following but that do not demand motor or verbal re
sponses are especially appropriate, and a positive result provides 
significant information on the level of consciousness (53). 
Crucially, probing the ability to recognize external and internal 
signals would give essential information on the level of self- 
awareness of these individuals.

This study
We propose a task based on sustained selective attention to com
pare the effects of interoceptive and exteroceptive attention on 
the encoding of heartbeats, and salient auditory targets, as well 
as their effect on the perceptual learning of inconspicuous repeti
tions of white noise. We hypothesized that increased attention to 
the heartbeats should elicit an increased brain response to intern
al rhythms and a decreased response to the external stimuli, with 
an opposite pattern during exteroceptive attention. Directing at
tention to an external sound or to the heartbeats should be 
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characterized by specific brain dynamics and should influence the 
ability to learn regularities passively. Importantly, we elaborated 
this study with the underlying motivation of applying this para
digm to obtain insights about the nature of attentive processes, 
and therefore, our main goal was to investigate the suitability of 
different cortical and bodily measurements as markers to predict 
attentional focus at the individual level. Finally, we probed the 
clinical potential of our task on a small cohort of brain-injured 
patients.

Results
We presented white noise with embedded salient auditory targets 
only (AmN), or with the same targets together with specific white 
noise repetitions to which participants were naive (RepRN; 
Fig. 1A). Exteroceptive attention or interoceptive attention was eli
cited by asking participants at the beginning of each trial to report 
the number of targets or the number of heartbeats they felt. EEG, 
ECG, and respiration were recorded. Event-related potentials, 
rhythmic and aperiodic EEG activity, complexity, and connectivity 
were assessed at the group level, and subject-level classifiers were 
used together with time-locked and dynamical features to classify 
attentional focus (Table S2). Finally, an adapted version of the task 
was presented to a small group of unresponsive patients.

Task performance of healthy participants: 
heartbeats and AmN count
Healthy participants were able to focus their attention on the 
sound during sound-attention trials, as shown by the proportion 
of AmN reported (Fig. 2A). The performance during interoceptive 
attention showed greater variability across participants but a 

correlation between interoceptive and exteroceptive accuracy 
was found (ρ(20) = 0.63, P = 0.002), suggesting an overall engage
ment in the task. In order to maximize brain responses to the noise 
repetitions, trials had a high density of RepRN, importantly, the 
RepRN did not interfere with participants’ ability to detect their 
own heartbeats, as interoceptive accuracy did not differ between 
trials with plain white noise and trials with embedded noise repe
titions (ANOVA F(1, 21) = 0.056, P = 0.82; Fig. S3). Since detecting 
AmN was effortless for participants, performances below 70% 
were seen as a lack of engagement in the task. As a result, we ex
cluded two subjects from further analysis.

Heart activity and respiration are not modulated 
by exteroceptive–interoceptive attention
Mean heart rate (HR) and mean HR variability (HRV) were meas
ured for each 31-s trial and were contrasted during heart- and 
sound-attentional conditions (see Supplementary Material). 
There were no differences in HR (HR heart = 75.13 beats per mi
nute [BPM], HR sound = 75.44 BPM, t = 0.94, P = 0.36, β = 0.26, 95% 
credible interval (CrI) = [−0.43, 0.96], BF = 0.14), nor in HRV (HRV 
heart = 32.88 ms, HRV sound = 33.15 ms, t = 0.32, P = 0.75, β = 0.39, 
95% CrI = [−1.38, 2.17], BF = 0.12) between conditions (Fig. 2B). To 
assess whether the AmN prompted a cardiac deceleration, the 
interbeat intervals for the first, second, and third heartbeats 
following sound onset were compared with baseline (see 
Supplementary Material). Independently of condition, there 
was no effect of AmN presentation on the interbeat intervals 
posttarget (ΔIBIB0 = 2.13, t = 0.85, P = 0.39, ΔIBIB1 = 0.67, t = 0.27, 
P = 0.79, ΔIBIB2 = −1.88, t = −0.75, P = 0.45; Fig. S1B). Moreover, 
attention did not affect the ECG waveform as suggested by the 
negative results obtained for a point-by-point analysis (Fig. S1A) 

A B

Fig. 1. Experimental design and subject-level analysis. A) The task consisted of 64 trials of 31 s of continuous white noise with bursts of AmN at random 
times (represented with black lines over noise). On each trial, participants were instructed to focus their attention on the white noise (32 trials) or their 
heartbeats (32 trials) and were asked to report the counted number (AmN or heartbeats) at the end of each trial. Half of the trials had embedded snippets 
of repeated white noise within and between trials (SRepRN). Half of the participants were exposed to a set of four RepRN during the sound condition 
(represented with darker colored lines) and to another set of four RepRN during the heart-attention condition (represented with lighter colored lines), this 
was counterbalanced across participants, such that each participant was exposed to a specific noise repetition in only one attentional condition. B) For 
the HEP classifier, for each participant, a cluster permutation analysis was carried out to test for differences in HEP in the remaining participants. The 
channels and time points in the canonical clusters were used to extract the HEP features on the left-out subject data. For each electrode taking part in the 
clusters, the mean (μ), the SD (std), the minimum (min), and the maximum (max) voltage in the time window spanning the cluster were extracted for each 
epoch of the subject withheld from the clustering analysis. For the PSD subject-level classifier, each trial was divided into 5-s sub-epochs using a sliding 
window with a 1-s step, resulting in a 4-s overlap between epochs. Power was obtained for each sub-epoch and averaged over the delta, theta, alpha, 
low-beta, and high-beta bands, resulting in five spectral features per channel. As an example of the combined classifiers, the PSD + HEP classifier 
combining both spectral and time-locked features is represented. The HEP features were derived from the average brain response to the heartbeats 
occurring within the 5-s sub-epoch, from which the spectral features were also extracted (i.e. heartbeats 1, 2, and 3 for the time window selected).
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as well as a by a temporal cluster analysis (minimum cluster P =  
0.46). Furthermore, we tested whether our task prompted changes 
in respiratory activity that could influence brain responses to in
ternal and external signals. Respiratory frequency did not differ 
across conditions (BR heart = 0.249 Hz, BR sound = 0.247 Hz, t =  
−0.61, P = 0.54), nor were there differences in the coefficient of 
variation of the breathing rate (CVBR heart = 0.174, CVBR sound  
= 0.166, t = −1.28, P = 0.20; Fig. S3).

