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In the present work, a family of Calabi-Yau manifolds with a local Hamiltonian Killing vector is

described in terms of a nonlinear equation whose solutions determine the local form of the geometries.

The main assumptions are that the complex (3, 0)-form is of the form eik ��, where �� is preserved by the

Killing vector, and that the space of the orbits of the Killing vector is, for fixed value of the momentum

map coordinate, a complex 4-manifold, in such a way that the complex structure of the 4-manifold is part

of the complex structure of the complex 3-fold. The family considered here include the ones considered in

A. Fayyazuddin, Classical Quantum Gravity 24, 3151 (2007); O. P. Santillan, Classical Quantum Gravity

27, 155013 (2010); H. Lu, Y. Pang, and Z. Wang, Classical Quantum Gravity 27, 155018 (2010) as a

particular case. We also present an explicit example with holonomy exactly SU(3) by use of the

linearization introduced in A. Fayyazuddin, Classical Quantum Gravity 24, 3151 (2007), which was

considered in the context of D6 branes wrapping a complex 1-cycle in a hyperkahler 2-fold.

DOI: 10.1103/PhysRevD.82.085004 PACS numbers: 11.27.+d, 02.40.�k

I. INTRODUCTION

The development of the subject of Calabi-Yau (CY)
manifolds is an illustrative example of the interplay between
algebraic geometry and string theory. On the one hand, CY
spaces are interpreted as internal spaces of string and
M-theory giving supersymmetric field theories after com-
pactification. In fact, CY 3 folds may provide compactifica-
tionswhich aremore realistic than the ones corresponding to
other Ricci-flat manifolds such asG2 holonomy spaces, for
which the generation of chiralmatter and non-Abelian gauge
symmetries seems harder (but not impossible) to achieve. On
the other hand, string theory compactifications stimulated
several new trends in the algebro-geometrical aspects of
CY spaces; an example is the subject of mirror symmetry.

By definition, a CY manifold is a compact Kahler
n-dimensional manifold with vanishing first Chern class.
The Yau proof of the Calabi conjecture implies that these
manifolds admit a Ricci-flat metric and their holonomy is
reduced from SO(2n) to SU(n) [1]. Although compact
Ricci-flat metrics exist, no explicit expressions have been
found. The main technical problem for that is that a com-
pact Ricci-flat metric does not admit globally defined
Killing vectors (leaving aside the possibility to have trivial
flat Uð1Þ factors), and the absence of continuous symme-
tries makes the task of solving the Einstein equations ex-
plicitly really hard. For the noncompact case, the definition
usually adopted is that a CY manifold is a Ricci-flat Kahler
manifold, which also implies that the holonomy is reduced
to SU(n) or to a smaller subgroup. In this case, several

Calabi-Yau metrics with isometries have been found in
[2–19]. Some of these metrics posses conical singularities,
but in some cases these singularities have been resolved to
give complete metrics.
Although noncompact Calabi-Yau metrics are not suit-

able for studying compactification in string theory, they
have several applications in mathematical and theoretical
physics. For instance, the localization techniques pioneered
by Kontsevich [20,21] to calculate Gromov-Witten invari-
ants is more easy to implement in the noncompact case
and sometimes these invariants may been calculated for
arbitrary genus. Also, it was conjectured in [22] that Chern-
Simmons on S3 is equivalent to topological strings on the
resolved conifold T�S3, which is Calabi-Yau. These has
been generalized in [23] where it is shown that for some
three dimensional manifold M, the space T�M is Calabi-
Yau, and it was conjectured that Chern-Simmons on M is
dual to topological strings propagating in T�M (See [24] for
a nice review).
In view of the above discussion, to find general methods

for constructing noncompact CY metrics with isometries is
a task of interest. An step in that direction was initiated by
Fayyazuddin in [25] where the supergravity backgrounds
corresponding to D6 branes wrapping a complex submani-
fold inside a 4-dimensional hyperkahler space were char-
acterized in terms of a single linear equation. It was also
shown in that reference that the uplift to 11 dimensions
results in a purely geometrical background of the form
M1;4 � Y6 where Y6 is a Calabi-Yau space. The Ricci-flat

Kahler metric on Y6 is therefore determined by this linear
equation, which is expressed in term of the laplacian over
the curved hyperkahler space the branes wrap. For all these
geometries, there is a U(1) isometry preserving the whole
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SU(3) structure (which is, in particular, Hamiltonian, and
therefore it defines a momentum map local coordinate)
such that space formed by the orbits of the Killing vector
is, for fixed values of the momentum map coordinate,
a Kahler manifold. The Fayyazuddin construction was
reconsidered in [26] where it was shown that the assump-
tion that the quantities defining the geometry vary over a
complex submanifold may be relaxed without violating
the Calabi-Yau condition. The resulting geometries were
described in terms of a nonlinear equation, which reduce to
the Fayyazuddin one if the quantities describing the ge-
ometry vary over a complex submanifold. The nonlinear
operator is defined in terms of the metric of the hyperkahler
space; in fact, this method can be interpreted as a solution
generating technique which starts with a hyperkahler met-
ric and gives a noncompact Calabi-Yau metric as outcome.

