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Abstract

The Protein Ensemble Database (PED) (URL: https://proteinensemble.org) is the primary resource for depositing structural ensembles of in-
trinsically disordered proteins. This updated version of PED reflects advancements in the field, denoting a continual expansion with a total of
461 entries and 538 ensembles, including those generated without explicit experimental data through novel machine learning (ML) techniques.
With this significant increment in the number of ensembles, a few yet-unprecedented new entries entered the database, including those also
determined or refined by electron paramagnetic resonance or circular dichroism data. In addition, PED was enriched with several new features,
including a novel deposition service, improved user interface, new database cross-referencing options and integration with the 3D-Beacons
network—all representing efforts to improve the FAIRness of the database. Foreseeably, PED will keep growing in size and expanding with
new types of ensembles generated by accurate and fast Ml-based generative models and coarse-grained simulations. Therefore, among future
efforts, priority will be given to further develop the database to be compatible with ensembles modeled at a coarse-grained level.
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Introduction

Intrinsically disordered proteins or regions (IDPs/IDRs) lack a
specific, stable structure and instead exist as rapidly intercon-
verting conformers. This arises from their relatively uniform
free-energy landscape, resulting in their highly dynamic and
heterogeneous nature (1). IDPs/IDRs play significant roles
in various essential functions such as cell signaling, regula-
tion and recognition. Furthermore, their involvement in nu-
merous human diseases renders them highly attractive tar-
gets for therapeutic drug discovery (2). While binding modes
of some IDPs/IDRs that fold upon interaction offer valu-
able structural insights (3), gaining a thorough comprehension
of the complex mechanisms governing the function of IDPs
also requires knowledge of their structural dynamics in the
unbound state, and many IDPs/IDRs form fuzzy complexes
(3). Given their extreme conformational dynamics, modeling
IDPs/IDRs in terms of ensembles is the only valid strategy for
structurally studying IDP function. By definition, a conforma-
tional ensemble consists of multiple structures, each with their
statistical weights representing their relative populations and
transition rates that quantify their dynamics (4). Despite the
steady expansion of experimentally determined protein struc-
tures in the Protein Data Bank (5) and the recent AlphaFold
Protein Structure Database (6), which contains accurate struc-
tural models of millions of proteins, the information they offer
about the dynamic nature of proteins remains limited, espe-
cially in the context of ensemble representation of IDPs. In
2014, the Protein Ensemble Database (PED) (7) was estab-
lished to bridge this gap, and over time, it has consistently
evolved, enhancing the quantity and quality of deposited en-
sembles.

Generally, conformational ensembles are determined by in-
tegrating experimental and computational methods. This in-
volves a diverse range of experimental techniques, including
nuclear magnetic resonance (NMR) spectroscopy, small angle
X-ray scattering (SAXS), single-molecule Forster resonance
energy transfer (smFRET), electron paramagnetic resonance
(EPR) and circular dichroism (CD) (4,8). These experimen-
tal measurements serve as global and/or local constraints, en-
abling the resampling and reweighting of a pool of conformers
generated through statistical conformer generators or molec-
ular dynamics (MD)/Monte Carlo (MC) simulations. More-
over, the advent of AlphaFold2 (9), RoseTTAFold (10) and
the advancements in machine learning approaches have fos-
tered the development of various pipelines aimed at effectively
modeling multiple conformational states or predicting con-
formational ensembles (11-13). Nevertheless, despite recent
progress in the field, modeling conformational ensembles, es-
pecially for IDRs/IDPs, remains challenging. On the computa-
tional front, a significant obstacle arises from the lack of a pre-
cise energy function to guide MD or MC simulations (14,15),
coupled with limited computational resources for thorough
sampling of the conformational space (16). On the other hand,
from an experimental standpoint, a major challenge is accu-
rately quantifying all sources of errors and uncertainties in
both the experimental data and the predictors (forward mod-
els). Additionally, the observable data are averaged over all
members of the ensemble, leading to a reduction in informa-
tion content. Because of these limitations, resolving structural
ensembles has persisted as an ‘underdetermined’ challenge.
This viewpoint arises from the fact that the number of de-
grees of freedom in the ensembles significantly surpasses the
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available experimental restraints, leading to multiple poten-
tial solutions for the problem without a distinct ‘best’ option.
In such a context, having comprehensive and manually cu-
rated IDP-related databases, e.g. PED (17), DisProt (18), Mo-
biDB (19), FuzDB (3) and IDEAL (20), can serve multiple pur-
poses. First and foremost, they can serve as a foundational
reference and a valuable resource for establishing a validation
pipeline to assess the reliability of IDP conformational ensem-
bles. Furthermore, they function as extensive training datasets
for upcoming machine learning (ML) models (21). Since the
latest PED publication in 2021 (17), a strong emphasis has
been given by the scientific community to predict IDP con-
formational ensembles from sequence by combining ML ap-
proaches and MD simulations (22,23), as well as to compare
conformational ensembles of flexible proteins (24,25). In this
article, we present the new version of the PED (Protein En-
semble Database, https://proteinensemble.org), aimed at ad-
dressing the evolving challenges and advancements in the field
of IDPs/IDRs. Our primary goal has consistently been to en-
hance the size of our database. In this updated release of PED,
we have now accumulated a total of 461 entries and 538 en-
sembles. This time, we also included IDP ensembles generated
without experimental data by novel ML and sampling meth-
ods from sequences. A new restyled website with an improved
user interface and novel features is presented, as well as a ded-
icated web-server for the ensemble’s deposition and curation.