HEP and AmN-evoked responses are oppositely 
modulated by interoceptive and exteroceptive 
attention
The effect of attention on the cortical response to the heartbeats 
(HEP) was evaluated with a cluster permutation analysis 
(see Group-level EEG analysis in Supplementary Material). The 
analysis revealed two significant clusters. A posterior cluster com
prised of 26 channels spanning from 179 to 318 ms (t-sum = 1,382, 
P = 0.022) such that voltage was higher during heart-attention 
condition, and an anterior cluster comprised of 20 electrodes 
from 175:316 ms (t-sum = −1,398, P = 0.022), for which voltage 
was more negative when attention was directed toward the heart 
(Fig. 3B). The difference in amplitude for the HEP did not correlate 
with the subject’s interoceptive accuracy, and not all partici
pants showed this modulation (Fig. S4A and B). An increase in 
ITPC for the delta band was observed in posterior electrodes 
(t-sum = 7,480, P < 0.001, time = −25:600 ms; Fig. S4C), and for ITPC 
in the theta band (t-sum = −1,381, P = 0.049, time = 344:600 ms). 
Moreover, no differences in power were obtained for the frequency 
bands tested, suggesting that the changes in the HEP are a result of 
phase modulations at low frequencies. Differences in brain response 
to amplitude-modulated noise targets (AmN) during the attentional 
conditions were also assessed using cluster permutation analysis. 
An increased response to AmN was observed when attention was di
rected to the sound (Fig. 3A) as indexed by five significant clusters 
spanning from 68 to 850 ms. We report here two of the clusters 
that summarize the topography of the effect. A later posterior cluster 
from 377 to 675 ms (t-sum = −13,983, P < 0.001) and an early anterior 
cluster spanning the interval between 68 and 367 ms (t-sum =  
−8,184, P < 0.002).

Interoceptive–exteroceptive attention 
and perceptual learning
In order to assess the effects of interoceptive attention to the 
heart and attention to sound to inconspicuous noise repetitions, 

evoked responses to the white noise repetitions (RepRN) and plain 
white noise (RN) were compared within each condition. Voltage 
differences were found between the RepRN and RN during sound 
attention as indexed by a widespread cluster (time = 0–209 ms, 
t-sum = 5,586, P = 0.003). In addition, ITPC coherence in the delta 
band was higher during sound attention to the concatenations 
of noise repetitions (structured repetitions, SRepRN) compared 
with trials with plain white noise (time = 1.40–2.57 s, t-sum =  
23,072, P = 0.009; Fig. S5C), and no difference in power was found 
(clusters P > 0.13). Conversely, no differences were obtained 
for the analog analyses between RepRN during trials of heart- 
directed attention and trials in which attention was directed to 
the heart but plain white noise was presented (Fig. S5D). In order 
to assess perceptual learning during heart and sound attention, 
evoked responses to the first to the fifth RepRN forming the 
SRepRN stimuli were separately averaged. Nevertheless, no posi
tive results were obtained from the comparison of the first to fifth 
RepRN against plain white noise within each condition (Fig. S5B).

Rhythmic and aperiodic activity during heart and 
sound attention
Brain oscillatory and aperiodic dynamics were contrasted between 
heart and sound-directed attention trials (see Supplementary 
Material). A group effect of attentional condition was found for 
the aperiodic activity. Specifically, during interoceptive attention, 
the aperiodic exponent of the power spectrum was lower than 
during exteroceptive attention, and this effect was centrally local
ized in the scalp (t-sum = 24.37, P = 0.007). In addition, differences 
were found in the oscillatory activity. The bandwidth of the beta- 
band peak was smaller (t-sum = −8.25, P = 0.014), and frontal theta 
power (t-sum = 9.80, P = 0.028) was higher during heart-directed 
attention (Fig. 4A and C).

Complexity and connectivity group analysis
Brain dynamics during attention to the heartbeats and the sound 
were contrasted using Kolmogorov complexity (KC), permutation en
tropy (PE), and weighted symbolic mutual information (wSMI). KC 
was lower during interoceptive attention as shown by a widespread 
frontocentral parietal cluster (t-sum = −112.77, P = 0.001). In add
ition, connectivity was higher during attention to the heart trials as 
indexed by an increase in wSMI in a frontal cluster (t-sum = 17.87, 
P = 0.026). Finally, PE was lower during interoceptive attention in 
centroparietal electrodes (t-sum = −23.39, P = 0.032; Fig. 4B).