The two approaches mentioned above have been used to
find nontrivial Calabi-Yau metrics with holonomy exactly
SU(3). Nevertheless, none of these examples were com-
plete metrics. This situation was substantially improved in
[27] where isometries which do not preserve the SU(3)
structure, but just the metric g6 and the Kahler two form
!6, were considered. These authors showed that one may
start with a hyperkahler structure as well and construct
complete Calabi-Yau metrics. In particular, the resolution
of the Yp;q cone found in [28–30] was rediscovered in these
terms. The calculations made in [27] are impressive, but
there is a striking fact there that motivates the present note,
which is the following. The best results obtained in [27] are
obtained in terms of the flat hyperkahler structure on R4, in
particular, the resolution of the Ricci-flat cone over Yp;q.
Instead, for a curved hyperkahler structure, the resulting
equations seem harder to solve, and more restricted solu-
tions are found, or even no solutions at all. Onemaywonder
if a method for constructing Calabi-Yaumetrics without the
use of initial hyperkahler structures may be developed,
which may allow us to avoid this kind of problems. In the
present work, such a method will be presented and family
of Calabi-Yau geometries characterized by a single non-
linear equation which is not necessarily related to a hyper-
kahler metric. It should be emphasized that there is nothing
wrong with the use of hyperkahler structures as initial
input. What the present letter shows is that this is just
optional.

The organization of the present work is as follows. In
Sec. II A generalities about SU(3) structures are reviewed.
In Sec. II B the SU(3) structures with a Hamiltonian Killing
vector, that is, a Killing vector preserving also the Kahler
form are characterized. In Sec. II C a family of Calabi-Yau
metrics of this type is presented, for which the complex (3,

0) form is of the form � ¼ eik �� in such a way that �� is
preserved by the Killing vector but�may not be preserved
due to the phase factor. In Sec. 1 and III B it is explained
that the metrics considered in [25,26] belong to the family
of section II C. In Sec. III C, an example where the

Fayyazuddin linearization [25] works properly is worked
out explicitly and a nontrivial Calabi-Yau metric is ob-
tained as outcome. In Sec. III D, we also show that the
results of [27] belong to the family constructed here.
Section IV contains the discussion of the results obtained.

II. CALABI-YAU METRICS WITH
HAMILTONIAN ISOMETRIES

A. The general form of the SUð3Þ structure
In this subsection, a large family of Calabi-Yau (CY)

manifolds in dimension 6 with an isometry group with orbits
of codimension 1 will be characterized. It will be assumed
that the Killing vector V corresponding to this isometry
preserves not only the metric, but the full Kahler two form
!6. It will be convenient to give an operative definition of
CYmanifolds in six dimensions first; for further details, one
may consult [31]. Roughly speaking, a Calabi-Yau manifold
M6 is a Kahler manifold, thus complex sympletic, which in
addition admits a Ricci-flat metric g6. This definition means
that there exists an endomorphism of the tangent space
J: TM6 ! TM6 such that J2 ¼ �Id and for which
g6ðX; JYÞ ¼ �g6ðJX; YÞ being X and Y arbitrary vector
fields. It is commonly said that the metric g6 is Hermitian
with respect to J and the tensor ðg6Þ��J

�
� is skew symmet-

ric; therefore, locally it defines a 2-form

!6 ¼ 1

2
ðg6Þ��J

�
� dx

� ^ dx�: (2.1)

Here, x� is a local choice of coordinates for M6. The endo-
morphism J is called an almost complex structure. If the
Nijenhuis tensor

NðX; YÞ ¼ ½X; Y� þ J½X; JY� þ J½JX; Y� � ½JX; JY�;
vanishes identically, then the tensor J will be called a
complex structure and M6 a complex manifold. This is the
case for any CY manifold. The Newlander-Niremberg
theorem states that there is an atlas of charts for M6 which
are open subsets in Cn, in such a way that the transition
maps are holomorphic functions. These local charts are
parameterized by complex coordinates ðzi; �ziÞ with i ¼ 1,
2, 3 for which the complex structure looks like

Jji ¼ �J
�j
�i
¼ i�j

i ; J
�j
i ¼ Ji�j ¼ 0; (2.2)

and for which the metric and the 2-form (2.1) are expressed
as follows

g6 ¼ ðg6Þi �jdzi � d�zj; (2.3)

!6 ¼ i

2
ðg6Þi �jdzi ^ d�zj: (2.4)

The form (2.4) is called of type (1, 1) with respect to J,
while a generic 2-form containing only terms of the form
(dzi ^ dzj) or (d�zi ^ d�zj) will be called of type (2, 0) or

(0, 2), respectively. In addition, a Calabi-Yau manifold is
sympletic with respect to !6; in other words, d!6 ¼ 0. A
complex manifold which is sympletic with respect to (2.1) is
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known as a Kahler manifold; thus, CY spaces are all Kahler.
The Kahler condition itself implies that the holomy is
reduced from SO(6) to U(3). Furthermore, the fact that g6
is Ricci-flat is equivalent to the existence of a 3-form

� ¼ cþ þ ic�; (2.5)

of type (3, 0) with respect to J, satisfying the compatibility
conditions [32]

!6 ^ c� ¼ 0;

cþ ^ c� ¼ 2

3
!6 ^!6 ^!6 ’ dVðg6Þ;

(2.6)

and which is closed, i.e,

dcþ ¼ dc� ¼ 0: (2.7)

The relations (2.6) can be expressed in a more compact
way as

!6 ^� ¼ 0; � ^ �� ¼ 1

3
!6 ^!6 ^!6 ’ dVðg6Þ:

(2.8)

In the formula (2.8), dVðg6Þ denotes the volume form of g6.
In the situations described in (2.7), the holonomy is further
reduced from U(3) to SU(3); thus, CY manifolds are of
SU(3) holonomy. The converse of these statements are
also true, that is, for any Ricci-flat Kahler metric in D ¼ 6,
there will exist an SU(3) structure ð!6;�Þ satisfying (2.8)
and also

d!6 ¼ d� ¼ 0: (2.9)

The knowledge SU(3) structure determines univocally met-
ric g6. In fact, the task to find complex coordinates for a
given CY manifold may be not simple, but there always
exists a tetrad basis ea with a ¼ 1; . . . ; 6 for which the SU
(3) structure is expressed as

!6 ¼ i

2
ðE1 ^ �E1 þ E2 ^ �E2 þ E3 ^ �E3; Þ (2.10)

� ¼ E1 ^ E2 ^ E3; (2.11)

where Ei � ej þ iejþ1 (j ¼ 1, 3, 5), and for which the

metric is

g6 ¼ E1 � �E1 þ E2 � �E2 þ E3 � �E3: (2.12)

Note that the multiplication by a phase factor Ei ! eikEi

does not change the metric and induce the transformation
� ! e3ik� on the (3, 0) form. This phase transformation
does not alter the conditions (2.8). This fact will be impor-
tant in the following.