Progress and new features

Database growth

PED aims to be the gold-standard primary deposition
database for conformational ensembles of non-globular pro-
teins (NGPs) or regions. Therefore, the main goal of PED is to
provide an ever-growing platform of structural ensemble en-
tries with a user-friendly deposition pipeline while maintain-
ing high standards for data quality and the FAIR data prin-
ciples. PED is cross-linked with the main resources to deposit
ensembles’ primary experimental data, including BRMB (26),
SASBDB (27) and PCDDB (28).

In this new release, the number of PED entries has increased
almost three times compared to the version presented in the
last publication (461 versus 162) (17). The source of this data
increment comes from depositions from data owners (42 en-
tries in this release), ensembles generated without experimen-
tal data (61 entries in this release) and ensemble identification
by the PED biocurator team from databases and publications.
As detailed below, a larger number of NMR ensemble entries
were identified by an automated computational pipeline ap-
plied to BMRB (1409 protein structures), which were then
subsequently revised, filtered and published by the biocura-
tors (totalling 189 entries).

New entries
Novel ensembles

As in previous releases, new PED ensembles were predom-
inantly modeled using SAXS, NMR spectroscopy, FRET
data and their combinations (Figure 1A). NMR data in-
cluded chemical shifts (CSs), nuclear Overhauser effects
(NOEs), J-couplings, residual dipolar couplings (RDCs), re-
laxation data and paramagnetic relaxation enhancements
(PREs) (29). On top of these, for a few new entries, meth-
ods such as electron paramagnetic resonance (EPR) spec-
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Figure 1. Experimental techniques and ensemble generation methods. (A) Matrix layout quantifies the combinations of experimental techniques for
PED entries, sorted by size. Filled circles in the matrix indicate which experimental measurement is part of the intersection. (B) Distribution of ensemble
generation methods and auxiliary software applied in PED. The X axis represents the number of PED entries.

troscopy techniques (e.g. double electron—electron resonance
(DEER)) and CD were also used to characterize the protein en-
sembles (30,31); often in combination with other techniques.
These combinations included EPR + NMR, EPR + SAXS,
EPR + NMR + SAXS, CD + NMR (30-32). NMR data have
already been cross-referenced from BMRB (26) and SAXS
data from SASBDB (27), but now CD data can also be cross-
referenced from PCDDB (28), which will enable PED deposi-
tors during submission to reference their CD data already de-
posited in its primary resource.

Besides these experimental datasets, several PED deposi-
tions also used computationally expensive MD simulations to
perform integrative structural modeling by reweighting the en-
sembles. These MD simulations comprised among others tra-
jectories generated by a CHARMM force field and the EEF1
implicit solvent model in a replica-exchange MD setup (33), or
AMBERO3w force field with TIP4P/2005s water model (34),
or replica-exchange Discrete MD (DMD) using the MEDUSA
force field in implicit water (35), or coarse-grained Langevin
MD in multiple replicas (36), or AMBER99SB-disp force field
with it own water model using replica exchange with solute
tempering (37). Furthermore, the repertoire of ensemble gen-
eration methods and auxiliary software is continuously ex-
panding to encompass state-of-the-art techniques in the field
(Figure 1B).