A B C

Fig. 2. Task performance across subjects and heart activity. A) Correlation between exteroceptive accuracy as the percentage of AmN reported over the 
total number of AmN presented during trials of sound-directed attention and the mean interoceptive accuracy across trials of heart-directed attention. B) 
HR (top) and HRV (down) for all trials during heart and sound-directed attention. C) Average ECG waveform for all subjects during sound and 
heart-attention conditions with a 95% bootstrap CI.
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Time-locked activity, power, connectivity, 
and complexity classifiers
Subject-level Adaboost classifiers were implemented using the 
features for each of the individual markers (HEP, PSD, PE, wSMI 
and KC) and by combining the time-locked information (mean, 
standard deviation, minimum and maximum for the cortical re
sponse to each heartbeat) with the features of each dynamical 
marker (PSD, PE, wSMI, KC) (Table S2). Classifiers based on power 
across the delta, theta, alpha, low, and high beta showed the best 
performance, accurately classifying all participants’ attentional 
condition with an overall area under the receiver operating char
acteristic curve (AUC) = 0.75 ± 0.10, with a performance superior 
to the one obtained for per-band classifiers (Figs. 5A, S6, and S7). 
The classifier based on the HEP features classified above chance 
17 out of 20 participants with a mean AUC = 0.55 ± 0.03, and the 
AUC score was correlated to the number of epochs (ρ(18) = 0.46, 
P = 0.043) which was not the case for the power spectral density 
(PSD) classifier (ρ(18) = 0.19, P = 0.41), suggesting that increasing 
the amount of data would yield more accurate results for 
HEP-based classifiers. The ECG classifier only classified above 
chance six participants (AUC = 0.50 ± 0.06), which was unsurprising 
as no differences in cardiac activity were found in the group ana
lyses. These participants showed differences in the ECG in a time 
window consistent with the group cortical effect. Complexity and 

connectivity-based classifiers showed comparable performance 
with the HEP-based classifier. The PE-based classifier was able to 
classify 17 participants (AUC = 0.59 ± 0.06), the wSMI-based 
classifier resulted in 16 participants being classified above chance 
(AUC = 0.57 ± 0.07) and the classifier based on KC accurately 
classified 18 participants (AUC = 0.59 ± 0.06; Figs. 5A and S7). No 
significant improvement in classification was obtained for the 
combination of spectral and HEP features (AUC = 0.75 ± 0.09, t =  
−1.48, df = 19, P = 0.92) nor when combined with KC features 
(AUC = 0.60 ± 0.06, t = 1.57, df = 19, P = 0.066). Nevertheless, an 
increase in overall classification was obtained when combining 
the time-locked features to PE (AUC = 0.61 ± 0.05, t = 3.63, df = 19, 
P < 0.001) with three more participants classified (20/20), and to 
wSMI (AUC = 0.59 ± 0.07, t = 3.01, df = 19, P < 0.001), with two more 
participants classified (18/20; Fig. 5B).

Brain-injured patients show a modulation 
of the HEP and ongoing brain activity consistent 
with command-following
Three UWS/VS, one MCS−, and a LIS-diagnosed patients were pre
sented with a modified version of the task (see Supplementary 
Material). Feature extraction was carried out and fed to classifiers 
to differentiate between trials of heart- or sound-directed atten
tion as a proxy measure for command-following. For the LIS 

A B

Fig. 3. HEP and AmN evoked are oppositely modulated by interoceptive and exteroceptive attention. A) Brain response to AmN (sound onset at 0 s). An 
early anterior (68 to 375 ms, t-sum = −9,415, P < 0.001) and a later posterior (377 to 675 ms; t-sum = −13,983, P < 0.001) significant clusters were found. B) 
HEP during heart and sound attention (heartbeat onset at 0 s). Two significant clusters were obtained. A posterior cluster spanning from 179 to 318 ms 
(t-sum = 1,382, P = 0.022) and an anterior cluster from 175 to 316 ms (t-sum = −1,398, P = 0.022). The topography below each plot is the voltage difference 
between heart and sound conditions. Gray shading marks the temporal span of clusters and black dots indicate channels in clusters. The ERPs shown are 
the average voltage across channels for each cluster with a 95% bootstrap CI.
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patient, we expected a brain response consistent with the one eli
cited during the interoceptive and exteroceptive attention condi
tions in healthy participants as these patients are conscious. 
Although UWS/VS are patients who clinically do not show re
sponses to the external world and MCS− are individuals who 
show basic cortically mediated behaviors, such as visual fixation 
and pursuit and automatic responses (54, 55), in a misdiagnose 
scenario covert volitional responses could be present.

P1 (UWS/VS) was only classified by KC (AUC = 0.56 ± 0.03, 
P = 0.014, all rest P > 0.09). P2, also a UWS/VS patient, was classified 
above chance by the PSD features (AUC = 0.56 ± 0.03, P = 0.029), and 
although the HEP features were not sufficient for an above chance 
classification (AUC = 0.51 ± 0.01, P = 0.38), combining these time- 
locked features with the spectral and KC information improved 
the AUC scores (PSD: AUC = 0.58 ± 0.03, P = 0.002; KC: AUC = 0.60  
± 0.03, P = 0.002) yielding a successful classification. No EEG marker 
could differentiate between attentional conditions for UWS/VS 
patient P3. The attentional state of patient in LIS (P4) was not 

classified by the single marker classifiers, but combining the HEP 
features with the PSD, KC, and PE resulted in an above-chance clas
sification (PSD + HEP: AUC = 0.54 ± 0.02, P = 0.042; KC + HEP: AUC =  
0.55 ± 0.02, P = 0.013; PE + HEP: AUC = 0.55 ± 0.02, P = 0.026). Finally, 
the MCS− patient tested at the Milan center (M1) was successfully 
classified only by the PE features (PE: AUC = 0.56 ± 0.02, P = 0.007; 
Fig. 6A). Both patients who showed increased AUC scores when in
corporating the HEP features (P2 and P4) show a modulation of this 
ERP on a time window and electrodes consistent with healthy par
ticipants’ responses (Fig. 6B). A modulation of the HEP was not ob
served for the rest of the patients.