B. Kahler structures with Hamiltonian isometries

The description given above just collects general facts
about CY manifolds. In the following, we will assume that
our CY manifoldM6 is equipped with a metric g6 in such a
way that there is a Killing vector V preserving g6 and
the Kahler form !6. In this situation, there exists a local
coordinate system ð�; xiÞ with i ¼ 1; . . . ; 5 for which V ¼
@� and for which the metric tensor g6 takes the following
form

g6 ¼ ðd�þ AÞ2
H2

þHg5; (2.13)

where the functionH, the one form A, and the metric tensor
g5 are independent on the coordinate�. Thus, these objects
live in a 5-dimensional space which we denote M5. The
metric g5 appearing in (2.13) can be expressed as g5 ¼
ea � ea with a ¼ 1; . . . ; 5 for some basis of �-independent
1-forms ea. Then, if V also preserves the Kahler form !6

(as we are assuming), one has the decomposition

!6 ¼ !4 þ 1ffiffiffiffiffi
H

p e5 ^ ðd�þ AÞ: (2.14)

Here the 1-form e5 is by definition

e5ffiffiffiffiffi
H

p ¼ i@�!6; (2.15)

iV denoting the contraction with the vector field V. The
elementary formula in differential geometry

d5ði@�!6Þ ¼ L@�!6 � i@�d!6; (2.16)

together with (2.15) implies that

d5

�
e5ffiffiffiffiffi
H

p
�
¼ L@�!6 � i@�d!6: (2.17)

Here, d5 ¼ @idx
i and L@� is the Lie derivate along the

vector @�. But the vector @�, by assumption, preserves
!6 and !6 is closed; thus, the right-hand side of (2.17)
vanishes and

d5

�
e5ffiffiffiffiffi
H

p
�
¼ 0: (2.18)

The last relation can be integrated, at least locally, to
obtain that

e5 ¼ ffiffiffiffiffi
H

p
dy; (2.19)

y being some function of the coordinates xi parameterizing
M5, which is known as the momentummap of the isometry.
At least locally, one can take the function y defined in
(2.19) as one of the coordinates, which leads to the decom-
position M5 ¼ M4 � Ry and d5 ¼ d4 þ @ydy. The metric

(2.13) in this coordinates becomes

g6 ¼ ðd�þ AÞ2
H2

þH2dy2 þHg4ðyÞ; (2.20)

where the tensor Hg4ðyÞ will be determined below under
certain additional assumptions. The Kahler form is

!6 ¼ !4ðyÞ þ dy ^ ðd�þ AÞ: (2.21)

The next task will be to find specific examples of this type
of structure.
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C. Calabi-Yau metrics with Hamiltonian isometries

In this subsection, the generic Kahler structure described
above will be extended to a specific family of Calabi-Yau
structures. The main assumption will be that, for fixed
values of the coordinates ð�; yÞ, the resulting 4-manifold
is complex, and that the 2-form!4 appearing in (2.21) is of
type (1, 1) with respect to a complex coordinate system for
this manifold. This may be paraphrased by saying that the
complex structure of the complex 4-manifold is part of the
complex structure of the Ricci-flat Kahler 6-manifold. By
denoting the complex coordinates as ðz1; z2; �z1; �z2Þ, the
main assumption implies that (2.20) may be expressed as

g6 ¼ ðd�þ AÞ2
H2

þH2dy2 þHg4ðyÞzi �zjdzi � d�zj; (2.22)

and the dependence on the coordinate y is only as a
parameter.

In order to extend the Kahler structure given above to an
SU(3) structure, an anzatz for the form � of (2.5) is
needed, in such a way that the compatibility conditions
(2.8) are identically satisfied. By analogy with the choice
[27], we propose the following form for �

� ¼ eiK�4 ^
�
Hdyþ i

ðd�þ AÞ
H

�
; (2.23)

K being a function that may depend � and varying over
M5. The remaining quantities appearing in (2.23) are as-
sumed to be �-independent. The compatibility conditions
(2.8) are then satisfied if and only if

2!4 ^!4 ¼ �4 ^ ��4

¼ 4 detðHg4Þdz1 ^ dz2 ^ d�z1 ^ d�z2: (2.24)

This relation is, for fixed value of the coordinate y, the
same as the compatibility condition for SU(2) structures. It
is a standard fact that if there is a complex coordinate
system for which !4 is of type (1, 1), then �4 is of type
(2, 0) with respect to it. This means that

�4 ¼ Hfdz1 ^ dz2;

f being a function independent on � and varying over M5

and the factor H in front is just by convenience. The
compatibility condition (2.24) implies that

2!4 ^!4 ¼ �4 ^ ��4 ¼ H2f2dz1 ^ d�z1 ^ dz2 ^ d�z2;

(2.25)

and by comparing (2.24) with (2.25), one obtains

H2f2 ¼ 4 detðHg4Þ: (2.26)

Taking into account all these relations and (2.23), it follows
easily that

� ¼ eiKH2fdz1 ^ dz2 ^
�
dyþ iðd�þ AÞ

H2

�
: (2.27)

