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Abstract

The present work studies the gravitational radiation of a non abelian vortex with a non compact
internal moduli describing its excitations. This situation may be realised by semi-local supersym-
metric vortices [1]-[8], although supersymmetry is not necessary for this to happen. In the situation
considered along this work, the internal space has infinite volume, and a largely energetic pertur-
bation propagates along the object, even though the vortex line may not be moving. A specific
configuration is presented, in which the internal space is the resolved conifold with its Ricci flat
metric. The curious feature about it is that it corresponds to a static vortex, that is, the perturba-
tion is only due to the internal modes. Even being static, the emission of gravitational radiation is
in the present case of considerable order. This suggest that the presence of slowly moving objects
that can emit a large amount of gravitational radiation is a hint of non abelianity.

1. Introduction

Gauge theories giving rise to non abelian vortices are of interest and not necessarily unrealistic. Such
topological objects, even though not being present in the Standard Model at low temperature and
low density phases, are likely to appear at its completions or in other of its phases with very high
temperature or high densities. An example is the hypothetical colour-flavor locked phase of QCD
[9]-[10], which may be realized at the core of a neutron star. At such high densities, the colour
superconductivity effect may play an important role in the dynamics. For QCD and other analogous
models, the resulting non abelian vortices posses internal moduli being described by a compact space.
An extensive pedagogical introduction about this subject can be found in [11] or [12], and we refer
the reader to these references for details.

The gravitational and other channel radiations for non abelian vortices with compact moduli space
were studied in [13]. The findings of that work show that the resulting radiation is similar to the one
for abelian objects, but with a corrected loop factor. This factor depends on the shape of the vortex,
and deviation from their expected values may be a hint of non abelianity. It should be emphasized
that, although the QCD vortices described above are an interesting example of topological objects with
internal excitations, they posses an scale two low for generating a noticeable spectrum of gravitational
waves. The results of [13] assume the presence of such type of vortices, but the symmetry breaking
scale is assumed to be much larger than the one corresponding to the colour flavour locked phase. An
example could be the GUT or even the Planck scale.

The aim of the present work is to study gravitational radiation of vortices whose internal excitations
parameterize a non compact space. As it will be argued along the text, this non compact property may
enhance the deviation from the abelian radiation. Such vortices may lead to a noticeable gravitational
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spectrum. As in [13], it will be assumed that these objects may appear in a completion of the Standard
Model, at early universe stages, although the explicit form of this model will be not specified. The
present work instead assumes that objects of such type may be present at early universe stages, which
seems for the present authors a reasonable hypothesis, and it is aimed to analyze their gravitational
spectrum.

Recall that, very loosely speaking, in a non abelian theory, there is a vacuum configuration invariant
under the action of given group G, which represents the unbroken symmetry group [11]-[12]. A typical
vortex solution tends to different vacuums in different directions at the asymptotic region. However,
the fields Φi of the theory take non vacuum values near the core of the object. This core may
be assumed as an small radius infinite cylinder aligned along the z axis, by simplicity. Typically,
the action by elements of G usually maps one vortex solution into another. In general, it is just a
subgroup H of G which is enough for parameterizing the different vortex solutions. Under a small
perturbation, the vortex may move or vibrate, and this define the translational modes. On the other
hand, along a perturbed vortex, the field configuration varies with the z position in time, and different
field configurations are related by each other by an action h(z, t) of elements of H. Therefore, a
perturbation of the vortex is described by elements of H which depends on the vortex position and
the time. These are the internal excitation modes and in favorable situations, H is described in terms
of a manifold.

For abelian vortices, it is well known that when the perturbation lengths are considerably smaller
that the typical vortex size, the Manton approximation takes place [35]. The only possible perturba-
tions are translational ones, described by the Nambu-Goto action in four dimensions [15]-[16], see also
[17]-[19]. Classically, this is equivalent to a Polyakov action. The possible emission channels of these
objects were considered for instance in [20]-[21]. If the underlying gauge theory is non abelian instead,
the excitations are customarily described by a Polyakov action whose metric has larger dimensions,
due to the presence of excitations living on subgroup H, the internal modes [11].

The non abelian string to be considered below has a moduli space given by a product of the
Minkwoski space, representing the translational modes, with a resolved conifold with its Ricci flat
metric. The last part represents the internal modes. This non compact moduli space appears for
instance in the N = 2 supersymmetric context, for semi local strings [1]-[8], see also, [22]-[34]. In
those models, several extra flavors are added to a theory for which the moduli space is compact.
This addition result in the emergence of size moduli, rendering the internal space non compact. The
supersymmetry arguments fix the metric to be Ricci flat after taking into account non perturbative
effects.

The choice of the Ricci flat conifold metric as the internal manifold, which is employed in the
present work, is not particularly motivated by supersymmetry however. The reason for this choice is
more practical, and is that the authors were able to find an explicit string solution in which the object
is static but nonetheless the internal modes are evolving non trivially in time. This leads to a non
vanishing energy momentum tensor resulting in the emission of gravitational radiation. Therefore,
although the object looks static, there appears a considerable gravitational wave emission, which may
sound paradoxical. Such a pattern is pointing out that the vortex in consideration is non abelian. The
goal of the present work is to exemplify this affirmation with an explicit and detailed calculation, and
the conifold metric is suited for these purposes.

The vortex excitations will be described by the Manton approximation [35], that is, it will be
assumed that the wave lengths of the excitations are smaller than the typical size of the object, as it
will be specified along the text.

The effective action for the motion for the translational and internal modes will be taken as [12]

S = Ts

∫
Σ

√
−ηηabgµν∂axµ∂bxνdΣ, (1.1)

where Ts is the string tension. This tension will not play a role in the derivation of the equations of
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motion. However it will be relevant when studying the gravitational waves the vortex emit when part
of those modes are excited. The metric gµν is the direct sum of the Minkowski four dimensional metric
with the conifold Ricci flat metric. The internal metric is multiplied by an internal tension Ti which
is not necessary equal to the translational one Ts. However, as the internal space is non compact,
by a simple scaling of the internal fields, the action can be cast as in (1.1). The vortex excitations
depend on one spatial direction describing the vortex position and one time direction describing the
evolution. This determines a two dimensional surface Σ, that is, the world sheet metric, over which
the last action integral is to be performed. The conformal gauge ηab = (−1, 1) will be employed below,
which leads to the standard Virasoro conformal constraints.