Discussion
The present study aimed to develop and test an experimental 
paradigm that would allow us to infer the attentional focus of 
an individual from brain and bodily responses to internal and 
external stimuli. The hypothesis underlying this work is that 

A

C

B

Fig. 4. Interoceptive and exteroceptive attention show different brain dynamics. A) Periodic and aperiodic components of the power spectrum model fit 
during heart-attention trials (top), sound-attention trials (middle), and t-values for the difference between the components during both conditions 
(bottom). From left to right: offset value (off), aperiodic exponent (exp), and aperiodic-adjusted power (APW), and bandwidth (BW) for theta and beta 
bands. B) KC, PE, and wSMI. Top: markers topography during attention to the heart. Middle: markers topography during sound attention. Bottom: t-values 
for the difference between markers during heart- and sound-attention trials. White dots indicate sensors in significant clusters. C) Left top: average PSD 
for channel Fz with aperiodic and periodic model components for each condition. Right top: aperiodic fits for all subjects and conditions for Cz, C1, and 
FCz (a subset of channels were selected for visualization purposes). Bottom left: periodic fits for the theta range (4:8 Hz) for all subjects and conditions for 
channels Fp1, Fp2, and AFz. Bottom right: periodic fits for the beta range (15:25 Hz) for all subjects and conditions for channels F3, FC1, and FCz.
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attention has an impact on our consciousness content and per
ception, such that it enhances the probability of becoming aware 
and, or, of better encoding a selection of the incoming inner or out
er sensory world. For this purpose, we designed a task to engage 
interoceptive and exteroceptive attention by orienting partici
pants to their heartbeats or to salient auditory stimuli, and meas
ured their cortical, cardiac, and respiratory activity, while the 
effects of attention on passive encoding were probed using con
cealed noise repetitions.

Interoceptive attention to heartbeats modulates 
their cortical encoding
In agreement with previous findings (22, 38), our results show that 
directing attention to the heartbeat yields a modulation of the cor
tical response to the heartbeats. In addition to replicating the 
group effect on the HEP during interoceptive attention, we have 
shown the strong nature of this modulation, showing it can 
reliably classify attentional states at the single-subject level. 

Although HEP amplitude can be modulated by the respiratory 
cycle (56), exhalation and inhalation showed no differences be
tween attentional conditions. Moreover, no modulation of the car
diac rhythm or the ECG waveform was found at the group level. 
In addition, cardiac activity was not effective in detecting covert 
attention. Together, our results suggest that the cortical differ
ences were not driven by changes in the afferent signals but are 
a result of a top-down modulation on the cortical processing of 
the heartbeats consistent with predictive coding accounts (57–59). 
Under this view, visceral sensory representations are shaped 
by empirical a priori of what the “interocept” should be in terms 
of content and precision, and how far were they from the afferent 
inputs, expressed as feedforward prediction error signals. 
It has been postulated that the computational operation of 
attention is to optimize the precision of sensory signals by 
modulating the gain of the prediction feedforward error at par
ticular levels in the hierarchy which would result in increased 
neural responses to specific features or stimuli in relevant cor
tical areas (60).

A B

Fig. 5. Brain dynamics and brain response to the heart are informative of attention orientation at the individual level. A). Subject-level classifiers for PSD, 
PE, wSMI, KC, HEP, and cardiac activity (ECG) features. Left: average receiver operating characteristic (ROC) curves across cross-validation folds and 
subjects. Shading corresponds to the SD. Right: average AUC across folds with 95% bootstrap CI for each subject and classifier. Subjects are sorted 
considering the AUC for the spectral density classifier. B) Combined classifier of dynamical features and HEP features. Left: average ROC curves across 
cross-validation folds and subjects. Shading corresponds to the SD. Middle: average AUC across folds with 95% bootstrap CI for each subject and 
classifier. Right: ratio between the mean AUC for the individual classifier and the mean AUC for the combined classifier. Subjects are sorted considering 
the AUC for the spectral density classifier (not combined with HEP features).
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The HEP voltage modulation was accompanied by an increase 
in ITPC in the delta and theta band, with no differences in power, 
hinting at a phase-locking reset effect of attention on ongoing 
neural dynamics. It has been reported that increases in HEP 
amplitude are associated with increases in ITPC in these 

frequency bands (30, 61) and that during resting state the heart
beat produces a cortical synchronization in the theta band (62). 
In this line, we found an increase in theta connectivity 
in frontocentral electrodes during interoceptive attention as 
measured by wSMI.