The next task is to fix the unknown quantities A, H, f, and
K by the Calabi-Yau condition (2.9). The first one applied
to (2.21) gives

d4!4ðyÞ ¼ 0; (2.28)

and

d4A ¼ @y!4: (2.29)

Note that the Eq. (2.28) implies, for fixed value of y, that
Hg4 is not only complex but also Kahler. The second (2.9)
gives several equations, corresponding to the vanishing of
each component of d�. The vanishing of the terms with
ðdz1 ^ dz2 ^ dy ^ d�Þ implies that

Ky ¼ 0; (2.30)

H2f@�K � fy ¼ 0: (2.31)

The second equation implies that K ¼ K0 þ �K1, with K0

and K1 independent of y. By combining this with the first
one, it is obtained that

H2fK1 ¼ fy: (2.32)

The terms of the form ðdz1 ^ dz2 ^ d� ^ d�ziÞ vanish if and
only if

�@K1 ¼ 0; (2.33)

� f �@K0 þ i �@fþ fK1
�A ¼ 0: (2.34)

Since K1 is real and y-independent, the first of these
equations implies that it is a constant, which can be set to
0, 1 without loosing generality. The case K1 ¼ 0 corre-
spond to a Killing vector preserving the whole SU(3)
structure, which is the case considered in [26]. But for
the moment, we focus in the case K ¼ 1. In this case, the
last equation implies that

dc4f ¼ fd4K0 � K1fA: (2.35)

For these cases, the terms with ðdz1 ^ dz2 ^ dy ^ d�ziÞ
vanish when

dc4fy ¼ �K1@yðfAÞ: (2.36)

An immediate consequence the last two equation is

d4K0 ¼ 0: (2.37)

Inserting this relation into (2.35) gives

dc4ðlogfÞ ¼ �A: (2.38)

By taking d4 in both sides of the last equation and using
(2.29), it is seen that

d4d
c
4ðlogfÞ ¼ �@y!4: (2.39)

But the condition (2.28) implies that the complex
4-dimensional manifold M4 is also a Kahler manifold,
with !4 being the Kahler form. Therefore, !4 has a
Kahler potential G, that is, !4 ¼ d4d

c
4G. The Eq. (2.39)

implies that

f ¼ Uðz1; z2Þe�Gy ; (2.40)
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with Uðz1; z2Þ an arbitrary holomorphic function. In addi-
tion, Eq. (2.32) gives thatH2 ¼ Gyy, and by combining this

with (2.25) and (2.40), it is obtained that

Uðz1; z2Þðe�2GyÞy ¼ 32ðG1�1G2�2 �Gð1=line2ÞG2�1Þ; (2.41)

and that H2 ¼ Gyy, with Gi �j ¼ @i@ �jG. But the holomor-

phic function can be absorbed by a holomorphic coordinate
change z0i ¼ fiðz1; z2Þ; thus, there exists always a local
coordinate system such that (2.41) takes the form

ðe�2GyÞy ¼ 32ðG1�1G2�2 �G1�2G2�1Þ: (2.42)

In this way, all the quantities appearing in the six dimen-
sional metric are expressed in terms of G. Explicitly, the
Calabi-Yau metric is

g6 ¼
ðd�þ dc4GyÞ2

Gyy

þGyydy
2 þ 2Gi �jdzi � d�zj: (2.43)

For K1 ¼ 0, a calculation completely analogous to the one
given above shows that the metric is still (2.43) but in this
case G is given by

Gyy ¼ 8ðG1�1G2�2 �G1�2G2�1Þ: (2.44)

Note that in both cases K1 ¼ 0, 1, the metric is determined
in terms of a single function G.

It should be mentioned that the method described by
(2.42) or (2.44) may be generalized to arbitrary complex
dimensions in straightforward manner. The resulting met-
rics will be described by (2.43), but the function G will
depend on n-complex coordinates zi with i ¼ 1; . . . ; n and
will be the solution of

ðe�2GyÞy ¼ 22nþ1 detðGi �jÞ; (2.45)

for K1 ¼ 1 and of

Gyy ¼ 2nþ1 detðGi �jÞ; (2.46)

for K1 ¼ 0, detðGi �jÞ being the determinant of the matrix

whose entries are the second derivatives ofG of type (1, 1).
The resulting metric (2.43) will have (nþ 1) complex
dimensions, but in the following, we will keep considering
the case n ¼ 2.

III. SOLUTIONS RELATED TO
HYPERKAHLER STRUCTURES

In the following sections, the connection between the
solution generating technique given by (2.42), (2.43), and
(2.44) and the known ones given in [25–27] will be
detailed. The assumptions for obtaining the CY metrics
(2.42), (2.43), and (2.44) were the following: there is an
isometry preserving the CY metric and the Kahler 2-form;
the complex 3-form has the generic expression (2.23);
the manifold obtained for fixed values of y and � is com-
plex, in such a way that the metric is of the form (2.22) and
such that the 2-form!4 appearing in (2.21) is of type (1, 1)
with respect to the complex coordinates. The last assump-
tion automatically implies that the complex (3, 0) form is

given by (2.27). These, together with the Calabi-Yau con-
dition, determined completely the local form of the Calabi-
Yau metric (2.42), (2.43), and (2.44). The task is now to
show that the metrics [25–27] are under these hypothesis,
and therefore they are a particular case of (2.42), (2.43), and
(2.44).

