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Abstract 

The bacterial envelope is an essential compartment involved in metabolism and 

metabolites transport, virulence and stress defense. Its roles become more evident when 

homeostasis is challenged during host-pathogen interactions. In particular, the presence 

of free radical groups and excess copper in the periplasm causes noxious reactions, 

such as sulfhydryl group oxidation leading to enzymatic inactivation and protein 

denaturation. In response to this, canonical and accessory oxidoreductase systems are 

induced, performing quality control of thiol groups, and therefore contributing to restore 

homeostasis and preserve survival under these conditions. Here, we examine recent 

advances in the characterization of the Dsb-like, Salmonella-specific Scs system. This 

system includes the ScsC/ScsB pair of Cu+-binding proteins with thiol-oxidoreductase 

activity, an alternative ScsB-partner, the membrane-linked ScsD, and a likely associated 

protein, ScsA, with a role in peroxide resistance. We discuss the acquisition of the 

scsABCD locus and its integration into a global regulatory pathway directing envelope 

response to Cu stress during the evolution of pathogens that also harbor the canonical 
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Dsb systems. The evidence suggests that the canonical Dsb systems cannot satisfy the 

extra demands that the host-pathogen interface imposes to preserve functional thiol 

groups. This resulted in the acquisition of the Scs system by Salmonella. We propose 

that the ScsABCD complex evolved to connect Cu and redox stress responses in this 

pathogen as well as in other bacterial pathogens.  
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Introduction 

The cell envelope of Gram-negative bacteria is where uptake of nutrients and efflux 

of unnecessary or toxic species occur. It is also the first barrier against multiple external 

stressors. Several physiological processes such as energy generation and cell division 

depend on its integrity (1). The bacterial envelope is composed of two proteolipid 

bilayers: the inner membrane (IM) enclosing the cytoplasm, and the outer membrane 

(OM) with lipopolysaccharide exposed to the external milieu. Between these two 

membranes is the periplasm, a protein-rich compartment that harbors a peptidoglycan 

layer (2). Many bacterial virulence factors reside in this compartment or depend on 

envelope-located systems for their secretion (3, 4). Thus, preserving its homeostasis is 

critical for virulence. 

Pathogens are exposed to host-generated reactive oxygen and/or nitrogen species 

(ROS and RNS, respectively), key components of the innate immune system (5–7) (Fig. 

1). ROS and RNS are also produced as common inflammation by-products in 

mammalian tissues (8). Two enzymes, the membrane-associated NADPH-dependent 

oxidase (Phox) and the inducible nitric oxide synthase (iNOS), catalyze the conversion 

of O2 into superoxide (O2
-) and the oxidation of L-arginine to L-citrulline and nitric oxide 

(NO), respectively, in the host (9). The reactive O2
- is rapidly converted into hydrogen 

peroxide (H2O2) and hydroxyl radicals (HO•) within the bacterial cell. At the same time, 

NO reacts with O2
- and H2O2 to produce a variety of RNS such as peroxynitrite (ONOO−), 

perhaps the most potent non-specific biocidal agent known (10, 11). These species react 

with bacterial lipids and proteins, affecting the synthesis and translocation of major 

envelope structural components as peptidoglycans, lipopolysaccharides, and 

lipoproteins (12–14). This causes a rapid metabolic breakdown that eventually results in 

cell death.  

Periplasmic enzymes such as Cu-Zn superoxide dismutases (SodC), thiol 

oxidoreductases of the Dsb family that repair cysteine (Cys) residues and proteases that 

degrade damaged proteins, are the first mechanisms used by Gram-negative bacteria to 

counteract oxidative stress (12, 15–19). Furthermore, some pathogens like Salmonella 

enterica and Proteus mirabilis, are adapted to survive in oxidative environments, and this 

was accomplished by acquiring additional gene-products that strengthen their response 

capabilities (see below). The CpxR/CpxA two-component system, together with other 

transcriptional regulators, coordinates cell envelope redox stress response (4, 20, 21). 