A B

Fig. 6. Brain dynamics and brain response to heartbeats to detect command-following in noncommunicative patients. A) Left: subject-level classifiers for 
PSD, PE, wSMI, KC, and HEP features. Average AUC across folds with 95% bootstrap CI for each patient and classifier. UWS/VS: unresponsive wakefulness 
syndrome/vegetative state; LIS, locked-in syndrome; MCS−, minimally conscious state minus. Middle: combined classifier of dynamical features and HEP 
features. Average AUC across the 50 runs of the classifier and their SD. Right: ratio between the mean AUC for the individual classifier and the mean AUC 
for the combined classifier. B) HEP modulation by attention for patients P2 and P4. Top: average HEP response for electrodes for which an effect of 
attention is observed in healthy participants. Bottom: F-values for point-by-point one-way ANOVA analysis between heartbeat-evoked responses during 
attention to heart and attention to sound. Black dotted lines represent P < 0.05. Blue dotted lines represent P < 0.05 after Bonferroni correction. Gray 
shading indicates the time window for the observed effect of attention on healthy participants.
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The modulation of the HEP appears to be unaffected by 
whether participants could detect their heartbeats, as the 
attention-driven changes in the HEP were not correlated to intero
ceptive accuracy scores. It is possible that awareness of one’s 
heartbeat is not necessary to trigger cortical changes in heartbeat 
processing, similar to how hidden noise repetitions were better 
encoded during sound-attention trials despite going unnoticed 
by participants. In addition, multiple criticisms concerning the re
liability of heartbeat counting have been put forward. Responses 
can be influenced by the knowledge participants have of their 
own HRs, and as these tasks are typically measured during rest, 
the HRV is very small and therefore hard to perceive and report 
(63). Moreover, it has been reported that the belief about one’s 
own HR is a better predictor of the number counted than the ac
tual quantity of heartbeats (64). Whether the modulation of the 
HEP is specific to interoceptive processing of the heartbeats (26), 
an enhancement to somatosensory afferent information from 
the skin (65), or a general increase in the encoding of visceral sig
nals, cannot be determined by our study. Nevertheless, recent re
search shows that counting heartbeats and counting respiratory 
cycles both elicited an increase in the HEP amplitude during an 
early time window (230 ms) for heartbeats elicited during the 
exhalation phase, with a modulation for later time windows 
(400 ms) only during cardiac interoception (66). This suggests 
that increases in the cortical response to heartbeats are not specif
ic to heartbeat attention, but can occur whenever attention is di
rected toward visceral signals and interferences by external 
stimuli are kept low. Regardless of whether the participant’s men
tal content corresponded with a bodily sensation of their heart
beats or some form of general implicit visceral perception, we 
show that the HEP constitutes an effective marker of internal 
and external attention.

Exteroceptive attention to sound induces an 
overall gain in auditory processing
Brain response to AmN was substantially affected by attention. 
This was expected as participants had to detect an infrequent 
and salient sound, which typically elicits a P300 response (67). 
Although the effect of attention on perceptual learning of noise 
repetitions was not as prominent, the white noise repetitions 
were better encoded during sound-attention trials, as shown 
by the ERP and ITPC results. No cortical response was found 
for the first repetition of the SRepRN, which would have indexed 
the long-term learning of the snippets and not a within SRepRN 
short-term learning effect. Our outcome could be the result of a 
lack of power, and increasing the number of repetitions in 
future work would clarify this. In fact, although an increased re
sponse is visually noticeable for the third repetition during 
sound attention and the fourth repetition during heart atten
tion in comparison with plain white noise (Fig. S5B), no statistic
al differences were obtained, supporting the hypothesis that we 
lacked power. From our results, we can only infer that during 
exteroceptive attention, there was a discernible enhancement 
of auditory processing, leading to an overall increase in the 
brain response to the RepRN. Unlike previous research, our ex
perimental design holds a distinctive advantage. Modulating at
tentional focus within the same task with all RepRN presented 
in both conditions across participants makes it less likely that 
results are driven by some noise seeds being more easily per
ceived than others and enables measuring concurrent learning 
effects.

Brain dynamics during heartbeat and sound 
attention
Multiple studies have focused on comparing the effects of internal 
attention (68) on the processing of external stimuli using para
digms based on mental operations such as mind wandering (69– 
73) or mental imagery (73), showing a decrease of sensory 
evoked potentials during attention to internal information, con
sistent with our findings. Concerning brain dynamics, these 
paradigms show increases in alpha power (74, 75) associated 
with a top-down inhibition of cortical areas that would process 
distractor-relevant information (76), modulations of theta power 
reflecting working memory demands (77, 78), and increases in 
the theta–beta ratio during internal thought production and low 
alertness (79, 80). However, scarce studies have directly compared 
brain dynamics during interoceptive and exteroceptive attention. 
In our study, and following previous research (38), power was low
er during interoceptive attention compared with exteroceptive at
tention for frequencies between 1 and 30 Hz. Our methodological 
approach allowed us to attribute this difference to an overall 
change in aperiodic activity such that power at lower frequencies 
is increased in relation to power at higher frequencies during the 
interoceptive task. An overall steepening of PSD has been shown 
during anesthesia (54, 81, 82) as well as during sleep (54), and 
has mechanistically been attributed to changes in the excita
tion–inhibition ratio in the brain (55, 82). Functionally, increases 
in PSD slope have been observed during response inhibition (83, 
84), and interpreted as a marker of top-down control required to 
sustain goal representations (85). During both interoceptive and 
exteroceptive attention conditions, participants were demanded 
to carry out a detection operation. Nevertheless, the heartbeats 
and the auditory stimuli we employed have intrinsically different 
properties and probably elicited different behaviors. Cardiac ac
tivity is a rhythmic stimulus; therefore, counting heartbeats was 
a repetitive and sustained operation. On the contrary, AmNs oc
curred randomly and scarcely, and participants would incur in 
counting none or a few times on each trial. Finally, given the 
lack of salience of heartbeats, interoceptive-attention trials were 
probably more demanding for participants, which could explain 
the observed aperiodic activity differences. In addition, our results 
show that interoceptive attention was characterized by less com
plex or regular brain dynamics, with a topographical widespread 
pattern. Brain signal complexity is associated with the number 
of independent functional sources, such that the higher the 
complexity the less correlated the neural sources sustaining 
the overall activity (86). Lower complexity during interoceptive 
attention is consistent with a more overall stable brain configur
ation compared with the exteroceptive attention condition.