It is often emphasized that IDPs have a high-degree of con-
formational heterogeneity, which is harder to capture by a sin-
gle technique. Therefore the integration of simulations and
various experiments can better characterize the highly dy-
namic nature of IDPs (38). Now, there is an increasing number
of IDP ensembles in PED determined by different combina-
tions of techniques under the same or slightly different condi-
tions, e.g. hnRNPA1, alpha-synuclein, Tau. We envisage that
these ensemble data will reveal not only how sensitive IDPs are
to environmental conditions but also the strengths and weak-
nesses of methods in capturing certain structural aspects.

NMR structural ensembles

A significant upgrade in the new PED version involves the in-
clusion of a large number of NMR structural ensembles com-
prising IDRs sourced from the PDB. These NMR ensembles
represent collections of different conformations (models) that
individually satisfy the experimentally derived constraints (8).

To achieve this, we systematically searched the MobiDB
(19) to identify NMR ensembles containing IDRs/IDPs. As
a starting point, we identified a subset of 2064 proteins con-
taining large RMSD regions defined as ‘mobile’ in MobiDB.
Mobile regions are calculated for all NMR ensembles using
the Mobi software (39); it is an analogous definition to the
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presence of missing residues in X-ray structures. This feature
represents highly flexible regions based on structural superpo-
sition that change their local conformation in the NMR en-
sembles.

To further refine our dataset, we also consider the disor-
der content percentage of the proteins based on two criteria:
AlphaFold-disorder (40) and MobiDB-lite predictions (41).
Initially, we focused on proteins for which both predictors in-
dicated a disorder content percentage exceeding 50%. In the
subsequent phase, we expanded our inclusion criteria to cover
proteins where at least one of these two predictors indicated
a disorder content percentage above 50%. During this stage,
we also verified the availability of experimental NMR data for
each protein in the BMRB database (26).

We then established three key criteria to determine the el-
igibility of NMR ensembles for inclusion in PED: (i) pub-
lication availability: we confirmed the existence of a corre-
sponding publication; (ii) consistency in disorder prediction:
we ensured that a minimum of ten consecutive residues within
the mobile region were classified as disordered by AlphaFold-
disorder and/or MobiDB-lite, the cutoff representing the min-
imum length of IDRs in DisProt; (iii) sufficient conformational
coverage: the NMR ensemble had to consist of at least ten dis-
tinct structures.

Ensembles without explicit experimental data

Given the recent advancements in ML algorithms for mod-
eling protein structural dynamics (42) and in new meth-
ods for sampling IDP conformational ensembles (43,44), we
expanded PED and its controlled vocabulary (CV) (https:
/Iproteinensemble.org/about) to accommodate ensembles cal-
culated without incorporating specific experimental data con-
straints.

The idpGAN generative model (22) was trained on coarse-
grained molecular dynamics (MD) simulations (45) of IDRs
from the DisProt database. It is capable of rapidly generating
ensembles for arbitrary IDR sequences. IdpGAN does not in-
corporate experimental data in the ensemble-generation pro-
cess and, for this update, we did not adopt any reweighting
scheme (4) to improve compatibility with the experimental
data of the entries. idpGAN was applied to a specific set of
sequences from the PED database, involving the careful se-
lection of 47 entries meeting both idpGAN’s technical pre-
requisites and exhibiting a significant fraction of disorder. In
this context, idpGAN generated 1000 Cx-only conformers for
each selected entry, which were then converted into full all-
atom structures using the cg2all neural network (46). These
resulting structures underwent an energy minimization relax-
ation process similar to the one in AF predictions. For repro-
ducibility, the entire pipeline was made accessible at https:
/lgithub.com/feiglab/idpgan_ped.

We have also included fourteen ensembles generated with
the new IDPConformerGenerator software suite, which al-
lows statistical or experimentally (chemical shift) biased sam-
pling of torsion angles from the PDB to create all-atom
IDPs and IDRs (tails, linkers and loops) in the context of
full-length proteins containing folded domains (43,44). IDP-
ConformerGenerator allows exploration of multiple torsion-
angle sampling methods that enrich the ensembles’ confor-
mational diversity and account for post-translational modi-
fications, multi-chain protein complexes, non-protein ligands
such as nucleic acids and lipid bilayers around membrane-
bound proteins containing IDRs. The ensembles deposited
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were assessed in the original publications (43,44). IDPCon-
formerGenerator is open-source, fully documented with ex-
amples, and is accessible at https://github.com/julie-forman-
kay-lab/IDPConformerGenerator.