The next sections are devoted to find configurations describing purely internal excitations and to
characterize their gravitational radiation spectrum. The section 2 gives a light review about semi local
vortices while section 3 is devoted to the integration of a particular solution. Section 4 presents the
calculation of the radiated gravitational power the object generates. Section 5 contains a discussion
of the main results and their physical significance.

2. Semi local vortices as Polyakov strings in large dimensions

Before presenting particular results, it may be convenient to give a brief description about semi local
vortices and their possible perturbations. Probably the most simple type of semilocal strings arise
from the following action

S =

∫
[∇µϕ

i∇µϕ
i
+
g2

8
(ϕiϕi − v)2 +

1

4g2
FµνF

µν ]d4x, (2.2)

where i = 1, 2 denote the complex scalar fields ϕi flavors, and there is only one gauge field Aµ involved,
which is assumed to be abelian. In the previous formula, the covariant derivative

∇µϕi = ∂µϕi +
i

2
Aµϕi,

has been introduced. If the parameter v > 0 then the resulting photon is massive, with mass mγ ∼ gv.
The minimum energy or vacuum condition is given by

ϕiϕi = v.

This equation alone reduces the number of independent vacuum field from four to three. Still, there
is a gauge transformation at hand which renders one of the fields, say ϕ2, real. This results in the
algebraic condition for the vacuum manifold

ϕ1ϕ1 + (ϕ2)
2 = v, (2.3)

which obviously defines the two sphere S2, parametrizing the different vacuum orientations.
If in addition, the field ϕ2 is turned off, that is, ϕ2 = 0, then the resulting model is the abelian one

studied by Abrikosov-Nielsen-Olesen (ANO) in the context of superconductivity [56]. The S2 vacuum
sphere now reduces to a circle. The model with the field ϕ2 turned off admits abelian vortex lines,
the so called ANO vortices. If these vortices are aligned along the z axis, their profile is given by in
terms of the transverse cylindrical coordinates r and θ by

ϕ1 = f(r)eiθ, Am = −2ϵmnxn
r

(1− g(r)), (2.4)

where the indices m,n = x, y denotes the spatial cartesian directions transverse to the vortex. At
large transverse coordinates r → ∞ the corresponding fields tend to their vacuum values. Therefore
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the radial functions g(r) → 0 and f(r) → v, the first condition indicates that the gauge field is a pure
gauge configuration. The scalar field winds the infinite region due to the factor eiθ. Near the origin
r → 0 the fields vanish, therefore g(r) → 1 and f(r) → 0. The precise form of the radial functions
described above is given by the standard Bogomolnyi equations, but it is not know explicitly.

Consider now small perturbation of the ANO vortex described above. A generic perturbation
affects the position where the fields composing the vortex vanish. Obviously, if the vortex is unper-
turbed, this region is simply given by x = y = 0, with z and t arbitrary. This is a two dimensional
surface in the Minkowski four dimensional space time. For a perturbed vortex instead, the generaliza-
tion of this region is given by Xµ(τ, σ), which describes a moving line or string in three dimensional
spatial directions or a two dimensional hypersurface in four dimensions. For the unperturbed vortex,
it is clear that the identification z = σ and t = τ takes place. If the vortex is perturbed instead, this
line is deformed and varies with z and t.

The equation of motions of the object can be schematically be derived as follows. First, the tangent
space Tp at a given space time point p on the vortex may be parameterized by a vielbein ea = (ti, pj),
with two components ti tangent to the surface Xµ(τ, σ), and two remaining pj orthogonal to it. Any
point close to the vortex may be then expressed as

xµ = Xµ(τ, σ) + ηjpµj (τ, σ).

This defines a new coordinate system (τ, σ, η1, η2). If the curvature radius of the perturbation is
small enough, the perturbed vortex fields composing the vortex may be obtained by the replacement
ϕ(x, y) → ϕ(η1, η2) and Aµ(x, y) → Aj(η1, η2)p

µ
j (τ, σ). After introducing this new profiles into the

action (2.2) and by integrating along the transversal coordinates ηi, the resulting action becomes the
Nambu-Goto one [55]

Sng = Ts

∫
Σ

√
(Ẋ ·X)− (Ẋ)2(X)2dΣ. (2.5)

The jacobian arises from the change of coordinates from (x, y, z, t) to (τ, σ, η1, η2), and the tension
Ts arise due to the field integrations, and it is an indicator of how large are the fields composing the
vortex and their derivatives along the three dimensional space where the vortex is placed. The last
action is equivalent, at classical level, to the Polyakov one

Sp = Ts

∫
Σ

√
−ηηabgµν∂aXµ∂bX

νdΣ, (2.6)

with gµν denoting the standard Minkowski metric. The equations of motion corresponding to this
action describe the possible perturbation profiles Xµ(τ, σ) of the object. These excitations are refer-
eed as the translational modes of the object. The range of validity of these equations is limited to
perturbations which do not curve the object considerably.

The fact that the perturbation of the ANO abelian vortices are the translational ones is well known.
On the other hand, as stated above, the ANO vortices are not the unique type of solutions that (2.2)
admits. A generalization of the above solution includes the scalar field ϕ2 turned on. The solution
has the form (2.4) but now includes the new real valued field [30]

ϕ2 = h(r).

