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Abstract

The genetic identification of evolutionary significant units and information on their connectiv-

ity can be used to design effective management and conservation plans for species of con-

cern. Despite having high dispersal capacity, several seabird species show population

structure due to both abiotic and biotic barriers to gene flow. The Kelp Gull is the most abun-

dant species of gull in the southern hemisphere. In Argentina it reproduces in both marine

and freshwater environments, with more than 100,000 breeding pairs following a metapopu-

lation dynamic across 140 colonies in the Atlantic coast of Patagonia. However, little is

known about the demography and connectivity of inland populations. We aim to provide

information on the connectivity of the largest freshwater colonies (those from Nahuel Huapi

Lake) with the closest Pacific and Atlantic populations to evaluate if these freshwater colo-

nies are receiving immigrants from the larger coastal populations. We sampled three geo-

graphic regions (Nahuel Huapi Lake and the Atlantic and Pacific coasts) and employed a

reduced-representation genomic approach to genotype individuals for single-nucleotide

polymorphisms (SNPs). Using clustering and phylogenetic analyses we found three genetic

groups, each corresponding to one of our sampled regions. Individuals from marine environ-

ments are more closely related to each other than to those from Nahuel Huapi Lake, indicat-

ing that the latter population constitutes the first freshwater Kelp Gull colony to be identified

as an evolutionary significant unit in Patagonia.
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Introduction

Uncovering the mechanisms behind population genetic divergence is relevant for understand-

ing both evolutionary processes and identifying evolutionary significant units for species in

need of management and conservation strategies [1–4]. Moreover, the implementation of

genomic techniques in the fields of ecology and conservation genetics has resulted in an

increased ability to delimit populations, generate more complex models of demographic histo-

ries, and identify regions of the genome that confer important ecological functions and con-

tribute to adaptation [4, 5].

Seabirds reproduce in discrete spatial populations (colonies); however, their ability to dis-

perse over long distances [6] can lead to varying degrees of connectivity, resulting in metapo-

pulation dynamics. However, several studies show some species have strong population

structure, resulting from factors such as their non-breeding distribution, physical barriers to

dispersal, the geographic distance between colonies, philopatry, and individual dispersal pat-

terns [7].

The Kelp Gull (Larus dominicanus) is the most abundant and widely distributed gull species

in the southern hemisphere, nesting in South America, Africa, New Zealand, Australia, sub-

Antarctic islands, and the Antarctic Peninsula [8]. In Chile, they nest in at least 26 locations

along the Pacific coast [9]. The estimated population in Chile comprises approximately ~8,200

breeding pairs, and colony sizes vary, ranging from just a few pairs to as many as 3,000, though

due to the difficulty in surveying the geographically complex southern region, the actual num-

bers may potentially be higher [see 9]. Information regarding population trends in Chile is rel-

atively scarce; however, preliminary data suggest an upward trend in the number of breeding

pairs nesting on the rooftops of coastal cities [9]. On the other hand, in Argentina, the Kelp

Gull breeds in both marine and freshwater environments [10], and its reproductive population

in marine environments of Atlantic Patagonia was estimated at 106,200 breeding pairs distrib-

uted in 140 colonies [see 9]. Long-term monitoring of more than sixty colonies in northern

Patagonia and the development of demographic models have shown high population connec-

tivity and increases in numbers in recent decades, with demographic behaviors that vary

depending on the breeding location [11, 12]. Reproductive Kelp Gull colonies in freshwater

environments are limited to a few locations in Patagonia and Uruguay [9, 13, 14]. Little is

known about demographic trends from freshwater populations in Argentinian Patagonia,

however in the case of the colonies from Lake Nahuel Huapi, there has been an increase in the

number of individuals breeding at one of the most important nesting sites, archipelago Islas de

los Fósiles, within less than a decade (from 350 nests in 2012 to 575 nests in 2019).