A. Examples with isometries preserving
the whole SU(3) strucuture

In this subsection, the results of [25,26] are briefly
reported; for more details about the proofs, we refer the
reader to the original references. The solution generating
techniques of [25,26] start with a hyperkahler structure ~!i

with i ¼ 1, 2, 3, and one of these closed 2-forms, say ~!i, is
deformed to a new y-dependent 2-form

!4ðyÞ ¼ ~!1 � d4d
c
4G; (3.1)

while ~!2 and ~!3 are kept intact. This 2-form plays the role
of !4ðyÞ in (2.21). Here, the operator dc ¼ J1 d is con-
structed in terms of the complex structure J1 which is
defined by ~!1 and the hyperkahler metric by the relation
(2.3). In the expression (3.1), G denotes an unknown
function which varies on M4 and which, in a generic
situation, may depend also on the coordinate y. If there is
a Killing vector preserving the whole SU(3) structure,
which corresponds to the case K1 ¼ 0 in (2.23), then the
SU(3) structure (2.21) and (2.27) takes the following form

!6 ¼ ~!1 � d4d
c
4Gþ dy ^ ðd�þ AÞ;

cþ ¼ H2 ~!3 ^ dyþ ~!2 ^ ðd�þ AÞ;
c� ¼ �H2 ~!2 ^ dyþ ~!3 ^ ðd�þ AÞ;

(3.2)

with � ¼ c� þ icþ. Given the deformed structure (3.1),
the compatibility condition (2.6) implies that

ð ~!1 � d4d
c
4GÞ ^ ð ~!1 � d4d

c
4GÞ ¼ H2 ~!2 ^ ~!2; (3.3)

and, as the wedge products appearing in the last equality
are all proportional to the volume form dVðg4Þ of the initial
hyperkahler metric g4, the relation

ð ~!1 � d4d
c
4GÞ ^ ð ~!1 � d4d

c
4GÞ ¼ MðGÞ ~!1 ^ ~!1; (3.4)

defines a nonlinear expression MðGÞ involving G. The CY
condition (2.9) applied to (3.2) imposes further constraints,
which are explained in detail in [26] and which we will not
reproduce here. The result is that the geometry is described
in terms of a nonlinear differential equation determining
the functionG and which involves the operatorMðGÞ. This
equation is1

Gyy ¼ MðGÞ: (3.5)

1This equation strongly resembles the one found in [33] for the
G2 holonomy case.
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In addition, the explicit expression for the SU(3) structure
is completely determined in terms of G as

!6 ¼ ~!1 � d4d
c
4Gþ dy ^ ðd�� dc4GyÞ;

cþ ¼ Gyy ~!3 ^ dyþ ~!2 ^ ðd�� dc4GyÞ;
c� ¼ �Gyy ~!2 ^ dyþ ~!3 ^ ðd�� dc4GyÞ:

(3.6)

The generic form of the 6-dimensional Calabi-Yau metric
corresponding to this structure is given by

g6 ¼ g4ðyÞ þGyydy
2 þ ðd�� dc4GyÞ2

Gyy

; (3.7)

where g4ðyÞ is the Kahler 4-dimensional metric corre-
sponding to the deformed Kahler structure !1ðyÞ ¼ ~!1 �
d4d

c
4G.
It is important to remark that the metrics of this sub-

section are under the hypothesis leading to (2.42), (2.43),
and (2.44). First of all, the 2-form!1ðyÞ introduced in (3.1)
is of type (1, 1) with respect to the complex coordinates
which diagonalize J1. This follows from the fact that !1 is
of type (1, 1) with respect to these coordinates, and the
term d4d

c
4G is also of this type. The form ~!2 þ i ~!3 is kept

intact and, for a closed hyperkahler structure, is of type
(2, 0). Moreover, (3.1) is closed with respect to d4, which
leads immediately to the condition (2.28). In addition, (3.2)
is of the type (2.44). All this implies that the metrics (3.6)
and (3.7) are a subcase of the family of Calabi-Yau metrics
described in Sec. II C.

B. The Fayyazuddin linearization

The family of SU(3) structures (3.6) and (3.7) found
above are completely determined in terms of a single
function G which is a solution of (3.5). This is a nonlinear
equation, and the general solution is not known, but it can
be solved in some specific examples. The source of the
nonlinearity of the operatorMðGÞ defined in (3.4) and (3.5)
is the quadratic term

QðGÞ ¼ d4d
c
4G ^ d4d

c
4G: (3.8)

Therefore, the operator MðGÞ will reduce to a linear one
ifQðGÞ vanishes. This will be the case when the functionG
is of the form G ¼ Gðw; �wÞ where w ¼ fðz1; z2Þ is a
holomorphic function of the coordinates ðz1; z2Þ which
diagonalize the complex structure J1 [34]. This affirmation
may be justified as follows. By use of the simple expression

ddcG ¼ 2iGi �jdzi ^ d�zj; (3.9)

the quadratic term (3.8) may be rewritten as

QðGÞ ¼ �4ðG1�1G2�2 �G1�2G2�1Þdz1 ^ d�z1 ^ dz2 ^ d�z2:

(3.10)

But the functional dependence G ¼ Gðw; �wÞ implies that

Gi �j ¼ wi �w �jGw �w;

and by inserting this into (3.10) gives QðGÞ ¼ 0. This
result may be paraphrased as follows. If the function G
depends only on two complex coordinates ðw; �wÞ, then the
quantity d4d

c
4G is essentially a 2-form in two dimensions;

therefore, the wedge product (3.8) vanishes identically.
The situation described above is essentially the one

considered by Fayyazuddin in Ref. [25] and, if suitable
boundary conditions are imposed, the resulting metrics
give a dual description of D6 branes wrapping a complex
submanifold in a hyperkahler manifold. A simple example
is obtained when the initial hyperkahler structure is the
flat metric on R4 and Gyy varies over an arbitrary set of

2-dimensional hyperplanes inside R4. There, it was shown
in [25] that the resulting metrics are the direct sum of the
flat metric in R2 ’ C and a general Gibbons-Hawking
metric in dimension four [35]. These metrics are of hol-
onomy SU(2), which is a subgroup of SU(3). Our aim in the
following is to improve this situation and find Calabi-Yau
metrics with holonomy exactly SU(3) by use of this
linearization.