The full solution tends to the vacuum if h(r) → 0 at the asymptotic region r → ∞. At the origin
however, this field does not vanish, a feature that distinguishes these vortices from the ANO ones.
The standard Bogomolnyi equation throws the following result

ϕ2 =
ρ

r
f(r), (2.7)

where ρ is a complex parameter. This parameter is not constrained, and by reasons that will be clear
below, it is known as a size parameter. Its presence leads to a long range power fall off at infinite,
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as the remaining profile functions g(r), f(r) defining the vortex decay as r
r2+ρ2

asymptotically. This

type of objects are known as semi local vortices, see [30] and [57].
Consider now a perturbed vortex when the parameter ρ is turned on, as in (2.7). On general

grounds, it is expected that this parameter, which is constant for an unperturbed vortex, is prompted
to a function ρ(τ, σ) for a perturbed one. In other words, the long range parameter varies along the
vortex. The action (2.6) has to be enlarged in order to include this perturbation. In addition, the
vortex solution (2.7) is not the only possible one, as it is evident that the interchange ϕ1 ↔ ϕ2 leads to
another valid vortex configuration. Instead on discussing the particular topological objects (2.7) it is
perhaps convenient at this point to focus on a more general class of vortices, not necessarily abelian,
which are derived from a generalization of the action (2.2), in which the gauge field Aµ and the scalar
fields ϕj with i = 1, ..., N belong to representations of certain non abelian group G. The potential of
the theory V (ϕi) leads to vacuum conditions generalizing the ones in (2.3), generically written as

Q(ϕi) = 0, (2.8)

with Q(ϕi) a function derived from V (ϕi). The solution of this equation describe the different vacuum
of the model. However, there may be a subgroup H of G which leaves the vacuum solutions ϕiv
unchanged. In general, these theories may admit vortex solutions generalizing (2.7), and may contain
several size parameters ρj . The action of the group H that leaves the vacuum invariant however, does
not leave the vortex solution invariant, and maps different non equivalent vortex configurations while
leaving their asymptotic behavior unchanged. In general, the group mapping different configurations
may be smaller than H. In any case, when the vortex is excited, it is expected that, as an observer
moves along the object, he sees translational modes Xµ(τ, σ), together with size modes ρ(τ, σ) varying
along the object. In addition, the vortex internal orientation changes as the observer moves, and these
orientations are parameterized by elements h(τ, σ) of aforementioned subgroup of H. This last group
may be compact, and in this case the corresponding excitations are known as orientational modes. By
assuming that these perturbations ρ(τ, σ) and h(τ, σ) are small, and by following a procedure analogous
to the ones leading to (2.6) it is found that the full spectrum of small excitations is described by the
Polyakov action

Sp = Ts

∫
Σ

√
−ηηabgµν∂aXµ∂bX

νdΣ, (2.9)

where the metric gµν is the direct sum of the Minkowski one and an internal part gint, generically non
compact, and depending both on the size modes ρi and the angular variables describing the elements
h of H which maps different orientational directions of the vortex. In all these considerations, the
perturbations are assumed to be small. For instance, the difference |ρ(τ, σ) − ρ0| << ρ0 and so on.
This is the generalization of the Manton approximation for the internal modes.

In conclusion, the dynamics of non abelian vortex is in several contexts described by a Polyakov
string action in dimensions larger than four, the extra dimensions describing the internal vortex
excitations. The next task is to present examples of this situation.

3. Solutions of the equations of motion

As stated in the introduction, one of the tasks of the present work is to give examples of solutions
of the action (1.1) in which no translational modes are excited. In other words, only the internal
modes, size and orientational, are excited on the object. This will be exemplified with the resolved
conifold metric, although the reader is encouraged to consider other non compact geometries. There
are several references devoted to the conifold geometry and, in the following, the coordinates defined
in [36] will be employed. The local distance element is given as the direct sum of the Minkowski flat
space and the resolved conifold metric, the local form is given by [36]

ds210 = −dt2+dx2+dy2+dz2+κ−1(ρ)dρ2+
1

9
κ(ρ)ρ2e2ψ+

1

6
ρ2(e2θ1+e

2
ϕ1)+

1

6
(ρ2+6a2c)(e

2
θ2+e

2
ϕ2), (3.10)
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where the following radial function

κ(ρ) =
ρ2 + 9a2c
ρ2 + 6a2c

, (3.11)

and the 6-bein

eψ = dψ +

2∑
i=1

cos θidϕi, eθi = dθi, eϕi = sin θidϕi, i = 1, 2,

were introduced. The particular solution of the equation of motion that will be found here corresponds
to θ1 = 0, θ2 = π/2, ϕ1 = cte, ϕ2 = ϕ and x = y = 0. In this way, one is left with only one of the
SU(2) parts of the conifold [36] and the object will be static, standing straight along the z axis. The
reduced metric becomes

ds2r = −dt2 + dz2 + κ−1(ρ)dρ2 +
1

9
κ(ρ)ρ2dψ2 +

1

6
(ρ2 + 6a2c)dϕ

2. (3.12)

In the terms given above, the effective lagrangian describing the motion of the vortex that follows
from the Polyakov action (2.9) in the conformal gauge ηab = (−1, 1) is given by

L = −(ṫ2 − t′2) + (ż2 − z′2) + γ(ρ)(ρ̇2 − ρ′2) + α(ρ)(ϕ̇2 − ϕ′2) + β(ρ)(ψ̇2 − ψ′2), (3.13)

where the following functions of ρ

α =
1

6
(ρ2 + 6a2c), β =

1

9
κ(ρ)ρ2 γ = κ−1(ρ), (3.14)

have been introduced by simplicity. In principle, there is an internal tension Ti which may differ with
respect to the Ts tension for the translational modes. Nevertheless, this can be adsorbed by a scaling
ρ2 → TsT

−1
i ρ2 and a2c → TsT

−1
i a2c , and the action will be as above, up to a constant factor Ts.