Together with changes in the background activity, the beta- 
band peak was narrower, and theta power was higher during 
heart-attention trials. As mentioned, previous research has asso
ciated a higher theta–beta power ratio with episodes of mind wan
dering (87) which are typically elicited during sustained and 
repetitive tasks. Considering that the HEP was modulated during 
the interoceptive condition, we argue that participants were ac
tively engaged during the task making stimulus-independent 
thought unlikely, and the rhythmic changes observed would be 
a reflection of cognitive effort. In line with this, frontal theta has 
been associated with target detection (88), fatigue (89), and overall 
cognitive control (90).

PE and wSMI features combined with the HEP information en
hanced the classification, signaling that these linear and non
linear measures convey mutual information. This behavior was 
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not observed in the case of spectral features or KC. For KC, there 
was an improvement but it did not reach significance. Possibly, 
the increase in information could not compensate for the detri
mental effect of having a larger number of features in the result
ing classifier. The spectral and the HEP classifiers performance 
were correlated (Fig. S8), which suggest that the time-locked in
formation is already embedded within the signal power decom
position, rendering both groups of features redundant and 
leading to no improvement. Including all spectral bands as fea
tures yielded a better classifier than using each power band by 
itself, which is consistent with a general change in brain dynam
ics during our interoceptive–exteroceptive attention manipula
tion. Overall, the information conveyed by the HEP seems to be 
particularly relevant to complement nonlinear markers, espe
cially when AUC scores are low and there is potential to improve 
classification.

HEP and dynamical features act synergically to 
classify the attentional state of two brain-injured 
patients
The potential of this tool to detect command-following was 
probed in a small group of brain-injured patients. Classification 
by the proposed features showed very different behaviors across 
patients which is expected in a small sample with such heteroge
neous etiologies. P1 showed inconsistent results across classifiers, 
with PE and PSD classifiers showing a below-chance performance, 
and KC an above-chance performance. This can occur when the 
models fit to noise in the training sets and is suggestive of no dif
ference in neural activity during both attentional conditions. P3, 
behaviorally diagnosed as UWS/VS, did not show AUC values 
above chance for any of the markers, and M1, a MCS− patient, 
was only classified by the PE features, likely indexing no 
command-following behavior. Crucially, the brain responses of 
the LIS patient (P4) and a patient with a UWS/VS diagnosis (P2) 
were reliably classified by combining dynamical and HEP features. 
Although the classification accuracies were lower in these two pa
tients, probably due to less sustained attention and a more noisy 
environment, the consistency across classifiers together with 
changes in the cortical responses to heartbeats topographically 
and temporally consistent with healthy participants’ responses 
suggests that patients were complying with task instructions. 
The detection of command-following in the LIS represents a 
positive control of our task as consciousness is preserved in 
these patients and command-following is therefore expected. 
Importantly, our assessment suggests that P4 had higher levels 
of residual consciousness than conveyed behaviorally, and this 
would mean a mismatch between the patient’s conscious level 
and the clinical diagnosis. Our results expand the framework of 
heart–brain interactions employed for DoC diagnostic purposes 
(91–93), by showing for the first-time attention-driven changes 
in the HEP in two brain-injured patients with severe impairments 
of sensory, motor, and executive functions. Compared with other 
command-following tasks (44, 46), our paradigm possesses the ad
vantage of contrasting brain responses to two active instructions 
(instead of active instructions vs. resting state), which in addition 
are less demanding compared with executing complex imaginary 
behaviors or actual movements. Beyond command-following, we 
argue that the ability to distinguish between internal and external 
signals in DoC patients could be interpreted as a signature of pre
served self-awareness. Moreover, the proposed task can provide 
information on different levels of information processing inde
pendently of the patient following the instructions, as passive 

cortical responses to sounds, and heartbeats can be measured, 
as well as assessing EEG markers that have already proven robust 
in indexing the state of consciousness in DoC patients (93, 94). Our 
results are a proof of concept of the potential of this novel tool to 
detect command-following among patients who are unable to 
convey explicit behavioral responses and the feasibility of its ap
plication in clinical settings. Future work assessing a bigger cohort 
of patients should be carried out to comprehensively evaluate its 
diagnostic as well as prognostic capabilities.

Conclusions and future directions
In this work, we explored the modulatory effects of interoceptive– 
exteroceptive attention on the cortical processing of bodily and 
auditory signals. We report an overall gain in auditory processing 
during sound attended trials, as indexed by an increased cortical 
response to target sounds as well as a better encoding of noise rep
etitions, and a heightened cortical response for heartbeats when 
attention was directed to the cardiac rhythm. During the extero
ceptive attention condition, an overall power increase across the 
frequency range of 1–30 Hz was observed, whereas during the in
teroceptive attention condition, there was a decrease in complex
ity, together with an increase in theta and a decrease in beta 
oscillations. Our findings demonstrate that directing attention to 
the cardiac rhythm and to auditory stimuli elicits distinct neural 
responses that can be employed to track covert attention at the 
individual level. Importantly, we show that the brain markers 
studied in this work can be useful in detecting EEG proxy of 
command-following in unresponsive patients. Crucially, the pro
posed paradigm provides multiple layers to explore information 
processing and awareness in these patients and requires equip
ment commonly available in clinical environments, rendering 
its application across centers straightforward.

Materials and methods
Healthy participants
Twenty-two healthy volunteers participated in the task (13 fe
males, average age, 30.63 ± 3.39). All participants reported having 
normal hearing and had not been exposed to the stimuli before 
the experiment. The study was approved by the ethics committee 
of the Facultad de Psicología, Universidad de la República 
(Uruguay). All participants gave informed consent and were not 
awarded any economic or academic retribution, according to the 
nationally established guidelines (Decree N379/008).