C. Calabi-Yau extensions of the 4-dimensional Bando,
Kobayashi, Tian and Yau (BKTY) metrics

In the present subsection, Fayyazuddin linearization ex-
plained above will be illustrated with an explicit example.
This linearization is performed in terms of an initial hyper-
kahler structure, and the one considered in Refs. [5,6] will
be chosen by simplicity, namely, the distance element

g4 ¼ zdz2 þ zðdx2 þ du2Þ þ 1

z
ðdt� xduÞ2: (3.11)

By denoting V ¼ z and A ¼ �xdy, it is seen that (3.11)
takes the usual Gibbons-Hawking form [35], which means
that it is hyperkahler and with a triholomorphic Killing
vector K ¼ @t. The solution (3.11) corresponds to a super-
position of 6-branes, which results in a linearly growing
potential independent on the coordinates ðx; uÞ. In fact,
V ¼ z is the electric potential for a infinite plane with
constant density charge at z ¼ 0, for which the electric
field is constant.
The first difficulty for (3.11) is that crossing the plane

z ¼ 0 implies a change in its signature. Something similar
happens, for instance, for the Taub-Nut metric with nega-
tive mass parameter. The last one corresponds to a potential
V ¼ 1� 1=r and has a change of signature when crossing
the region r ¼ 1. For the Taub-Nut metric, the explanation
is that it is asymptotic to the Atiyah-Hitchin metric, which
is complete and regular. The change of the signature is an
indication that the Taub-Nut approximation breaks down
for r > 1. It is plausible to think that something similar
happens for (3.11). In fact, there have been several
approaches to interpret its meaning. The authors of [6]
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proposed to replace z by jzj in (3.11). They justify this
procedure by interpreting the region z ¼ 0 as a source
plane, and the regions z > 0 and z < 0 are the sides of a
domain wall. The problem is that the metric in the surface
z ¼ 0 is singular. Another idea was introduced in [5]. In
that reference, the authors were able to identify an exact
hyperkahler metric for which (3.11) is the asymptotic form.
These authors observed that the coordinates ðx; uÞ may
parameterize a torus T2 by making the coordinate t peri-
odic such that the periods satisfy

n ¼ TxTu

Tt

;

being n an integer. The resulting manifold is a nilmanifold
for which the curvature of the connection pulled back to
the T2 satisfies the Dirac quantization condition

1

Tt

Z
T2
F ¼ n:

By defining the ‘‘proper time’’ w ¼ 2z3=2=3, one can write
(3.11) as

g4 ¼ dw2 þ
�
3w

2

��ð2=3Þð�3Þ2 þ
�
3w

2

�
2=3ðð�1Þ2 þ ð�2Þ2Þ

(3.12)

where �k are left invariant forms on the Heisenberg group.
The metric (3.12) is in fact of the Gibbons-Hawking form
for n ¼ 2, and it was conjectured in [5] that they describe
the asymptotic form of some specific CY metrics found in
[7] by Bando, Kobayashi, Tian and Yau (BTKY metrics).
These metrics arise as a degenerate limit of a K3 surfaces.
The point is that K3 surfaces have 58 parameter moduli
spaces, and as one moves to the boundary of the moduli
space, the metric may decompactify while remaining com-
plete and nonsingular. The metric (3.12) is believed to
describe the asymptotic metric of a K3 surface in one of
those limits of the parameters.

Our task is now to extend (3.11) to a CY six metric. We
do not expect the resulting metric to be complete as the
initial hyperkahler is just valid as an asymptotic expression.
But this example illustrates clearly how the Fayyazuddin
linearization applies in a generic case. In order to use the
linearization, a complex coordinate system for (3.11)
should be found. A Kahler 2-form for this metric is

! ¼ dt ^ du� zdz ^ dx; (3.13)

and the corresponding complex structure has the following
nonzero components

Jtt ¼ x

z
; Jut ¼ 1

z
; Jzx ¼ �1;

Jtu ¼ z2 þ x2

z
; Juu ¼ x

z
; Jxz ¼ 1:

(3.14)

A complex coordinate system zi with i ¼ 1, 2 is then any
choice for which the components of the complex structure

take the form ~J
�i
�j
¼ �~Jij ¼ �j

i . This amounts to finding a

coordinate change for which

@xa

@zi
Jba

@zj

@xb
¼ �j

i ;

and the last equation is equivalent following the following
system:

ðJab � i�a
bÞ@azi ¼ 0; i ¼ 1; 2: (3.15)

It can be checked from (3.14) that Eqs. (3.15) are equivalent
to the two following independent equations

@zz
i ¼ �i@xz

i; i@uz
i ¼ ðz� ixÞ@tzi:

Two independent solutions of the last system are given by
z1 ¼ �xþ iz and z2 ¼ iuðz� ixÞ þ t.
Now let us suppose that the function G in (3.5) is of the

form G ¼ u2 þUðw; �w; uÞ and we choose w ¼ z1. Let us
denote Uuu ¼ H2. If we further assume that U does not
depend on x, then by taking the derivative of (3.5) with
respect to u twice gives an equation for H2, namely,

�
1

z
@2z þ @2u

�
H2 ¼ 0; (3.16)

with solution

H2 ¼ 1þ m

ð4z3 þ 9u2Þ1=6 : (3.17)

By integrating twice with respect to the variable u and
remembering that Uuu ¼ H2, it follows that

G ¼ u2 � ð ffiffiffi
2

p Þ5
15

mz5=2
�
�1þ

�
1þ 9u2

4z3

�
5=6

� 15u2

4z3 2F1

��
1

6
;
1

2

�
;