The resulting equations of motion derived from this lagrangian are

αρ(ρ̇ϕ̇− ρ′ϕ′) + α(ϕ̈− ϕ′′) = 0,

βρ(ρ̇ψ̇ − ρ′ψ′) + β(ψ̈ − ψ′′) = 0

γρ(ρ̇
2 − ρ′2) + 2γ(ρ̈− ρ′′) = αρ(ϕ̇

2 − ϕ′2) + βρ(ψ̇
2 − ψ′2),

where the subscript ρ here means partial derivative of this coordinate.
For the purpose of getting a static vortex inM4 with only excitations living at the conifold moduli,

the following ansatz [37]

t = τ z = σ, ρ = ρ(y), ϕ = ω1τ + f(y), ψ = ω2τ + g(y), (3.15)

will be employed, where the variable y = bτ + aσ has been introduced. This means that the functions
ρ(y), f(y) and g(y) represent a wave propagating along the object, with speed v = b

a .
After substitution of the last ansatz into the equations of motion for ϕ and ψ, the result is a total

derivative with respect to y, whose integration leads to

α[bω1 + (b2 − a2)fy] = A, β[bω2 + (b2 − a2)gy] = B, (3.16)

where A and B are the integration constants. Furthermore, by substituting the ansatz in the equation
for r and by taking the equations above into account, it is arrived to a single variable differential
equation for ρ(y)

(b2 − a2)[2γ
∂2ρ

∂y2
+ γρ(

∂ρ

∂y
)2] = αρ[b

2(
ω1

b
+ fy)

2 − a2f2y ] + βρ[b
2(
ω2

b
+ gy)

2 − a2g2y ]. (3.17)

6



The last expression can be cast in the following form

(b2 − a2)2γ1/2
∂

∂y
[γ1/2

∂ρ

∂y
] = αρ[b

2(
ω1

b
+ fy)

2 − a2f2y ] + βρ[b
2(
ω2

b
+ gy)

2 − a2g2y ]. (3.18)

This is not the end of the story. The use of the conformal gauge ηab = (−1, 1) leads to the standard
Virasoro constraints

Tττ + Tσσ = − 2

a2 + b2
+ γρ2y + α[f2y +

ω2
1 + 2bω1fy
a2 + b2

] + β[g2y +
ω2
2 + 2bω2gy
a2 + b2

] = 0, (3.19)

Tστ = γabρ2y + α(ω1 + bfy)afy + β(ω2 + bgy)agy = 0.

The difference between these two Virasoro constraints gives the relation

− 2

a2 + b2
+ α[−ω1

b
fy +

ω2
1 + 2bω1fy
a2 + b2

] + β[−ω2

b
gy +

ω2
2 + 2bω2gy
a2 + b2

] = 0, (3.20)

which can be expressed as well as follows

−2 +
ω1

b
α[bω1 + (b2 − a2)fy] +

ω2

b
β[bω2 + (b2 − a2)gy] = 0. (3.21)

By using the equation (3.16) it is deduced from the last formula the following relation between the
constants involving the solution of the problem

ω1A+ ω2B = 2b. (3.22)

This has to be supplemented with one of the equations (3.19). The second of these equations can
be considered as a conservation energy equation for a particle in one dimension, whose equation of
motion in (3.18) represent the Newton like equation with effective potential. To see this fact clearly,
it is convenient to introduce the potential

Veff (ρ) = α

(
ω1

b
+ fy

)
fy + β

(
ω2

b
+ gy

)
gy =

1

(b2 − a2)2
[
A2

α
+
B2

β
+ µ1α+ µ2β − λ], (3.23)

with the constants
λ = 2(b2 + a2), µi = a2ω2

i . (3.24)

By employing the equations (3.16), it follows that (3.18) and (3.19) can be written in the form

2γ1/2(ρ)
∂

∂y
[γ1/2(ρ)

∂ρ

∂y
] = −

∂Veff
∂ρ

(ρ). (3.25)

which may be integrated in order to obtain

γ(ρ)(
∂ρ

∂y
)2 + Veff (ρ) = 0. (3.26)

The first represents a Newton law equation in presence of a potential, while the second results in the
energy conservation corresponding to this equation, as stated above. The last represents the energy
conservation of a particle with variable mass γ(ρ). This may sound a bit odd, since it is likely that in
a variable mass system the energy may be non conserved. In any case, the last equation is a first order
integral of the previous one, and this is helpful for explicit integration. In addition, it is not difficult
to see that the variation of the mass with respect to the ”time” y is not very pronounced, and this
may simplify the task of finding its solutions. It may be helpful to write explicitly the last equation
in the following form(

ρ2 + 6a2c
ρ2 + 9a2c

)(
dρ

dy

)2

+
1

(b2 − a2)2

[
6A2

ρ2 + 6a2c
+

9B2

ρ2

(
ρ2 + 9a2c
ρ2 + 6a2c

)
7



+
µ1(ρ

2 + 6a2c)

6
+
µ2ρ

2

9

(
ρ2 + 6a2c
ρ2 + 9a2c

)]
=

λ

(b2 − a2)2
. (3.27)

The variable mass term interpolates between the values γ ∼ 1/3 and γ ∼ 1, the first value is valid
form small radius ρ and the last for larger ones. For ρ <<

√
6ac the equation results

1

3

(
∂ρ

∂y

)2

+ Ṽeff (ρ) = 2E,

with a potential

Ṽeff (ρ) ≃
L2

ρ2
+Kρ2, (3.28)

with constants

L2 = 9B2, K =
1

4
(µ1 + µ2 −

A2

6a4c
), E =

3

2
λ− A2

4a2c
− 3

2
a2cµ1, (3.29)

For the case ρ >> 3ac instead, the equation becomes(
∂ρ

∂y

)2

+ Ṽeff (ρ) = 2E,

where the effective potential has again the form (3.28) but with the new constants

L2 = 6A2 + 9B2, K =
µ1
6

+
µ2
9
, E =

1

2
λ. (3.30)

. By writing the effective interaction in the form (3.28), it is seen that it corresponds to the radial
part of a two dimensional harmonic oscillator. The parameter L represents the angular momentum
barrier, and K is basically the oscillator constant, which is assumed to be equal in both directions. In
other words, the oscillator is assumed to exert a central force on the particle with mass m ∼ γ.