Studies conducted on gulls belonging to the genus Larus in various parts of the world have

revealed genetic structure among populations, often following a pattern of isolation by dis-

tance [15–18]. Moreover, Herring Gull (Larus argentatus) populations from the Laurentian

Great Lakes were found to be genetically distinct from their marine counterparts [19, 20], sup-

porting the idea that reproductive Herring Gulls from the Great Lakes region constitute a

closed and isolated system [21]. Genetic studies in the Kelp Gull show different degrees of pop-

ulation structure depending on their geographic scale, over a background of demographic

expansion during the Holocene [16, 22–24]. However, the resolution provided by the genetic

tools employed (mitochondrial DNA and microsatellite markers) and the scope of the sam-

pling, particularly in the Patagonian region, may be underpowered to detect fine-scale popula-

tion differences and adequately understand population connectivity. Studies carried out on

other highly mobile seabirds have shown that the higher resolution of genomic data can reveal

genetic structure that was previously undetected with mtDNA and microsatellite markers [25,

26]. In addition, Kelp Gull population studies in Argentina have focused on coastal regions,
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leaving an information gap regarding freshwater colonies. This study aims to provide informa-

tion on the connectivity of the Lake Nahuel Huapi freshwater population with the closest

coastal populations of the Pacific and Atlantic and to evaluate whether this freshwater popula-

tion is an evolutionary significant unit. If the genetic structure in this species follows a pattern

of isolation by distance, we would expect the Nahuel Huapi Lake individuals to show a stron-

ger connection to those found along the Pacific coast, owing to the significantly shorter geo-

graphic distance than with respect to the Atlantic coast (see Fig 1). Despite the Andes

Mountains potentially acting as a barrier between Nahuel Huapi Lake and the Pacific coast, it

is conceivable that Kelp Gulls could be utilizing the interconnected network of lakes and rivers

as natural conduits for genetic exchange between the two regions.

Fig 1. Map of the study area showing the Kelp Gull colonies from three regions. Pacific coast: Maiquillahue (n = 7), Isla Conejo (n = 3), Puñihuil (n = 4).

Nahuel Huapi Lake: islets Gaviotero 1 (n = 36) and Gaviotero 2 (n = 32) (archipelago Islas de los Fósiles), Isla el Roble (n = 4). Atlantic coast: Isla de Los Pájaros

(n = 15), Punta León (n = 16).

https://doi.org/10.1371/journal.pone.0301004.g001
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Methods

Fieldwork and sampling

We collected a total of 117 Kelp Gull samples (110 from blood and 7 from eggshells) across

three different regions during the reproductive season (October to January of 2021 and 2022).

The first region was located on the Pacific coast in Chile (PC, n = 14), where we sampled the

colonies of Maiquillahue (39˚ 27’S, 73˚ 16’W), Puñihuil (41˚ 55’S, 74˚ 2’W), and Isla Conejo

(42˚ 54’S, 73˚ 35’W). The second area was Nahuel Huapi Lake (NHL, n = 72), Argentina,

where we collected samples from three colonies: the islets Gaviotero 1 and Gaviotero 2 (41˚0’S,

71˚ 32’W) within the archipelago Islas de los Fósiles, and Isla el Roble (41˚00’S, 71˚27’W).

Finally, the third region was the Atlantic coast in Argentina (AC, n = 31), where we sampled

the colonies of Punta León (43˚04’S, 64˚29’W) and Isla de Los Pájaros (42˚25’S, 64˚31’W)

(Fig 1). We captured the incubating adult from nests using a leg-noose trap or incubation traps

[27] and subsequently collected a blood sample. In cases where it was impossible to capture

adults, membranes were collected from newly hatched eggs, or blood (0.3–0.5 mL) was taken

from non-related chicks (belonging to different nests and sectors of the colony). We conserved

all samples in 96% ethanol until DNA extraction. We obtained the relevant permits for collect-

ing and transporting samples from the corresponding national authorities in Argentina

(Administración de Parques Nacionales DRPN N˚1814, Dirección de Flora y Fauna Silvestre

del Chubut Disp. N˚ 27/2022-DFyFS, Ministerio de Ambiente y Desarrollo Sostenible de la

Argentina CE-2022-47128129-APN-DNBI#MAD, CE-2022-45430867-APN-DNBI#MAD) and

Chile (Servicio Agrı́cola y Ganadero, La Corporación Nacional Forestal N˚ 5446/2022).

Marker discovery and genotyping

We generated double digest restriction-site associated DNA markers (ddRAD tags) by first

extracting genomic DNA using the DNeasy blood and tissue kit (Qiagen, Valencia, CA, USA).