Instead of sensing ROS/RNS directly, these regulatory systems detect the damage 

caused by the reactive species. For instance, activation of CpxR/A pathway depends on 
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a Cys-rich sensor whose folding and/or insertion into the membrane is altered by redox 

stress (22). 

Copper ions are required as a prosthetic group in various essential enzymes, but can 

also be potentially cytotoxic. For simplicity, we will refer to copper mainly as Cu+, as it is 

the oxidation state being bound, transported, and distributed across the cell. 

Mechanisms of Cu+ toxicity include: i) participation in Fenton-like reactions with ROS, ii) 

displacement of redox active Fe ions from Fe-S centers, iii) binding to non-cognate sites 

on macromolecules, iv) oxidation of sulfhydryl groups, particularly in the periplasm of 

Gram-negative bacteria v) and protein aggregation (23–28) (Fig. 1). Periplasmic Cu+ 

overload also affects key processes such as folding and transit of lipoproteins to the OM 

or amino acid uptake (29, 30). In fact, Cu+ is a component of the innate immune system 

against bacterial pathogens (31–33). Phagocytic cells actively accumulate Cu+ in 

endocytic vesicles used to intoxicate intracellular pathogens (34). Cu+ is also mobilized 

into the bladder to restrict colonization by uropathogens such as Escherichia coli or P. 

mirabilis (35, 36). Furthermore, exposure of uropathogenic E. coli to sub-lethal Cu+ 

concentrations led to increased expression of the periplasmic SodC and cytoplasmic 

SodA enzymes, likely counteracting the metal-generated oxidative stress (37). 

Although the connection of Cu+ dyshomeostasis with redox stress is well known (25, 

33, 38, 39), it is still unclear how the cell envelope handles and distributes this redox 

active metal while maintaining the required redox balance (40, 41). Defense against Cu+ 

excess in Gram-negative species relies on the Cu+ sensing cytoplasmic CueR regulator 

and the periplasmic-sensing two-component systems (CusR/S, CopR/S, CpxR/A) that 

control the expression of membrane Cu+ transporters, metal chaperones, oxidases, and 

species-specific Dsb-like proteins such as the ScsABCD system (32, 39, 40). In 

particular, Salmonella ScsABCD is required for resistance to both Cu+ and H2O2 stress, 

two common stressors this pathogen handles during the infection cycle (38, 42). 

Expression of this non-canonical Dsb system is induced by periplasmic Cu overload via 

activation of CpxR/A (38). Recent advances in the biochemical characterization of the 

ScsC/ScsB pair of thiol-oxidoreductases and identification of likely periplasmic 

substrates, together with a better definition of the role of associated proteins, ScsA and 

ScsD, support a revision of the evidence informing future studies of these proteins. In 

addition, we also discuss here the acquisition of this genetic locus by other Gram-

negative pathogens and its putative integration into the CpxR/A regulon. Finally, we 

consider the relevance of the Scs system during infection. 
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Periplasmic redox and Cu-stress handling by Salmonella  

Salmonella encounters ROS/RNS stress during infection. Its intestinal colonization 

triggers inflammation with a concomitant generation of these reactive species (5). The 

pathogen also faces the simultaneous presence of ROS, RNS and Cu+ excess (Fig. 1) 

in the lumen of the endocytic vesicles within phagocytic cells (5, 43). Salmonella employs 

two periplasmic Cu-Zn-Sod enzymes (Fig. 1) to remove toxic superoxide ions from the 

periplasm: SodCII, an E. coli SodC ortholog, and the horizontally acquired SodCI, 

encoded in the Gifsy-2 prophage along with other virulence-factors (16, 44). These 

homologous enzymes have different structural/functional properties and their expression 

depends on different transcription factors. The dimeric SodCI is tethered to the 

peptidoglycan and shows a catalytic rate higher than that of the soluble monomeric 

SodCII (45). Deletion of sodCI increases Salmonella sensitivity to both superoxide and 

NO (46) suggesting that SodCI prevents formation of peroxynitrite through degradation 

of superoxide radicals. Supporting its role in pathogenesis, sodCI transcription is 

upregulated by the PhoP/PhoQ two-component system, a major coordinator of 

Salmonella virulence (47). Thus, its deletion significantly attenuates macrophage 

survival and mice infection (48, 49). 