The solution of a two dimensional central oscillator in Classical Mechanics is trivial. The lagrangian
is simply

L =
m

2
(ẋ2 + ẏ2)− k

2
(x2 + y2),

and it is clear that the equations of motion for x and y decouple. There are four integration constants
that can be fixed with the initial positions x0, yo and the velocities ẋ0, ẏ0. The solution is elementary
in Classical Mechanics. By passing to polar coordinates after solving these equations, it follows that
the radial solution can be written as

2ρ2 = ρ20 cos
2Ωy +

(
E

k
− ρ20

2

)
sin2Ωy + 2ρ0ρ̇0 sin 2Ωy, (3.31)

ρ̇0 being the derivative of ρ with respect to y at y = 0. The energy is given in terms of the radial
initial conditions as

mρ̇20 +
l2

mρ20
+ kρ20 = 2E, (3.32)

while l is fixed by the initial angular velocity θ̇0 and radius ρ0. By analogy, it follows that the solutions
for small and large ρ described above in (3.28) is given by

2ρ2 = ρ20 cos
2Ωy +

(
E

k
− ρ20

2

)
sin2Ωy + 2ρ0ρ̇0 sin 2Ωy, (3.33)

where now ρ0 and ˙rho0 are not independent since they must satisfy

γρ̇20 +
L2

ρ20
+Kρ20 = 2E, (3.34)
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and the parameters L, K and E are given in terms of the parameters of the model A, B and µi and
ωi with i = 1, 2 described in (3.29)-(3.30).

At this point it is convenient to recapitulate and write the full solution found along the text. First,
the formula (3.15) shows that the solution is given by

t = τ z = σ, ρ = ρ(y), ϕ = ω1τ + f(y), ψ = ω2τ + g(y), (3.35)

where now it has been determined that the function ρ(y) is given by (3.33) together with (3.34). The
constants E, L and K are given by (3.29) or (3.30) for small and large ρ excitations, respectively.
These constants are given in terms of the parameters A, B, and µi defined in (3.24) and (3.16),
together with the condition which follows from the Virasoro constraints (3.22) namely

λ = 2(b2 + a2), µi = a2ω2
i , (3.36)

ω1A+ ω2B = 2b. (3.37)

In addition, recall from (3.16) that the constants A and B define the profile functions f(y) and g(y)
by the first order equations of motion

fy =
1

b2 − a2

[
A

α
− bω1

]
, gy =

1

b2 − a2

[
B

β
bω2

]
, (3.38)

Recall that α(ρ) and β(ρ) are functions of the radial coordinate ρ, whose explicit form are given in
(3.14). Since for large and small radius the ρ solution may be written as

ρ(y)2 = U2 cos2Ωy + V 2 sin2Ωy +W sin 2Ωy, (3.39)

with the values of U , V and W follows by comparing the last expression with (3.31), it is seen that
the first of equations (3.38) is given by

fy =
1

b2 − a2

[
6A

U2 cos2Ωy + V 2 sin2Ωy +W sin 2Ωy + 6a2c
− bω1

]
.

The second one is given by

gy =
1

b2 − a2

[
9B

ρ2

(
ρ2 + 6a2c
ρ2 + 9a2c

)
− bω2

]
,

and the replacement of (3.39) leads to a more complicated form. They can be integrated however,
with the result

(b2 − a2)f(y) =
6A

Ω
√
6a2 + U2

√
6a2 + V 2

arctan

(√
6a2 + V 2

√
6a2 + U2

tan (y)

)
− bω1 y,

(b2 − a2)g(y) =
9γB

ΩUV
arctan

(
V

U
tan (y)

)
− bω2 y,

where the initial condition f(0) = g(0) = W = 0 was chosen for simplicity. By substituting this
solution into the ansatz (3.15), the explicit form of the vortex solution

t = τ, z = σ, y = bτ + aσ

ρ = (U2 cos2Ωy + V 2 sin2Ωy +W sin 2Ωy)1/2

ϕ = ω1τ +
6A

Ω(b2 − a2)
√
6a2 + U2

√
6a2 + V 2

arctan(

√
6a2 + V 2

√
6a2 + U2

tan y))− bω1

b2 − a2
y

ψ = ω2τ +
9γB

Ω(b2 − a2)UV
arctan(

V

U
tan y)− bω2

(b2 − a2)
y. (3.40)

is obtained. These solutions are valid for ρ <<
√
6ac or ρ >> 3ac, but it will assumed that in the

regime
√
6ac < ρ < 3zc the resulting solution, which is more complicated to be found analytically,

have moderate values interpolating between these two regimes.
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4. Gravitationally radiated power from the object

Having successfully derived a solution for the motion (3.40), representing a non moving vortex with
only internal excitations, the subsequent endeavor involves the investigation of the gravitational radia-
tion emitted by the object. The rate of gravitational radiation emission at a frequency ωn is described
in the references [38], [39] by the formulas

dPn
dΩ

=
Gω2

n

π
[T ∗
µν(ωn, k)T

µν(ωn, k)−
1

2
|T νν (ωn, k)|2]. (4.41)

Here, dPn
dΩ is the intensity of radiation at angular frequency ωn = 2πn

T per unit of solid angle in the
direction of ki, kiki = ω2

n and

Tµν(k, ωn) =
1

T

∫ T

−T
dt eiωnt

∫
R3

d3x e−ik
ixi Tµν(xµ) (4.42)

is the Fourier transform of the string energy-momentum tensor. As the preceding solution pertains to
a very large straight string, the temporal periodicity T is also a very large scale.

The solutions that have been found in the previous section corresponds to a non moving string with
only internal degrees of freedom excited. This internal motion however, gives rise to a non vanishing
energy momentum tensor, therefore generating gravitational radiation. The task is now to determine
whether this radiation is negligible or instead, if it takes values similar to a moving abelian vortex. If
the second case is realized, then this radiation excess may be a hint for detecting non abelian objects.

As is widely acknowledged, the energy-momentum tensor in the spatial coordinates Tµν(xµ), can
be obtained by varying the action of the string

Tµν(xµ) = − 2√
−g

δ(
√
−gL)
δgµν

. (4.43)

Here gαβ is the space time metric, assumed to be the flat Minkowski one. In these terms, the action
describing the perturbations of the vortex [12] that correspond to Lagrangian (3.13) in the conformal
gauge becomes

S = Ts

∫
d2σ

√
−γ L = Ts

∫
d2σ

√
−γ Mαβ ∂aX

α∂bX
β. (4.44)

Here, Ts represents the string tension, while γ denotes the determinant of the metric on the worldsheet.
In this scenario, the induced metric γab on the surface of the string is obtained as the pull-back of the
complete metric of the vortex

γab = gαβ ∂aX
α∂bX

β. (4.45)

The metric gαβ describes all the string excitations, its explicit form being provided by the expression
(3.10), where its indices naturally range from α, β = 0, . . . , 9. Moreover, the fields Xα constitute the
field excitations of the vortex, encompassing its coordinates in spacetime. In the current context, they
correspond to those defined in equations (3.40), that is ρ, ϕ, ψ, t and z.