The DNA of each individual was digested with two restriction enzymes (Sbf1 and Msp1; New

England Biolabs; Ipswich, MA) and then ligated to specific adapters at the 5’ and 3’ ends for

downstream bioinformatic processing. Adapter-ligated DNA from different individuals was

combined into nine index groups and DNA fragments of between 400 and 700 base pairs were

selected using the BluePippin size selection system (Sage Science, Beverly, MA, USA). The

ddRAD protocol is described in detail in [28]. Index groups were combined into a single geno-

mic library and sequencing took place on a lane of Illumina’s NextSeq500 platform at the Cor-

nell Institute of Biotechnology (single-end x 150 bp mode), together with samples from

another project.

We obtained an average of 453,047 ± 219,091 raw Illumina reads per individual. We evalu-

ated read quality using FastQC version 0.11.6 (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/). All sequences were trimmed to 112 bp using fastX trimmer [29] to remove

lower-quality base pairs towards the 3’ end. Subsequently, reads that had any base calls with a

quality score below Phred 10 (90% call accuracy) or with more than 20% of their base calls

between 10 and 20 (90–99% call accuracy) were filtered using fastq_quality_filter (fastx-

Toolkit). The reads were then demultiplexed and adapters were removed using the process_-

radtags module of the Stacks pipeline version 2.3e [30] to obtain files containing sequences

specific to each individual. All sequences were trimmed to 105 bp after 5–7 bp inline barcodes

were removed. Individual sequences were assembled using two methods implemented in the

Stacks bioinformatics pipeline, a de novo pipeline, and a reference-based pipeline using the

Herring Gull (Larus smithsonianus) reference genome obtained from www.ncbi.nlm.nih.gov

(GCA_013400295.1_ASM1340029v1).
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We aligned sequences to the Herring Gull reference genome using Bowtie 2 [31] with an

average alignment rate of 89.17%. We subsequently assembled reads into markers using Stack’s

gstacks module. This pipeline generated a catalog of 148,795 RAD loci with an effective per-

sample coverage of 19.5 ± 9.0. After filtering out markers absent in more than 15% of individu-

als and with a minor allele count lower than 5 with the populations module, we retained and

exported 6,569 SNPs. The de novo assembly was performed using ’ustacks/cstacks/sstacks’ as

executed by the “denovo_map” pipeline and produced 2,735 SNPs after filtering. However,

due to the similarity in the results from both assembly strategies, we decided to present those

obtained from the reference-based assembly. We discarded five individuals with missing data

higher than 25% (three from Gaviotero 1 and one from Gaviotero 2 in NHL, plus one from

Isla de Los Pájaros in the Atlantic coast), retaining 112 individuals for all downstream

analyses.

Mitochondrial DNA amplification and sequencing

We obtained mitochondrial DNA (cytochrome c oxidase I, COI) from a subsample of five

individuals from each population. COI amplification was conducted using polymerase chain

reactions (PCRs) carried out as described in [32]. PCR products were cleaned by performing

an Exo-SAP treatment (exonuclease -Exo- and shrimp alkaline phosphatase—SAP) before

sequencing by incubating 10 ul of PCR product with 5 U of Exonuclease I and 0.5 U of SAP

for 30 min at 37 C, followed by an inactivation step at 90 C for 10 min. Finally, the samples

were Sanger sequenced bidirectionally at the Cornell Institute of Biotechnology with the same

primers used for amplification (BirdF1 and COIBirdR2, [32]). Sequences were aligned using

BioEdit v.7.0.5.3 [33], and alignments were checked manually. Relationships between haplo-

types (maternally inherited) were estimated based on the Median-Joining method using

PopART 1.7 [34].