The bacterial response to Cu+ is also critical for Salmonella virulence (40, 50). It 

depends on the cytoplasmic Cu+-sensing transcriptional regulator CueR and a set of 

envelope proteins expressed under its control (Fig. 1): the Cu+ transporting P-type 

ATPase CopA, the multicopper oxidase CueO, and the Cu+-binding protein CueP (50–

54). CueP expression also depends on CpxR/A system (55) and this periplasmic protein 

is required for Salmonella survival and replication inside macrophages (50, 56). Some 

Salmonella serovars harbor a second Cu+ transporting P-type Cu+-ATPase, GolT, and a 

cytoplasmic Cu+-chaperone GolB, both controlled by a CueR-like regulator, GolS (Fig. 

1) (52, 57). In vitro, CueP can acquire Cu+ from either CopA or GolT, and participates in 

the metallation of SodCI and SodCII (54, 58). However, a ∆cueP ∆copA ∆golT triple 

mutant retains fully functional SodCI and SodCII (59). On the other hand, CueP can 

reduce Cu2+ to metallic Cu0 (56).  

Salmonella harbors the canonical DsbA/DsbB and DsbC-G-E/DsbD oxidoreductase 

systems that maintain thiol groups in the oxidative periplasmic environment (Fig. 1). The 

structure and biochemical function of these major complexes are discussed below. 

Salmonella also has a number of horizontally acquired genes coding for Dsb-like proteins 

(17). Among them, DsbL/DsbI is a DsbA/DsbB-like system required for activation of 

AssT, a periplasmic aryl-sulfate sulfotransferase encoded in the same chromosomal 

locus than dsbL and dsbI (60). SrgA is an alternative DsbA-like oxidase identified in the 
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Salmonella virulence plasmid (61). This enzyme interacts with DsbB and assists in the 

assembly of the plasmid-encoded Pef-fimbriae and the secretion of other virulence 

factors (61, 62). Accordingly, srgA expression is coregulated with the fimbria-coding 

genes (61). The Dsb-like disulfide isomerase and thiol oxidase BcfH also contributes to 

fimbrial biogenesis (63).  

Salmonella scsABCD is a chromosomal operon coding for three non-canonical Dsb-

like proteins, ScsB, ScsC and ScsD, and ScsA, a putative membrane-protein ScsA of 

unknown function (38, 42, 64) (Fig. 1). scsABCD transcription is induced by Cu stress 

and depends on CpxR/A (38). The scs locus was initially identified by its ability to 

suppress the Cu-sensitivity of an E. coli mutant lacking nlpE, the Cpx OM envelope 

stress sensor coding gene (64). The inclusion of both scsABCD and cueP as part of the 

Salmonella Cpx regulon (38, 55) might account for the increased sensitivity of the cpxRA 

mutant to both Cu+ and Au+ (65) (Checa and Soncini unpublished results). Under Cu-

stress, the Scs proteins could provide feed-back control to the CpxR/A system, as 

deletion of the scs locus results in an increased Cu-dependent activation of the CpxR/A 

pathway (38). This resembles a phenotype observed in a dsbA deletion strain in E. coli, 

also a member of the Cpx regulon in this species (66).  

Although the entire scsABCD operon is induced by Cu overload, only ScsB, ScsC, 

and ScsD are required for Cu+ resistance, while they play minor roles in H2O2 tolerance 

(38). On the other hand, ScsA is required for H2O2 detoxification but does not provide 

any protection against Cu (38, 42). The presence of Scs proteins in the Salmonella 

periplasm made the DsbC/DsbD system dispensable for Cu resistance (38), differing 

from E. coli, that lacks the Scs system. Since Cu and ROS are simultaneously present 

in the host intracellular environment (23, 67), the Scs proteins are thought to be important 

under these conditions, contributing to Salmonella virulence. The Scs system might also 

compensate for the low dsbA expression detected at the intracellular niche (68, 69). 