Experimental design
The task consisted of 64 trials of 31 s of continuous white noise 
with bursts of AmN at random times. At the beginning of each tri
al, participants were instructed binaurally to close their eyes and 
focus their attention on the white noise (32 trials) or their heart
beats (32 trials), and to count the number of AmN or heartbeats, 
respectively. At the end of each trial, participants were audio- 
visually instructed to open their eyes and report the number 
using the keypad. Participants were not given any specific in
struction on how to count their heartbeats but were exhorted 
to not measure their pulse. Half of the trials had embedded snip
pets of repeated white noise within and between trials (RepRN) 
that were not disclosed to participants (Fig. 1A). At the beginning 
of the experiment, an eight-trial practice took place to ensure 
that participants understood the task. The practice stimuli 
were not repeated during the task and the noise repetitions 
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were different from the ones used in the experiment. Stimuli 
presentation was coded in Psychopy 3.2.0 (95), and audio files 
were played using the sound library PTB in Windows 7 together 
with the Focusrite Scarlett 4i4 USB audio interface. Stimuli were 
presented binaurally through Etymotic ER3C tubal insert ear
phones, and sound amplitude was adjusted for each participant 
during practice trials. The trials were presented in a randomized 
fashion and the intertrial interval was randomly varied between 
5 and 10 s.

Stimuli construction
AmN was constructed by multiplying 0.5 s of the running white 
noise background with a 40 Hz sinusoid at a modulation depth 
of 30%. For each trial, between 0 and 4 AmN were randomly in
cluded. Half of the trials (32 trials) included a concatenation of 
five copies of a structured noise repetition composed of a 
0.2-s-long white noise snippet (RepRN) seamlessly concatenated 
to 0.3-s-long fresh noises. Eight different RepRNs were created us
ing different random seeds, such that four appeared during trials 
in which participants had to focus their attention on the sound 
(RepRN-Sound) and the other four RepRN were only included in 
trials of heart-directed attention (RepRN-Heart). The RepRNs as
signed to each attentional condition were counterbalanced across 
participants. In each trial, the four RepRN concatenations were 
repeated twice, resulting in eight RepRN SRepRN within each 
trial (Fig. 1A).

Physiological recordings and preprocessing
EEG and ECG signals were recorded using a Biosemi Active-Two 
system. Sixty-four Ag-AgCl scalp electrodes were placed on a 
head cap following the location and label of the 10–20 system, flat- 
type channels were placed on the left and right mastoid bones, 
and on the left and right collarbones to record cardiac activity. 
The signals were referenced online to the common mode sense 
(active electrode) and grounded to a passive electrode (Driven 
Right Leg). Data were digitized with a sample rate of 512 Hz with 
a fifth-order low-pass sinc filter with a −3 dB cutoff at 410 Hz. As 
a backup, a second ECG recording was obtained following the 
same configuration but with a ground electrode positioned below 
the neck on the back of participants, and a respiration belt was 
used to record breathing. Both signals were recorded with a 
PowerLab 4/30 (ADInstruments) at a 400-Hz sample rate. For two 
participants, the backup ECG recording was used for the analyses. 
The analyses were conducted using MNE 1.0.3 (96).

EEG preprocessing
EEG data were processed according to the stimuli and the level of 
granularity of the analysis of interest, this resulted in seven types 
of epochs: (i) For the HEP, the data were filtered with a 30-Hz low- 
pass filter (one-pass zero-phase FIR filter with length 227 sam
ples), epoched −0.5:0.8 s time-locked to the R peak of the ECG 
waveform, linearly detrended and referenced to the average of 
all channels. Epochs were not baseline corrected to avoid any con
tamination from the PQ component of the heartbeat. Heartbeats 
matching the moment of the AmN presentation were not in
cluded. (ii) For the AmN, to remove alpha oscillations due to 
participants having their eyes closed, data were filtered with 
bandpass filter 0.2–7 Hz (one-pass zero-phase FIR filter with 
length 8,449 samples), referenced to the average of all channels, 
epoched −0.1:0.85 s relative to sound onset, linearly detrended 
and baseline corrected 100 ms before sound onset. For the white 
noise repetitions, the data were filtered following the 

preprocessing for the AmN but referenced to the average of the 
two mastoid electrodes. Subsequently, data underwent two types 
of epoching: (iii) −0.4:3 s relative to sound onset thus comprising 
the five noise repetitions (SRepRN), and (iv) from −0.05:0.5 s rela
tive to each repeated noise (RepRN). For the ERP analysis of the 
SRepRN and for each RepRN, 0.2 and 0.05 s to sound onset were, 
respectively, used as a baseline. (v) In order to have a standard 
against which to compare the activity evoked by the noise repeti
tions, analog epochs to (iii) and (iv) were obtained from trials with 
plain white noise. This was carried out avoiding EEG data match
ing AmN presentation. (vi) For the subject-level analyses, raw data 
were filtered with a bandpass filter 0.1–30 Hz (one-pass zero- 
phase FIR filter with length 16,897 samples), and referenced to 
the average of all channels. The interval between 1:30 s of each 
31 s trial (to avoid onset/offset sound artifacts) was segmented 
into 5 s epochs with an overlap of 4 s. This procedure resulted in 
a comparable number of trials for the classifiers using ongoing 
brain activity as features, and HEP-based classifiers, as well as 
the combination of different families of features (see below). 
Finally, the 30 s epochs were segmented into (vii) 5 s sub-epochs 
without overlap for group-level analyses of complexity, connect
ivity, and power. For all epoch types, autoreject 0.3.1 (97) was 
used to reject bad epochs and interpolate noisy channels. For all 
the analyses and participants, the number of observations was 
equalized between conditions taking into consideration temporal 
proximity and thus avoiding data imbalance. The ECG artifact 
(98) could not be completely removed using independent compo
nent analysis. Therefore, we decided to keep the potential ECG 
contributions in the EEG but carry out analyses to check for po
tential differences in cardiac activity that could be driving our 
results. We tested for changes in HR and HRV as well as differen
ces in the ECG waveform across conditions.