Population genomic analyses

We measured the degree of genetic differentiation among populations by conducting analy-

ses of population genetics and landscape genetics based on allelic and haplotype frequen-

cies. We evaluated genetic structure using a principal component analysis (PCA) generated

with the SNPRelate package version 3.3 [35] in R 3.5.2 [36] and with the STRUCTURE 2.3.4

[37] and Admixture 1.3.0 [38] programs, exploring values of K from 1 to 6. For the Admix-

ture analysis we first thinned our dataset to avoid including linked markers by retaining

3,958 SNPs that were at least 10 kb apart, using VCFtools version 0.1.16 [39]. We compared

models with different K values using the cross-validation method with 10 iterations. We

chose to plot the results for K = 3 in the main manuscript as these are concordant with our

other analyses. K values beyond this point did not show further structure and are displayed

in the Supplementary Figures in S1 File. For the Structure analysis, we exported a single

SNP per locus (retaining 4,527 SNPs), selected randomly using the populations Stacks mod-

ule, to avoid including tightly linked SNPs. Each run consisted of 500,000 generations after

250,000 iterations were discarded as burn-in. We ran 10 iterations per value of K and did

not incorporate sample location in the model. We implemented the admixture ancestry

model with correlated allele frequencies and λ = 1 as the allele frequency prior. The level of

genomic differentiation (between sectors: Pacific coast, Nahuel Huapi Lake, and Atlantic

coast) was determined by calculating the FST values for each SNP, and by performing an

AMOVA (analysis of molecular variance) with the population module in Stacks. We also

used the population module to calculate heterozygosity, nucleotide diversity and inbreeding

coefficients. We ran fineRADstructure v0.3 [40], which clusters individuals based on
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haplotype frequencies to determine population structure, conducting 100,000 iterations fol-

lowing 100,000 burn in repetitions (sampling every 1,000 iterations), and inferring a tree.

We built a Maximum Likelihood phylogenetic tree in RaxML version 8.2.4 [41] after imple-

menting the ASC_GTRGAMMA model and the Lewis correction for ascertainment bias

and conducting 200 bootstrap replicates to assess node support. We used VCFtools to calcu-

late relatedness values among individuals from the Nahuel Huapi Lake colonies. Finally, we

estimated migration among geographic regions using BayesAss-SNPs 3.0.5.6 [42], running

the program on the same SNP dataset used for the Admixture analysis, for 10 million gener-

ations following a burn in of four million generations. We fine-tuned the MCMC mixing

parameters by using the following commands: -a0.23 -f0.01. We assessed convergence by

inspecting traces and effective sample sizes in Tracer 1.7.1 [43].

Results

We found individuals from the Pacific coast, Nahuel Huapi Lake, and the Atlantic coast belong

to three genetically differentiated populations (FST and PhiST: NHL vs. PC = 0.018 and 0.04,

respectively; NHL vs. AC = 0.023 and 0.04; PC vs. AC = 0.027 and 0.03). The PCA (based on

6,569 SNPs) shows three distinct clusters corresponding to each one of the three geographic

regions (Fig 2A). The first principal component (PC1) explains 4.14% of the total variance,

separating the freshwater and coastal populations. PC2 explains 2.3% of the variance and sepa-

rates the Pacific colonies from the remaining individuals, as well as resolving differences

among these colonies (which did not occur for colonies in the remaining areas). In addition,

the fineRADstructure results are consistent with the PCA, showing that individuals within the

three populations cluster together (Fig 2B), as shown by the dendrogram above the inter-indi-

vidual co-ancestry matrix. Within Nahuel Huapi Lake, we found groups of individuals that

cluster together despite being sampled at different locations. While the average relatedness

among NHL individuals is 0.01 (and, for comparison, 0.06 and 0.083 in AC and PC, respec-

tively), the smaller clusters average 0.07 and 0.28, with pairs of individuals reaching relatedness

values of up to 0.72 (Fig 2B). This suggests we sampled related individuals in these smaller

breeding populations. The fineRADstructure and particularly the Admixture analysis (Fig 2C),

show admixture among all three regions, with a lesser degree of Nahuel Huapi Lake ancestry

in the Pacific coast. We obtained a similar result using Structure, and for both analyses values

of K above 3 did not uncover additional population structure (S1 and S2 Fig in S1 File). The

fineRADstructure analysis revealed an individual sampled on the Atlantic coast with Atlantic

coast and Nahuel Huapi Lake ancestry, that clusters with other freshwater individuals, which

is evidence of connectivity among colonies. Our phylogenetic analysis as well as the clustering

analyses show that the three populations are similarly differentiated from each other, with pop-

ulations from marine environments being slightly more closely related to each other than to

the Nahuel Huapi Lake population (e.g., Fig 2B and 2D). We note that in agreement with the

relatively low levels of differentiation among populations, our phylogenetic analysis produced