Although the precise contribution of the Scs system to virulence has not been established 

and could be complex, wild-type replication levels inside macrophages were reported for 

Δscs strains (42), except when the cellular-culture medium was supplemented with 100 

µM CuSO4 (30). In the presence of Cu2+, the Δscs mutant also showed a significant 

reduction in the expression and secretion of virulence factors required for cell invasion 

(42). Finally, impaired proliferation of a ΔscsA mutant strain was reported during host´s 

cortisol outburst, a phenomenon that promotes intracellular bacterial replication in the 

intestinal tract (70).  
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The canonical Dsb system 

Cysteine is a redox active amino acid that frequently appears in pairs forming S-S 

bonds in periplasmic proteins (71). This stabilizes protein structure and prevents 

oxidation/nitrosylation of their side chains (72). Still, Cys in its reduced form is required 

in periplasmic proteins either for catalytic activity or to coordinate metal ions such as Cu+ 

(24, 72). In this oxidative environment, the Cys redox status is usually maintained by two 

major thiol oxidoreductases complexes, DsbA/DsbB and DsbC/DsbD (17) (Fig. 2 and 3). 

DsbA and DsbC are the substrate-interacting periplasmic enzymes. DsbB and DsbD are 

their IM-partners that drive electrons through the membrane. These Dsb proteins harbor 

domains with a thioredoxin-like fold and distinctive CX2/3C motifs that are required for 

their redox activities. 

Under physiological conditions, the DsbA/DsbB system assists in de novo disulfide-

bond formation when newly synthesized proteins reach the periplasm (Fig. 2). The 

periplasmic DsbA functions as a monomeric oxidase that oxidizes the thiol groups of its 

substrates to form disulfide bonds (73, 74). As a result, the catalytic CX2C in DsbA 

becomes reduced. The IM component DsbB re-oxidizes the DsbA active-site residues 

and transfers the electrons to quinone carriers that feed the respiratory chain (75, 76) 

(Fig. 2). DsbB has four transmembrane segments and two periplasmic regions, each 

containing a pair of Cys residues (77, 78). In the N-terminal periplasmic domain of the E. 

coli protein, Cys41 and Cys44 are part of the thioredoxin-like domain that interacts with 

the reduced quinone carrier. Cys104 and Cys130 in the C-terminal periplasmic region 

perform DsbA oxidation (Fig. 2). A transient Cys41/Cys130 disulfide bond interaction 

enables the electron flow between both terminal regions of DsbB. E. coli DsbA/DsbB 

substrates include proteins requiring the formation of S-S bonds between non-

consecutives Cys; for instance, LptD and BamA required for lipopolysaccharide or β-

barrel protein insertion into the OM, or FtsN, an IM divisome component (79–82). Other 

DsbA/DsbB substrates participate in the assembly and/or delivery of virulence factors 

such as flagella, adhesins and secretion systems, or in stress signaling and activation of 

the major regulatory envelope homeostasis pathways (83, 84). A mechanistic example 

of how this Dsb system is linked to redox homeostasis is NlpE, the OM sensor of the 

CpxR/A system. NlpE is a large lipoprotein with five Cys and two periplasmic domains, 

each harboring a S-S bond in its final structure (85). Perturbation of S-S bond formation 

blocks NlpE trafficking to the OM. The IM-retained misfolded NlpE interacts with CpxA, 

inducing its autokinase activity, phosphorylation of CpxR, and expression of the Cpx 

regulon (29, 66). The thiol oxidase DsbA probably provides feedback control to the 

CpxR/A system, because its coding gene is part of the Cpx regulon in E. coli, but also in 
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Salmonella and other bacteria (86–88). Similarly, activation by redox stress of the Rcs 

system, a phospho-relay also contributing to envelope homeostasis, involves two 

proteins exposing Cys to the periplasm, the OM lipoprotein RcsF and the IM system 

repressor IgaA (89–93). RcsF usually remains in the OM trapped in a complex with BAM, 

the protein incorporation β-barrel assembly machinery, and porins. This prevents RcsF 

interaction with IgaA. Perturbation in S-S bond formation releases RcsF from the above-

mentioned complex and allow it to bind IgaA. This finally results in the activation of the 

Rcs-regulatory pathway. 