The expression (3.10) reveals that the complete metric governing the string excitations is composed
of two distinct components namely, the metric corresponding to translational modes, represented by
a flat Minkowski metric g̃µν = ηµν , and the one describing the internal modes, represented by the
Ricci-flat metric on the resolved conifold. Additionally, g̃ = η = −1. It is crucial to emphasize that
even though gµν and g̃µν are both given by the Minkowski 4-metric, they represent different quantities.
One describes the internal modes, while the other characterizes spacetime where the vortex lives. The
fact that they are both expressed in terms of the Minkowski metric is merely a coincidence, stemming
from the assumption that the vortex exists in a flat spacetime.
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Hence, considering the earlier definition of the energy-momentum tensor and recognizing that the
sole quantity dependent on the spacetime metric gµν is γ, it is arrived to the ensuing formula

Tµν(xµ) = Ts

∫
d2σ

L√
−γ

δγ

gµν
δ4(xµ −Xµ(σ, τ)). (4.46)

Through the use of the Jacobi formula it is deduced that

δγ

δgµν
= γγab

δγab
δgµν

= γγab∂aX
µ∂bX

ν . (4.47)

By operating with the last three formulas it is straightforward to obtain the following expression for
the stress-energy tensor of the configuration

Tµν(xµ) = Ts

∫
d2σ L(ρ)

√
−γγab∂aXµ∂bX

ν δ4(xµ −Xµ(σ, τ)). (4.48)

A remarkably simple expres)sion for L(ρ) can be derived as follows. First, by taking into account
(3.13) and (3.15), namely

L = −(ṫ2 − t′2) + (ż2 − z′2) + γ(ρ)(ρ̇2 − ρ′2) + α(ρ)(ϕ̇2 − ϕ′2) + β(ρ)(ψ̇2 − ψ′2), (4.49)

and
t = τ z = σ, ρ = ρ(y), ϕ = ω1τ + f(y), ψ = ω2τ + g(y), (4.50)

both considered in the previous section, it is obtained that

L = −2 + (b2 − a2)γρ2y + α[(ω1 + bfy)
2 − a2f2y ] + β[(ω2 + bgy)

2 − a2g2y ].

Now, the second term may be worked out by taking into account the Newton like equation (3.26)
together with the effective potential (3.23)-(3.24). The remaining ones can be worked out with (3.16),
which allows to express the derivatives fy and gy in terms of α(ρ) and β(ρ). After some algebra, it is
direct to find

L = −2− (b2 − a2)Veff (ρ) +
A2 − α2a2ω2

1

α(b2 − a2)
+
B2 − β2a2ω2

2

β(b2 − a2)
.

By replacing the explicit expression for Veff given in (3.23)-(3.24), it is seen the terms proportional
to A2 and B2 cancel and the final result becomes

L(ρ) = − 2a2

b2 − a2
[ω2

1α(ρ) + ω2
2β(ρ)− 2]. (4.51)

On the other hand, the metric of the worldsheet is

γab = diag(−1, 1),
√
−γ = 1. (4.52)

With the above derived formulas in hand, the next task is to study the vortex radiation. In a realistic
situation, a vortex is large but finite. In order to apply (4.41) in a situation in which the vortex
dimensions are large but finite, it is instructive to consider a static loop solution

x =
L

2π
cosσ, y =

L

2π
sinσ. t = τ. (4.53)

This corresponds to a vortex entirely contained in the plane z = 0 with circular form, and characteristic
length L. In principle, the vortex tension will tend to contract the object, and the loop will not be
static after some time. However, if the vortex dimensions are large, it will not move for certain time
and the most important contribution will be due to the internal motion. Furthermore, if the loop
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is extremely large it can be approximated by an straight configuration, such as the one described in
the previous section. By considering all these approximations, the corresponding energy momentum
tensor has the following non trivial components

Tµν = Ts

∫
d2σ L(ρ) (κ2τ ẊµẊν − κ2σX

′µX ′ν) δ4(xµ −Xµ(σ, τ)),

T tt = Ts

∫
d2σ L(ρ) δ4(xµ −Xµ(σ, τ)),

T xx = −Ts
∫
d2σ cos2 σL(ρ) δ4(xµ −Xµ(σ, τ)),

T yy = −Ts
∫
d2σ sin2 σ L(ρ) δ4(xµ −Xµ(σ, τ)),

T xy = Ts

∫
d2σ sinσ cosσ L(ρ) δ4(xµ −Xµ(σ, τ)). (4.54)

By introducing the quantities

ω =
2πn

T
=

4πn

L
, kx = ωα, ky = ωβ, kz = ωγ, α2 + β2 + γ2 = 1,

together with the notation

Ωa =
2π

L
, Ωb =

2π

T
=

4π

L
,

and the scaled time 2πτ
T → τ , it follows that the last expressions become

T tt(k, ω) =
Ts

(1− v2)

L

π2

∫ π

0
dτ

∫ 2π

0
dσ(I∗e2i(σ+2τ) + Ie−2i(σ+2τ) + J) e−i2nα sinσe−i2nβ cosσei2nτ ,

T xx(k, ω) = − Ts
(1− v2)

L

π2

∫ π

0
dτ

∫ 2π

0
dσ cos2 σ (I∗e2i(σ+2τ)+Ie−2i(σ+2τ)+J) e−i2nα sinσe−i2nβ cosσei2nτ ,

T yy(k, ω) = − Ts
(1− v2)

L

π2

∫ π

0
dτ

∫ 2π

0
dσ sin2 σ (I∗e2i(σ+2τ)+Ie−2i(σ+2τ)+J) e−i2nα sinσe−i2nβ cosσei2nτ ,

T xy(k, ω) =
Ts

(1− v2)

L

π2

∫ π

0
dτ

∫ 2π

0
dσ

1

2
sin 2σ (I∗e2i(σ+2τ)+Ie−2i(σ+2τ)+J) e−i2nα sinσe−i2nβ cosσei2nτ .