�
3

2

�
;� 9u2

4z3

��
(3.18)

where 2F1 denotes a generalized hypergeometric function.
Now, a simple calculation shows that A ¼ dc4Gu ¼
�Guzdx, and this together with (3.18) gives

A ¼ � mu

2zð9u2 þ 4z3Þ1=6
�
�3þ 22=3

�
1þ 9u2

4z3

�
1=6

� 2F1

��
1

6
;
1

2

�
;

�
3

2

�
;� 9u2

4z3

��
dx: (3.19)

Also, a simple calculation shows that (3.1) is in this case

!1ðuÞ ¼ !1 � ddcG ¼ !1 �G1�1dz1 ^ d�z1

¼ !1 þGzzdz1 ^ d�z1; (3.20)

with !1 given in (3.13), and in the last step, we took into
account that z ¼ i�z1 � iz1. The explicit expression of
(3.20) is obtained from (3.18). The result is
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!1ðuÞ ¼ !1 þ m

2ð4þ 9u2

z3
Þ5=6z2ð9u2 þ 4z3Þ1=6

�
922=3u2

þ 2

�
222=3 �

�
4þ 9u2

z3

�
5=6

�
z3
�
dz1 ^ d�z1:

(3.21)

The metric g4ðuÞ in (3.7) is the one that corresponds to the
modified Kahler potential (3.21) namely

g4ðuÞ ¼ 1

z
ðdt� xduÞ2 þ zðdu2 þ dz2 þ dx2Þ

þ m

2ð4þ 9u2

z3
Þ5=6z2ð9u2 þ 4z3Þ1=6

�
922=3u2

þ 2

�
222=3 �

�
4þ 9u2

z3

�
5=6

�
z3
�
ðdz2 þ dx2Þ:

(3.22)

By collecting the results (3.17), (3.18), (3.19), (3.20), (3.21),
and (3.22), it follows that the Calabi-Yau extension (3.7)
of the BTKY metric is

g6 ¼
�
1þ m

ð4z3 þ 9u2Þ1=6
��1ðd�þ AÞ2

þ
�
1þ m

ð4z3 þ 9u2Þ1=6
�
du2 þ 1

z
ðdt� xduÞ2

þ zdu2 þ
�

m

2ð4þ 9u2

z3
Þ5=6z2ð9u2 þ 4z3Þ1=6

�
9 22=3u2

þ 2

�
2 22=3 �

�
4þ 9u2

z3

�
5=6

�
z3
�
þ z

�
ðdz2 þ dx2Þ:

(3.23)

with A given in (3.19). This example is a nontrivial Ricci-
flat and Kahler metric in six dimensions, with holonomy
exactly SU(3). Nevertheless, in the region near z ¼ 0, we
do not expect our solution to be valid, as the approximation
(3.11) breaks down.

D. Complete examples with Hamiltonian isometries

The explicit examples presented in the previous sections
do possess isometries preserving the full SU(3) structure;
in other words, they correspond to the case K1 ¼ 0 of
Sec. 1. The remaining case K1 ¼ 1 was considered in
[27]. These authors propose an anzatz which is given in
terms of an initial hyperkahler structure which is deformed
as in (3.1). In addition, they propose a sympletic form!6 of
the form (3.2). The unique difference with the case con-
sidered in Sec. 1 is that the complex 3-form is now �
dependent and is given by � ¼ ei�ðc� þ icþÞ, with
c� given (3.2). This implies that the isometry preserves
the Kahler 2-form but not �. The compatibility and the
Calabi-Yau conditions were worked out explicitly in [27],
and the outcome is again that the metric and the SUð3Þ
structure is completely determined by G, which is now a
solution of the equation

ðe�ð1=2ÞGyÞy ¼ MðGÞ; (3.24)

MðGÞ being the nonlinear operator defined by (3.4). The
CY metric is again given by (3.7), but now G is a solution
of (3.24). It has been shown in [27] that complete metrics
may be obtained when the initial hyperkahler structure is
the flat one. In this case, (3.24) becomes

ðe�ð1=2ÞGyÞy ¼ 2ð1þG1�1 þG2�2 þG1�1G2�2 �G1�2G2�1Þ:
(3.25)

By parameterizing

z1 ¼ r cos
�

2
exp

�
iðc þ�Þ

2

�
;

z2 ¼ r sin
�

2
exp

�
iðc ��Þ

2

�
;

(3.26)

and assuming that G is a function of r and y, Eq. (3.26)
reduces to

ðe�ð1=2ÞGyÞy ¼ 1

2r3
@r

�
r4
�
1þ 1

2r
@rG

�
2
�
; (3.27)

which is Eq. (61) of Ref. [27]. Particular solutions of this
equation have been found in that reference and which,
after appropriate coordinate transformations and different
rescalings, give the resulting family of Calabi-Yau
metrics [27]

g6 ¼ dy2

W
þ 1

4
Wy2ðd�� s2�3Þ2

þ y2
�
ds2

V
þ 1

4
Vs2�2

3 þ
1

4
s2ð�2

1 þ �2
2Þ
�

(3.28)

with

W ¼ 1� a

y6
V ¼ 1� s2 � b

s4
:

The metric with b ¼ 0 describes a higher dimensional
generalization of the Eguchi-Hanson instanton [36,37],
with R2 � CP2 topology and an asymptotic R6=Z3 [38].
For a ¼ 0, the metric is a cone of Yp;q. The general
solution describes a resolution of the Yp;q cone, and the
detailed global analysis can be found in [28–30]. More
details of this calculation can be found in the original
Ref. [27].
It is important to remark that Eq. (3.25), which corre-

sponds to the flat metric, is completely equivalent to (2.42).
This may be seen by making the redefinition Gi �j ! �i �j þ
Gi �j in (2.42), which gives (3.25) as a result, and vice versa.