DsbC can act both as an isomerase or as a reductase (82, 94, 95). The first activity 

is essential to repair dysfunctional S-S bonds on periplasmic proteins having an odd 

number of Cys residues (Fig. 3A). Also, DsbC maintains free-SH groups preventing their 

oxidation/nitrosylation and catalyzes the reduction of dysfunctional S-S bonds (Fig. 3B). 

In fact, an E. coli dsbC null mutant is highly sensitive to Cu+ (96). DsbC is a V-shaped 

homodimer, where each protomer contains a thioredoxin domain with a CX2C active site 

(97, 98). Catalysis involves the nucleophilic attack of the N-terminal Cys98 of DsbC and 

the formation of a mixed-disulfide complex with the substrate (97). Resolution of this 

intermediate and product release involves the attack of either an alternative Cys in the 

misfolded substrate (Fig. 3A), or the Cys101 of DsbC (Fig. 3B) (97, 99). A DsbC CX2S 

mutant cannot resolve the transient enzyme/substrate disulfide complex. Consequently, 

this mutant has been employed to trap and identify some of the DsbC target proteins 

(81, 100). Recycling of oxidized DsbC to its reduced form is mediated by DsbD (Fig. 3B), 

via its periplasmic CX3C-containing α-domain (101). This large IM reductase accepts 

electrons from cytoplasmic thioredoxins, apparently through a cascade of redox 

exchange reactions involving multiple Cys in both the transmembrane helixes and the 

periplasmic γ-domain (101–105).  

E. coli and Salmonella also harbor DsbG, a DsbC homolog, which forms an 

alternative redox pair with DsbD (Fig. 4). DsbG is required to preserve the catalytic Cys 

residues of L,D-transpeptidases involved in linking peptidoglycan to the Braun lipoprotein 

Lpp during peptidoglycan maturation (95). Like DsbC, the active form of DsbG is a dimer 

(106). Differences in a linker helix length and the pattern of hydrogen bonding at the 

dimer interface between these homologous proteins might contribute to substrate 

discrimination (98, 107). The protein environment surrounding the CX2C motifs in DsbG 

and DsbC also differs. This likely change the pKa and redox potentials of these enzymes, 

affecting their corresponding activities. Despite this, DsbC and DsbG can partially 

substitute each other in vitro and also in vivo (95, 108), except under Cu+ stress (96). 

Another DsbD substrate is the inner membrane-anchored protein DsbE (CcmG), which 
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is involved in cytochrome c biogenesis (104, 109) (Fig. 4). Like DsbC and DsbG, DsbE 

has a periplasmic thioredoxin-like domain with a CX2C motif (110, 111). 

 

The Salmonella Scs system and its paralogues in other pathogens 

The scs locus is present in all available S. enterica and S. bongori genomes, as well 

as in other enterobacterial species like Citrobacter, Serratia, Yersinia, Klebsiella, 

Cedecea, Raoultella, Enterobacter, Pantoea, Providencia, Proteus, and a swine 

diarrheagenic E. coli TA206 strain, as well as in the gamma proteobacteria Aeromonas 

(Fig. 5). In these species, a similar operon array is conserved. The first gene, scsA, is 

followed by scsB, scsC, and scsD. However, scsC and scsD are inverted in Vibrio sp. 

(Fig. 5). We have reported putative CpxR-binding sites in the promoter of most scs-like 

operons (38), suggesting both the presence of Cpx-dependent regulation and a Scs-

mediated feed-back control. Curiously, in Cronobacter sakazakii a scsB homolog is next 

to a gene coding for a protein with ~60% identity to Salmonella DsbG (Fig. 5). Incomplete 

scs operons, lacking either scsA or scsC, are present in Shewanella sp. and 

Photobacterium profundum, respectively. Caulobacter crescentus, a member of the 

alphaproteobacterial class and an opportunistic pathogen, encodes scsB and scsC 

homologs (112), while Haemophilus influenzae and Neisseria meningitidis only harbor a 

scsD homolog in their genomes (Fig. 5).  