In the last formulas, the quantities I and J

I = (
1

6
ω2
1 +

1

9
ω2
2κ)[

1

4
(U2 − V 2) +

1

2
iW ],

J =
1

2
(U2 + V 2)(

1

6
ω2
1 +

1

9
ω2
2κ) + a2cω

2
1 − 2, (4.55)

have been introduced. At this point it is useful to consider the integral in τ by employing the formula∫ π

0
exp{2i(n±m)τ}dτ =

sin[(n±m)2π]

n±m
, (4.56)

for the particular cases m = 0, 2. With the help of the last expression, it is arrived to

T tt(k, ω) =
Ts

(1− v2)

L

π2

∫ 2π

0
dσ

[
I∗ sin(2πn)

n+ 2
e2iσ+

I sin(2πn)

n− 2
e−2iσ+

J sin(2πn)

n

]
e−i2nα sinσe−i2nβ cosσ,
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T xx(k, ω) = − Ts
(1− v2)

L

π2

∫ 2π

0
dσ cos2 σ

[
I∗ sin(2πn)

n+ 2
e2iσ +

I sin(2πn)

n− 2
e−2iσ

+
J sin(2πn)

n

]
e−i2nα sinσe−i2nβ cosσ,

T yy(k, ω) = − Ts
(1− v2)

L

π2

∫ 2π

0
dσ sin2 σ

[
I∗ sin(2πn)

n+ 2
e2iσ +

I sin(2πn)

n− 2
e−2iσ

+
J sin(2πn)

n

]
e−i2nα sinσe−i2nβ cosσ,

T xy(k, ω) =
Ts

2(1− v2)

L

π2

∫ 2π

0
dσ sin 2σ

[
I∗ sin(2πn)

n+ 2
e2iσ +

I sin(2πn)

n− 2
e−2iσ

+
J sin(2πn)

n

]
e−i2nα sinσe−i2nβ cosσ.

As n > 0, the first term in the square brackets always will be zero. To streamline the computation,
the freedom in adjusting the constants U , V , and W within the solution (3.33) can be employed. One
may impose J = 0 with the imposition of the following constraint

U2 + V 2 = 2[2− a2cω
2
1](

1

6
ω2
1 +

1

9
ω2
2κ)

−1, (4.57)

this follows from (4.55). By employing this choice it is found explicitly that

T tt(k, ω) =
Ts

(1− v2)

L

π2
I sin(2πn)

n− 2

∫ 2π

0
dσe−2iσ e−i2nα sinσe−i2nβ cosσ,

T xx(k, ω) = − Ts
(1− v2)

L

π2
I sin(2πn)

n− 2

∫ 2π

0
dσ cos2 σ e−2iσe−i2nα sinσe−i2nβ cosσ,

T yy(k, ω) = − Ts
(1− v2)

L

π2
I sin(2πn)

n− 2

∫ 2π

0
dσ sin2 σ e−2iσe−i2nα sinσe−i2nβ cosσ,

T xy(k, ω) =
Ts

(1− v2)

L

π2
I sin(2πn)

n− 2

∫ 2π

0
dσ

1

2
sin 2σ e−2iσe−i2nα sinσe−i2nβ cosσ.

While this specific choice of constants may seem somewhat restrictive, it proves adequate for illustrat-
ing an example of a static and highly radiating object, which is one of the objectives of the present
work. By further taking into account that

cos2 σ =
1

4
(e2iσ+e−2iσ+2), sin2 σ = −1

4
(e2iσ+e−2iσ−2),

1

2
sin 2σ =

1

4i
(e2iσ−e−2iσ), (4.58)

it is seen that the integrals to be solved are of the following type

I =

∫ 2π

0
dσe−irσe−2inα sinσe−2inβ cosσ, (4.59)

where r might be 0, 2, 4. By setting α and β for their angular coordinates, which is to say that
α = cosϕ sin θ, β = sinϕ sin θ, it is arrived to

I =

∫ 2π

0
dσe−irσe−2in sin θ sin(σ+ϕ). (4.60)

The definition of the Bessel functions

2πJk(x) = (−1)k
∫ 2π

0
dσei(kσ+x sinσ) (4.61)

13



leads to

I = e2irϕ
∫ 2π+ϕ

ϕ
dσe−2irσe−2in sin θ sinσ = 2πe2irϕ(−1)2rJ−2r(−2n sin θ) = 2πe2irϕJ2r(2n sin θ).

Whit the help of the last expression, the non trivial components of the energy tensor become

T tt(k, ω) =
Ts

(1− v2)

L

π2
I sin(2πn)

n− 2
2πe4iϕJ4(2n sin θ),

T xx(k, ω) = − Ts
(1− v2)

L

π2
I sin(2πn)

n− 2

π

2

[
J0(2n sin θ) + e8iϕJ8(2n sin θ) + 2e4iϕJ4(2n sin θ)

]
,

T yy(k, ω) =
Ts

(1− v2)

L

π2
I sin(2πn)

n− 2

π

2

[
J0(2n sin θ) + e8iϕJ8(2n sin θ)− 2e4iϕJ4(2n sin θ)

]
,

T xy(k, ω) =
Ts

(1− v2)

L

π2
I sin(2πn)

n− 2

π

2i

[
J0(2n sin θ)− e8iϕJ8(2n sin θ)

]
.