Subject-level EEG analysis
In order to classify the attentional focus for each participant 
evoked, connectivity, information theory, and spectral markers 
were extracted and fed to subject-level classifiers. The evoked fea
tures were computed from each brain response to the heart, and 
the rest of the features were extracted from the 5 s sub-epochs 
(see Table S2 for the number of features and observations). We fol
lowed a similar approach as in Claassen et al. (44), which focuses 
on developing classifiers that maximize the differences within a 
subject’s data while using appropriate cross-validation and statis
tical procedures. Adaboost classifiers with decision trees as base 
estimators (99) were implemented using Scikit-learn v1.0.2 (100). 
The number of decision trees was set to 1,000, and the maximum 
depth of each decision tree was set to 1. The splitting criteria used 
for each decision tree was set to “gini.” We followed a grouped 
stratified k-fold cross-validation procedure with 8-folds where 
on each fold all sub-epochs (or brain response to the heart) from 
the same trial were grouped either in the train or test data to avoid 
data leakage, such as correctly identifying sub-epochs due to find
ing similarities in sub-epochs of the same 31 s trial. Importantly, 
all parameters were the same across participants and were de
fined before collecting patient data. We worked with a balanced 
dataset such that for every classifier half of the observations cor
responded to sound-attention trials and half corresponded with 
heart-attention trials. For each classifier, the mean accuracy 
across folds, measured as the AUC, was obtained and significance 
was evaluated using a nonparametric statistical approach (101). 
The labels for the observations were randomly permuted 500 
times and for each permutation, the mean classifier accuracy 
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was obtained. We compared the mean accuracy of our original 
data against the empirical null distribution of classification accur
acies. The proportion of null classification accuracies greater than 
the AUC of the original data yielded our P-values. The level of sig
nificance was established at ɑ = 0.05. The resulting P-values were 
corrected using the false discovery rate method (102).

HEP features
In order to obtain the HEP features a leave-one-out approach was 
implemented as follows. Cluster permutation analyses were car
ried out on all subjects except the subject for which the feature ex
traction and subsequent classification were going to be computed. 
For the canonical clusters obtained, clusters with P < 0.05 were se
lected. For each electrode taking part in the selected clusters, the 
mean, the SD, and the maximum and the minimum voltage in the 
time window spanning the cluster were extracted for each epoch 
of the subject withheld from the clustering analysis. This resulted 
in four features per channel in the clusters. As a control, the same 
temporal windows were used to extract analog features from the 
ECG channel resulting in four features per cluster.

Spectral, complexity, and connectivity features
For each subject, a Laplacian transformation (103) was applied on 
the channels of the 5 s sub-epochs to reduce the effect of volume 
conduction and obtain less correlated sensor signals. PSD for fre
quencies between 1:30 Hz was obtained using multitapers as im
plemented in the psd_multitaper function in MNE. Power was 
averaged across delta (1:4 Hz), theta (4:8 Hz), alpha (8:14 Hz), low- 
beta (14:20 Hz), and high-beta (20:30 Hz) bands for each channel, 
resulting in 320 spectral features per sub-epoch (5 power features 
for each of the 64 electrodes). To assess brain dynamics during the 
interoceptive and exteroceptive attention conditions, PE, wSMI, 
and KC markers were computed. The selection of these com
plexity and connectivity markers was driven by previous work 
showing their efficacy in classifying conscious states in DoC pa
tients (94, 104). Furthermore, these metrics capture nonlinear 
dynamics and complement spectral and time-locked features 
(see Supplementary Material).

Time-locked and dynamical features
In order to evaluate a synergistic effect of the time-locked and dy
namical features to classify attentional focus, combined classi
fiers were implemented joining the HEP features with each of 
the dynamical features (power, KC, PE, and wSMI). Brain re
sponses to heartbeats arising during the 5 s sub-epochs were aver
aged, and from the evoked activity, the HEP features (mean, SD, 
minimum, and maximum) were extracted, as detailed above 
(Fig. 1B). If for a sub-epoch, all concurrent heartbeats were dis
carded during epoch rejection, the median across all the observa
tions was used to replace missing data.

Brain-injured patients
Seven brain-injured patients participated in this study: three 
patients were assessed at the IRCCS Santa Maria Nascente 
Fondazione Don Carlo Gnocchi ONLUS, Milan (Italy), and four pa
tients at the Pitié-Salpêtrière Hospital, Paris (France) in the con
text of the EU-funded multicentric project Perbrain (105). Two 
Milan patients could not complete the task due to technical issues 
and were discarded from the analysis. The demographics and 
clinical information for the remaining five patients are listed in 
Table S1. All patients were in a subacute state (0.5:1.5 months 
since injury), except for M1 (∼8 months since injury), a chronic 

DoC patient. The assessment was performed following the 
ethical standards of the Declaration of Helsinki (1964) and its 
later amendments and was approved by the local committees 
of each center (Comité de protection des personnes Ile de 
France I, #2013-A00106-39 and ethics committee section “IRCCS 
Fondazione Don Carlo Gnocchi” of ethics committee IRCCS 
Regione Lombardia, protocol number 32/2021/CE_FdG/FC/SA). 
Informed consent was obtained from the legal guardians of the 
patients before enrolling them in the study. The Coma Recovery 
Scale-Revised (106) was performed by experienced neurologists 
on the same day as the task. All patients had behavioral responses 
to sound or cortical auditory responses assessed with the local- 
global paradigm (82, 107).
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