ScsB forms a functional redox pair with the periplasmic component ScsC in 

Salmonella, Caulobacter crescentus, and Proteus mirabilis (112–114) (Fig. 5). ScsB and 

its ortholog define a new group within the DsbD protein family (112, 113). These IM 

proteins have eight transmembrane segments and two periplasmic domains (α and γ) 

with the archetypical CX2/3C motif (Fig. 6). Considering the similarity between ScsB and 

DsbD at the IM region (Fig. 3 and 6), it was proposed that TrxA, the cytoplasmic enzyme 

that feeds electrons to DsbD, is also the electron donor of ScsB (Fig. 6). Differences 

between ScsB and DsbD are more evident at the periplasmic α-region. In this region, 

DsbD has a single immunoglobulin-like fold (Fig. 3) (115), while the ScsBα (Fig. 6) 

contains two of these domains in tandem (112, 116). Only the N-terminal subdomain, 

named α-A, includes the redox-active site (CX3C motif) that primes the ScsC activity and 

is conserved among the ScsB proteins (113). The other immunoglobulin-like subdomain, 

α-B, is more variable and has been suggested to modulate the interaction with other 

redox partners. For instance, C. crescentus ScsB interacts with ScsC and other proteins 

involved in the cell envelope reductive pathway such as PprX, a periplasmic 

peroxiredoxin, and PrxL, a peroxiredoxin-like protein (112). The possibility of crosstalk 
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between the Salmonella ScsB/ScsC and DsbD/DsbC systems was analyzed in vitro 

(114). While the DsbDα domain transfers electrons to oxidized ScsC, ScsBα cannot 

catalyze the reduction of DsbC.  

All ScsC homologs have the characteristic thioredoxin fold, the CX2C catalytic motif, 

and various conserved residues (117). Salmonella ScsC Gly186, Pro175 and Thr174 are 

also present in all homologs (Fig. 6), including E. coli DsbG. These residues are 

proposed to stabilize the reduced form of the protein (117). Lys70 and Lys96 residues that 

stabilize the thiolate form of the nucleophilic Cys66 in the catalytic motif of Salmonella 

ScsC (117), are conserved in most of ScsC homologs, except in C. crescentus, 

Shewanella and Pantoea sp. However, the ScsC-like proteins show significant 

heterogeneity in their oligomerization state. Proteus and Caulobacter ScsC form 

homotrimers connected by the long N-terminal α-helix, while the Salmonella homolog 

lacking this region is a monomer (116, 118) (Fig. 6). These distinct structures seem to 

be associated with different roles. Caulobacter and Proteus ScsC have disulfide 

isomerase activity (112, 116, 118). By contrast, Salmonella ScsC, initially proposed as a 

disulfide reductase in vitro (117), was shown to facilitate disulfide bond formation of the 

periplasmic arginine sensor ArtI under stress conditions (30). Because ArtI only has two 

Cys, it was speculated that ScsC may also repair these oxidized residues under redox 

stress. SodCI and SodCII are putative Salmonella ScsC substrates, as are other proteins 

involved in amino acid sensing and import, including ArgT, GltI, and HisJ (30). Residues 

around the Cys in the CX2C motif likely influence the redox potential of periplasmic 

proteins. Both ScsC and the disulfide isomerase DsbG have identical CPYC motif at their 

active sites and similar low redox midpoint, -132 and -129 mV, respectively (117). 

Nevertheless, Salmonella ScsC shows a low pKa (3.4), comparable to that of the thiol 

oxidase DsbA (3.5). Thus, ScsC might have both oxidase and reductase activities in 

different conditions. 

Salmonella ScsC and ScsB, and C. crescentus ScsC were shown to bind Cu+ and 

Cu2+ in vitro (114, 118). Both Salmonella ScsC and ScsB from Salmonella can also 

transfer Cu+ to CueP with similar efficiency (114). However, neither the specificity of 

metal binding nor the unidirectionality of Cu+ transfer has been tested. Also, the 

relevance of Cu transfer and its relationship with the redox activity of these enzymes 

await elucidation.  