generally low node support (Fig 2D). Overall, different measures of diversity were similar

across the three regions, with the Nahuel Huapi Lake population showing the lowest heterozy-

gosity and nucleotide diversity (Pi) (Table 1). Finally, the highest proportion of migrants was

estimated from NHL into PC, followed by NHL into AC (Table 2). Gene flow into NHL from

either PC or AC was comparatively much lower. Our mtDNA analysis did not provide suffi-

cient resolution to differentiate populations, as we found two COI haplotypes among our sam-

ples, one of which was present in both the NHL and PC colonies, while the second was found

in the three regions (Fig 2E).
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Fig 2. Population structure from Kelp Gulls collected in Nahuel Huapi Lake, the Atlantic and Pacific coast colonies. (A) Principal component

analysis (PCA) based on 6,569 SNPs. Circles represent individuals and colors denote sites of origin as indicated in the legend. (B) FineRADstructure plot

derived from haplotype data showing clustering according to geographic location. The matrix represents the co-ancestry values between all pairs of

individuals, and the magnitude of these values is color-coded as shown by the scale-bar. The orange arrow denotes an individual sampled on the Atlantic

coast with a large proportion of Nahuel Huapi Lake ancestry (C) Admixture plot of Kelp Gull populations (K = 3). Each individual is represented by a
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Discussion

This is the first genetic study to include freshwater Kelp Gull colonies from Patagonia, and we

find that those from Nahuel Huapi Lake are genetically differentiated from their closest coastal

Atlantic and Pacific counterparts. Previous studies on Kelp Gulls have found genetic structure

both at a South American continental scale [22–24] and among populations along the Argentine

coast [16]. Particularly, Lyons et al. [16] found some level of differentiation among the most geo-

graphically distant colonies in their study, as expected from a pattern of isolation by distance with

gradually diminishing connectivity with distance along the Argentine coast. Our findings also

indicate closer affinities among colonies within each specific region, as opposed to the relation-

ships observed between colonies situated in distinct geographic regions. In this context, we ini-

tially expected higher connectivity between Nahuel Huapi Lake populations and those from the

Pacific coast, given their proximity and the existence of potential ecological corridors across the

Andes Mountains, compared to the Atlantic coast. Instead, our results show that coastal colonies

are more closely related to each other than to those from freshwater, despite their considerable

geographic separation. This generally low level of differentiation between Atlantic and Pacific col-

onies may be related to the continuous presence of numerous colonies along these coasts, with a

gap in the southern region of Chile which may be due to a lack of information resulting from the

difficulty of accessing and surveying this area [9]. However, this does not imply a lack of connec-

tivity between coastal colonies and those from Nahuel Huapi Lake. First, our results show admix-

ture between freshwater and coastal populations, primarily between NHL and AC. Moreover, we

observed an adult individual sampled in the Isla de Los Pájaros colony (on the Atlantic coast)

with a considerable proportion of genetic ancestry from NHL and the remaining ancestry from

AC. This bird is likely the offspring of a Nahuel Huapi Lake migrant which bred with an Atlantic

coast individual (although more complex scenarios of dispersal are also compatible with this find-

ing). Additionally, during the course of this study, two records of juvenile individuals banded in

Nahuel Huapi Lake were recovered in coastal localities, one was found on the Pacific coast

(Osorno, Chile) and the other on the Atlantic coast (Rio Negro Province, Argentina), indicating

gulls are capable of dispersing among geographic regions, although this is not necessarily indica-

tive of breeding. Concordantly, our estimates of gene flow suggest migration from NHL into both

PC and AC. We did not find direct records of individuals captured in the lake that originated

from coastal colonies. Taken together, the generally low levels of differentiation observed in our

ddRAD data, and the lack of differentiation in mtDNA, suggests a recent history of divergence,

with ongoing gene flow among regions.

An evolutionary significant unit refers to a population or group of individuals that share

genetic characteristics [1], and can evolve even in metapopulations of species due to factors

vertical bar broken into different colored genetic clusters showing the proportion of genetic ancestry assigned to each cluster. The orange arrow indicates

the individual mentioned in (B). (D) Maximum Likelihood tree showing phylogenetic relationships between individuals from the three regions

represented with three different colors as in (B). Node support for each of the main clades was 87 (PC), 61 (AC), 50 (NHL), and 50 (AC, PC). (E)

Haplotype network generated from COI mitochondrial sequences.

https://doi.org/10.1371/journal.pone.0301004.g002

Table 1. Summary statistics for different Kelp Gull (Larus dominicanus) populations. Observed (Hobs) and

expected (Hexp) heterozygosity, nucleotide diversity (Pi), and inbreeding coefficient (Fis).