In addition, the complex coordinates zi appearing in (2.43)
are locally given by (3.26). But although the starting point
is the flat hyperkahler structure, it is not necessarily true
that (3.26) parameterizes R4 globally; in fact, there may
appear singularities in the resulting Calabi-Yau metric
which can be avoided by changing the periodicity of the
angular variables or the range of the radial coordinate. In
any case, the above reasoning shows that metrics (3.28) are
special solutions of (2.42) and (2.43).
A priori, it may be expected that the use of curved

hyperkahler backgrounds will enhance the number of
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solutions of (3.24). In particular, it may sound plausible
that if one starts with a gravitational instanton admitting a
flat limit (such as the Taub-Nut one), then the resulting
Calabi-Yau metrics obtained by solving (3.24) will contain
the ones arising from (3.25) as a particular case, and,
moreover, the families described by (3.25) such as (3.28)
will be reobtained by taking the corresponding flat limit.
As (3.25) is equivalent to (2.42), this reasoning will imply
that (3.24) describes a more general family than (2.42). But
what the results of the present work are showing is that the
situation is the opposite, that is, any Calabi-Yau metric
found in terms of a curved hyperkahler space by solving
(3.24) can be obtained from solutions of the ‘‘flat’’
Eq. (2.42) as well. Thus, the number of solutions of
(3.24) is less or equal to the solutions of (2.42). The argu-
ments showing this are the same as in Sec. 1, namely, that
all the metrics described by (3.24) are under the hypothesis
givin in Eq. (2.42).2 Although this conclusion may sound a
bit odd, there is further evidence for that, which is the
following. If one starts with a curved hyperkahler metric
with triaxial symmetry instead of the flat one, then Calabi-
Yau metrics resulting from (3.24) are the ones with R2 �
CP2 topology and an asymptotic R6=Z3 together with the
resolution of the cone over T1;1=Z2 [27]. But T

1;1=Z2 is a
particular case of the Yp;q Einstein-Sasaki manifolds; thus,
the solutions obtained with the triaxial metrics are a special
subcase of (3.28). For other curved manifolds, the system
becomes harder to solve, and no new solutions have been
found. Although formally there is nothing wrong with the
use of hyperkahler structures to guess new solutions, it may
be the case that the use of curved geometries complicates
the task instead of helping to solve it. For this reason, it is
perhaps convenient to find a formalism which avoids this
problem, and the one developed here in (2.42), (2.43), and
(2.44) possesses these advantages, as these equations do
not make any reference to any vielbein of a curved hyper-
kahler metric.

IV. DISCUSSION

In the present work, a family of Calabi-Yau manifolds
with a local Hamiltonian Killing vector, i.e, a Killing
vector which preserves the metric together with the
Kahler form, was characterized. It was assumed that the

complex (3, 0)-form is of the form eik ��, where �� is
preserved by the Killing vector as well, and that the space
of the orbits of the Killing vector is, for fixed value of the
momentum map coordinate, a complex manifold, in such a
way that the complex structure of the 2-fold is part of the
complex structure of the 3-fold. Under these assumptions,
it was shown that the local form of the geometry is com-
pletely determined in terms of a function G satisfying the

nonlinear Eq. (2.42) if the phase k is nontrivial or (2.44) if
the phase k is zero. It has been also pointed out that the
constructions given in [25–27] are included in this family.
The advantages of this method are that, unlike the ones

presented in [25–27], it does not require a hyperkahler
structure as initial input. As it was discussed in Sec. II, it
is only required that the 4-dimensional manifold defined by
the orbits of the Killing vector for fixed momentum map
coordinate is a complex 2-fold, and the Calabi-Yau
conditions imply automatically that it is Kahler. In fact,
Eqs. (2.42) and (2.44) for the function G defining the six
dimensional metric do not contain any reference to the
vielbein of the complex 2-fold. In this form, one may avoid
the complications in the calculation of the local form of the
geometry due to the nontrivial curvature of an initial hyper-
kahler geometry.
It is perhaps better to compare this situation with known

results in four dimensions. Consider a 4-dimensional
Calabi-Yau (hyperkahler) space, such that the Killing
vector preserves the Kahler form !4 but not �4. As is
well known, the general local form of the Ricci-flat Kahler
4-metric is [39,40]

g4 ¼ uz½euðdx2 þ dy2Þ þ dz2�
þ u�1

z ½dtþ ðuxdy� uydxÞ�2; (4.1)

where u is the solution of the equation

ðeuÞzz þ uyy þ uxx ¼ 0: (4.2)

Equation (4.2) is known as the continuum limit of the sl(n)
Toda equation and is called SUð1Þ Toda equation. The
three dimensional base metric, namely,

g3 ¼ euðdx2 þ dy2Þ þ dz2;

is Einstein-Weyl [41–43]. But the general Einstein-Weyl
equation is not related to a Toda system, so these base
metrics are Einstein-Weyl spaces of restricted type. One
may try to find solutions of (4.2) by perturbing around a
solution related to a known Einstein-Weyl structure. This is
not wrong, but optional. In the sameway the 4-dimensional
metric (2.43) is Kahler with Kahler potential G, but G is of
restricted type, given by solutions of (2.42) or (2.44). One
may try to find a solution to these equations by perturbing
around a known hyperkahler one, as it was done in [25–27],
but this is optional as well.
We also presented in Sec. III C an example which is

obtained by means of the Fayyazuddin linearization. This
example has holonomy exactly SU(3), but it is not com-
plete. It may be interesting to see if it is possible to find
complete metrics by means of this linearization, which will
correspond to D6 branes wrapping a complex 1-cycle
inside a hyperkahler. We hope to answer this question in
the near future.

2See the last paragraph of Sec. 1; in fact, it is not difficult to
see that the �-dependent phase does not change these arguments
at all.
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