Salmonella scsD encodes a predicted IM-anchored protein with a periplasmic 

thioredoxin-fold domain. Its AlphaFold 2 structure (Fig. 6) resembles that of the 

membrane-linked thiol:disulfide interchange proteins such as DsbE/CcmG and TlpA, 

involved in cytochrome c and aa3 biogenesis, respectively (110, 119). Apparently, ScsD 
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(Fig. 6) and its homologs have a conserved proline residue separated by 61 residues 

from their putative redox-active CX2C motif. Interestingly, this Pro residue stabilizes the 

oxido-reductase motif of DsbE/CcmG-like proteins (111). Considering that TlpA is a 

substrate of Caulobacter ScsB (112), DsbE is another DsbD partner in E. coli (109) (Fig. 

4), and the function of both Salmonella ScsC and ScsD under Cu+ stress depend on 

ScsB (38), we propose that ScsD is also a ScsB redox partner (Fig. 4).  

Lastly, Salmonella ScsA is the only Scs protein having a CX2C motif but lacking the 

thioredoxin-like fold and probably the redox activity associated with this domain. 

Interestingly, it has no homology to any structurally characterized protein. Contrary to the 

other Scs proteins, its location within the bacterial envelope could not be determined 

(42). Some in silico predictions indicate that ScsA might be an integral IM protein with 

two transmembrane helixes (Fig. 6), while others showed a lipobox-like sequence in the 

N-terminal region that might direct ScsA to the OM. If ScsA is an OM protein, the CX2C 

motif located at the N-terminus of the putative cleavage site is expected to be removed 

during processing. In the hypothetical case that ScsA remains in the IM, this motif would 

be hidden in the membrane (Fig. 6). Interestingly, all identified ScsA homologs carry this 

predicted lipobox sequence, and those more closely related to the Salmonella ScsA also 

conserve the CLAC array within the CX2C motif. In addition, a peroxidase signature 

sequence, TAQRMAGLHAL (64), is detected in most ScsA homologs in a region 

predicted to be exposed to the periplasm. Taking this into account and given the role of 

ScsA in H2O2 tolerance (38, 42), it is tempting to speculate that this protein functions as 

a periplasmic peroxidase. The observation that expression of the Scs proteins avoided 

H2O2-mediated carbonylation of envelope proteins (42) further supports this idea. Based 

on the requirement of Cu stress for scsA transcription (38, 42), ScsA might prevent the 

generation of ROS species derived from Cu overload.  

 

Concluding remarks 

Counteracting redox and Cu stress in the envelope of bacterial pathogens is required 

to establish a successful infection. The collected evidence indicates that the canonical 

Dsb systems might not satisfy the extra demands that the host-pathogen interface 

imposes to preserve functional thiol groups. Then, it is logical that novel Dsb-like systems 

were acquired during evolution by intracellular pathogens like Salmonella or 

uropathogens like P. mirabilis. In fact, the Salmonella Scs system emerges as the linker 

between Cu and redox stress. The role of three of its components in disulfide bond 

generation and/or isomerization of envelope proteins might be assumed based on their 
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structural features. However, their specific chemical function and biological roles require 

experimental confirmation. In addition, the biochemical function of ScsA and its 

membrane topology remain to be determined. Importantly, the specific requirements of 

the ScsABCD system at the host/pathogen interface, as well as its relevance during the 

infection cycle of Salmonella and other pathogens, also need further inquiries. 
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Figure Legends 

Figure 1: Handling of copper and redox stress in Salmonella envelope. Cu ions, ROS 

and RNS are part of the host´s defense against this pathogen. Cu-transporters and 

chaperones are depicted in different tones of blue, cuproproteins in orange and redox 

enzymes in green. The regulatory systems (in red) and their regulatory networks are 

shown. The flux, generation and chemical transformation of ROS/RNS are indicated with 

arrows. Arrows with question marks represent the influx and efflux of Cu ions carried out 

by uncharacterized transporters. Inactivation of proteins with Cys residues involves not 

only Cu(I) but also ROS and RNS. 