Hobs Hexp Pi FIS

Nahuel Huapi Lake 0.248 0.233 0.235 -0.025

Pacific coast 0.267 0.252 0.262 -0.005

Atlantic coast 0.272 0.260 0.265 -0.012

https://doi.org/10.1371/journal.pone.0301004.t001
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such as philopatry [25, 26]. In this regard, our findings imply that the colonies in Lake Nahuel

Huapi should be considered an evolutionary significant unit, separate from the coastal colo-

nies. The growth of Kelp Gull populations in many of their coastal colonies is influenced by

anthropogenic food subsidies [11]. The available information from colonies situated in Nahuel

Huapi Lake shows that Kelp Gulls also use landfill sites as a food source both during and after

the breeding season [13, 44]. There is a strong relationship between the areas utilized by sea-

birds during the winter and their dispersal movements, and this is associated with the exis-

tence of population structure [7]. As a consequence, the use of local anthropogenic food

sources during the winter might explain the patterns of genetic clustering observed in our

study. Furthermore, our results also suggest that the demography of these freshwater colonies

is not directly dependent on the movement of individuals from nearby colonies, and thus the

likely population growth of Kelp Gulls in Nahuel Huapi Lake is self-sustaining.

Another Patagonian seabird, the Imperial Cormorant (Leucocarbo atriceps) also has fresh-

water populations that are genetically differentiated, both in Lake Yehuin (Tierra del Fuego,

Argentina) and in Nahuel Huapi Lake [45]. While the NHL population is likely derived from

Pacific coast individuals, those from Lake Yehuin show stronger genetic differentiation [45].

The NHL population shows ecological differences with respect to other marine Imperial Cor-

morants [46], and those from Lake Yehuin are morphologically differentiated (showing

smaller body size and nasal-glands), perhaps as a consequence of local adaptation [47]. It

remains to be determined whether the genetically differentiated freshwater population of Kelp

Gulls also shows specific adaptations to these environments that differentiate them from those

found breeding on the coast.

Understanding the dynamics of Kelp Gull populations, which may function as sources,

sinks, or occur in relative isolation from other colonies, has implications for conservation and

disease ecology. The Kelp Gull, like other gull species [48–50], is a known carrier of pathogens

and parasites in several areas along its distribution, some of which can cause diseases in

humans. For instance, Kelp Gulls can be carriers of enterobacteria such as Salmonella [51, 52],

influenza virus [53, 54], and helminths of the trematoda class (ex Schistosoma) that can cause

dermatitis in humans. Recent reports have confirmed the presence of cestodes from the genus

Diphyllobothrium in Kelp Gulls nesting in Nahuel Huapi Lake [55]. The eggs of these cestodes

are released in the aquatic environments together with the feces of the definitive host (ichthy-

ophagous birds and mammals, including humans), and can cause Diphyllobothriasis [56]. Fur-

thermore, considering that this species can be problematic, negatively affecting other birds

with which it usually nests [56], knowledge of the connectivity of its populations and the iden-

tification of management units can be fundamental tools when applying management and

conservation measures. Our study is the first to identify a freshwater Kelp Gull colony from

Patagonia as an evolutionary significant unit. However, to achieve a more complete under-

standing of the metapopulation dynamics and connectivity of this species as a whole, as well as

the origin of freshwater colonies, it is necessary to expand the geographic scope of sampling

and include more colonies across the species’ distribution.

Table 2. Estimates of gene flow among populations. Donating populations are shown in the column on the left

while receiving populations are in the top row. Values represent the fraction of individuals in the receiving population

that are migrants derived from the donating population (per generation). For example, ~30% of individuals from PC

are estimated to be derived from NHL in every generation.

NHL PC AC

NHL 0.983 0.297 0.056

PC 0.008 0.683 0.017

AC 0.008 0.015 0.924

https://doi.org/10.1371/journal.pone.0301004.t002
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