The last expression was derived for generic n. However, as mentioned above, the case of interest is
n = 2. In this situation

T tt(k, ω2) =
Ts

(1− v2)
4LIe4iϕJ4(4 sin θ),

T xx(k, ω2) = − Ts
(1− v2)

LI

[
J0(4 sin θ) + e8iϕJ8(4 sin θ) + 2e4iϕJ4(4 sin θ)

]
,

T yy(k, ω2) =
Ts

(1− v2)
LI

[
J0(4 sin θ) + e8iϕJ8(4 sin θ)− 2e4iϕJ4(4 sin θ)

]
,

T xy(k, ω2) = − Ts
(1− v2)

LI

[
J0(4 sin θ)− e8iϕJ8(4 sin θ)

]
. (4.62)

On the other hand, the power radiated

dP

dΩ
=
Gω2

2

π
[T ∗
µν(ω2, k)T

µν(ω2, k)−
1

2
|T νν (ω2, k)|2], (4.63)

may be easily expressed as

dP

dΩ
=
Gω2

2

π
[|T tt|2 + |T xx|2 + |T yy|2 + 2|T xy|2 − 1

2
| − T tt + T xx + T yy|2], (4.64)

or equivalently, as

dP

dΩ
=
Gω2

2

π

[
1

2
|T tt|2 + 1

2
|T xx|2 + 1

2
|T yy|2 + 2|T xy|2 − Re(T ∗ttT xx + T ∗ttT yy − T ∗xxT yy)

]
. (4.65)

The intensity as a function of θ of this power radiated is shown in the figure below. The equation
(4.62) leads in particular to

|T tt|2 = T 2
s L

2|I|2

(1− v2)2
16J2

4 (4 sin θ),

|T xx|2 = T 2
s L

2

(1− v2)2
|I|2
{
J2
0 + J2

8 + 4J2
4 + 4J0J4 cos 4ϕ+ 2J0J8 cos 8ϕ+ 4J4J8 cos 4ϕ

}
(4 sin θ),

|T yy|2 = T 2
s L

2|I|2

(1− v2)2

{
J2
0 + J2

8 + 4J2
4 − 4J0J4 cos 4ϕ+ 2J0J8 cos 8ϕ− 4J4J8 cos 4ϕ

}
(4 sin θ),
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Figure 1: Power radiated intensity. The vertical is the z axis
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|T xy|2 = T 2
s L

2|I|2

(1− v2)2

{
J2
0 + J2

8 − 2J0J8 cos 8ϕ

}
(4 sin θ),

ReT ∗ttT xx = −T 2
s L

2|I|2

(1− v2)2
4

{
2J2

4 + J0J4 cos 4ϕ+ J4J8 cos 8ϕ

}
(4 sin θ),

ReT ∗ttT yy = −T 2
s L

2|I|2

(1− v2)2
4

{
2J2

4 − J0J4 cos 4ϕ− J4J8 cos 8ϕ

}
(4 sin θ),

ReT ∗xxT yy = −T 2
s L

2|I|2

(1− v2)2

{
J2
0 + J2

8 − 4J2
4 + 2J0J8 cos 8ϕ

}
(4 sin θ).

With these formulas at hand, by integrating (4.65) along the angles ϕ and θ it is arrived to the
following power radiated

P =
32πGT 2

s |I|2

(1− v2)2

∫ π

0
(4J2

0 + 4J2
8 + 24J2

4 )(4 sin θ) sin θ dθ. (4.66)

The main frequency considered here is ω2. Under this approximation, it has been found that the
last integral in independent on the size L of the vortex ring, a result that has been derived for a
circular ring. Therefore, the power radiated spectrum depends on the shape but not on the size of the
loop. Concerning the finite factor

δR =

∫ π

0
(4J2

0 + 4J2
8 + 24J2

4 )(4 sin θ) sin θ dθ, (4.67)

the authors were unable to find an explicit expression for this integral, however by use of MATHE-
MATICA its estimated value is

δR ∼ 5, 7.

In these terms, the expression (4.66) takes the form

Pnon abelian = γlT
2
sG, (4.68)

in which the loop factor becomes γl ∼ 500|I|2.

5. Summary

In the present letter, the possibility that a non abelian, almost static, semi local vortex may emit
a considerable amount of gravitational radiation was studied. The main formula obtained is (4.68).
This formula may be compared with the gravitational radiation of translational modes in an abelian
vortex. First of all, it should be remarked that the factor T 2

sG appearing in that expression also
appears when translational modes are excited [40]-[54]. In fact typically in those situations the power
radiated is of the form

Pabelian = γabelianT
2
sG,

where γabelian is a loop factor depending on the geometry, typically taking values between 1−100. By
comparing this expression with (4.68), it follows that for the present non abelian vortex the effective
loop factor will be

γl ∼
16|I|2δR
(1− v2)2

.

Although it may appear that this factor can be very large for ultra relativistic excitations v ∼ 1, for
such large velocities the use of the present formula for radiated power may be dubious. Note that this
factor, as discussed below (4.68), is of order γl ∼ 500|I|2, and can overcome the value γabelian = 100
for moderate values of |I|2. This suggest that internal modes may generate a considerable amount of
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gravitational radiation. In fact, the quantity I was defined in (4.55), and an inspection of this formula
shows that it depends on the maximum radius ρm of motion and the frequencies ωi. This last quantity
describes the rotation inside one of the SU(2) parts of the conifold geometry. It may be expected
that |I|2 ∼ F2(ρmΩτ , ρmΩσ). In fact, (4.55) shows that it is a quartic expression in those variables.
Therefore, the loop factor for this static vortex looks like

γl ∼
16ρ4mω

4δR
(1− v2)2

,

with ω some average of the rotation frequencies in the SU(2) component of the conifold. The use of
the Manton approximation does not forbid at first sight to overcome the value γl = 100 in several
particular situations. In the present case, there is no translational contribution, as the loop motion
was neglected and all the calculated gravitational spectrum is entirely due to the internal modes. This
is a clear difference with respect to abelian vortices since the last ones do not radiate when they are
static. Here, instead, it does.

In a general picture, it is expected that a typical non abelian vortex with a non compact space
of internal excitations may move as well. The suggestion of the present work is that the radiation
due to the internal modes may predominate in several cases. Therefore, this excess of of gravitational
radiation or a very large correction of the loop factor may be considered as a possible signature of non
abelianity. For this reasons, we suggest that the study of radiation channels for non abelian vortices
with non compact internal moduli spaces is a topic that deserve further attention.
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