 

Figure 2: De novo disulfide bond formation catalyzed by the DsbA/DsbB pair. Three 

dimensional structures of DsbA (PDB 1A2I) and DsbB (PDB 2ZUQ) are drawn in ribbon 

form (in blue). All catalytic Cys residues from CX2/3C motifs are represented in yellow 

spheres. Thiol groups or S-S bonds are depicted in magenta. UQ/UQH2 is the 

ubiquinone/ubiquinol pool. Magenta dashed arrows indicate the electron flow. Solid black 

arrows show the overall redox reactions. 

 

Figure 3: Reactions catalyzed by DsbC. A) Isomerization of non-native disulfide bonds 

in envelope proteins. B) Reduction of the Cys groups on protein substrates, a reaction 

that requires DsbD to recycle DsbC. The structures of DsbC (PDB 1EEJ), DsbDα (PDB 

1JPE), DsbDγ (PDB 2FWF) and TrxA (PDB 6H1Y) are drawn in ribbon form (in blue). 

The DsbDβ structure predicted by AlphaFold 2 is shown in gray. Catalytic Cys, thiol 

groups or S-S bonds are shown as in Fig. 2. Dashed arrows indicate either nucleophilic 

attack or electron flow, as shown in the figure. Solid black arrows illustrate the redox 

reactions. 

Figure 4: The alternative DsbD partners, DsbG and DsbE (CcmG) and the reactions 

they catalyze. The structures of DsbG (PDB 1V58) and DsbE (CcmG) (PDB 2B1K) 

DsbDα (PDB 1JPE), DsbDγ (PDB 2FWF) and TrxA (PDB 6H1Y) are drawn in ribbon 

form (in blue). Structures of DsbDβ and the N-terminal region of DsbE predicted by 

AlphaFold 2 are shown in gray. Catalytic Cys, thiol or sulfoxide groups, S-S bonds and 

electron flow are shown as in Fig. 2. 

 

Figure 5: The scs locus from Salmonella and paralogue species. The figure shows the 

chromosomal region of organisms harboring scsABCD homologs (analysis performed 
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on the “Seed Viewer”, http://pubseed.theseed.org). Only a representative strain from 

either S. enterica or S. bongori are included in the figure, but all Salmonella genomes 

have the scsABCD locus. The S. enterica scsABCD promoter is indicated with a black 

arrow. The identified (black boxes) or predicted (gray boxes) direct-repeats 

corresponding to the CpxR-binding sites upstream of scsABCD promoter are shown. Full 

names of analyzed strains are: Salmonella enterica subsp. enterica serovar 

Typhimurium str. LT2; Salmonella bongori 12149; Citrobacter sp. 30_2; Cedecea 

davisae DSM 4568; Escherichia coli TA206; Serratia sp. AS13; Yersinia sp; Raoultella 

ornithinolytica B6; Enterobacter sp B509; Klebsiella sp 1_1_55; Hafnia alvei ATCC 

51873; Erwinia billingiae Eb661; Aeromonas sp 159; Pantoea sp GM01; Proteus 

mirabilis HI4320; Providencia stuartii MRSN 2154; Vibrio sp MED222; Photobacterium 

profundum SS9; Cronobacter zakazakii ATCC BAA-894; Shewanella sp W3-18-1; 

Haemophilus influenzae R2846; Neisseria meningitidis FAM18. 

 

Figure 6: The Salmonella Typhimurium Scs system. The structure of ScsC (PDB 4GXZ) 

and TrxA (PDB 6H1Y) are shown in ribbon form (in blue). The two subdomains (A and 

B) from the ScsBα region predicted by AlphaFold 2 are colored in pink and purple, 

respectively. Structures of the β and γ domains of ScsB, ScsA and ScsD predicted by 

AlphaFold 2 are shown in gray. Yellow spheres represent the catalytic C composing the 

CX2/3C motifs. Inserts highlight the active sites of ScsC and ScsD with Cys residues 

colored in yellow. Other conserved residues important for the redox activity of ScsC are 

highlighted, as well as the conserved P135 residue of ScsD. Dashed arrows indicate 

reported (black) or hypothetical (magenta) electron transfer between Scs proteins. 
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