PEDdeposition service

PED introduces a dedicated deposition user interface accessi-
ble to everyone. This service allows depositors to upload en-
sembles and metadata, calculate and visualize structural fea-
tures, and assess ensemble quality through automated valida-
tion. Deposition of new ensembles into the PED can be de-
scribed in three main stages: ensemble deposition by the user,
calculation of ensemble properties, and finally, manual cura-
tion by PED expert curators (Figure 2).

The initial step in submitting an ensemble involves user au-
thentication through ORCID ID credentials. Within the de-
position service, users encounter two primary sections: one
for creating a new ensemble draft and another for manag-
ing existing drafts. Additionally, the service offers an example
ensemble draft to help users become acquainted with the re-
quired deposition information. After creating a new draft, the
user can begin depositing information, which is organized into
three main tabs: description, ensemble upload and construct
definition.

Ensemble description

In the ‘Experimental procedure’ section, users can provide a
brief overview of the experimental techniques employed to de-
termine the protein’s structural characteristics. The ‘Structural
ensemble calculation’ field captures computational meth-
ods, including software for pool generation, forward mod-
els and tools for fitting experimental observables with back-
calculated measurements from predicted models, as well as
validation efforts on the ensemble. For ensembles generated
through MD/MC simulations, there is a specific section to de-
tail simulation parameters like software, force field and wa-
ter model, simulation duration, enhanced sampling, cluster-
ing of frames, etc. Additionally, the database offers a con-
trolled vocabulary (CV) organized into an ontology to en-
hance searchability and standardize keywords describing ex-
perimental methodologies, ensemble generation and MD/MC
simulations. The last two sections in the ensemble description
focus on specifying the NCBI taxonomy ID of the expression
organism and providing cross-references to other databases,
including the BMRB, SASBDB, PCDDB, DisProt and IntAct
(47).

Upload

The upload section of the PEDdeposition service facilitates ef-
ficient submission of ensembles. Users can upload multiple-
model PDB files that contain the ensemble. Additionally, if
available, they can upload a tab-separated file containing
weights. These weights indicate the percentage contribution
of each conformer to the ensemble. The PED deposition ser-
vice initiates a validation pipeline to ensure accurate data for-
matting. External tools like DSSP (48) and MolProbity (49)
are employed to compute essential parameters, including sec-
ondary structure propensity, accessible surface area, radius of
gyration, Ramachandran outliers and steric clash analysis. All
resultant data are made available for download.
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Figure 2. PEDdeposition service workflow. The workflow begins with the submission of an ensemble, which includes the description of both
experimental and computational components, the deposition of conformers and the specification of the protein construct via UniProt accessions and/or
protein sequence. The next step involves running the validation pipeline to evaluate the uploaded structures and generating insightful statistics through
tools such as MolProbity, DSSP and calculating the radius of gyration. At the final stage, the submitted ensemble entry undergoes a final review by
biocurators who determine whether to accept or reject it. Ultimately, approved ensembles are subsequently published on PED for public access.

Construct

Here, users define constructs corresponding to the deposited
protein or region. Constructs are assembled from ‘fragments’
which can be defined using UniProt accession numbers, iso-
form identifiers and regions. For engineered constructs, man-
ual input of the sequence is also an option. The feature viewer
highlights deviations and modifications in the sequence, aid-
ing in accurate definition.

Manual curation and validation

The final stage involves expert review and validation. The
PED deposition service distinguishes between general deposi-
tors and expert biocurators. Biocurators have access to a dash-
board where all deposited ensembles are organized based on
their review status. Upon submission, deposited information
undergoes thorough review and validation. If accepted, the en-
semble draft is prepared for release in the PED database; if not,

depositors are promptly informed of the reasons for rejection.
This automated process significantly reduces the time between
ensemble deposition and publication, streamlining the entire
workflow.

Implementation

The newly re-designed user interface (UI) provides a more
enriched user experience and notable features. A prominent
new addition to this Ul version is a feature allowing users
to access supplementary data from the ensemble’s deposition
phase. This represents a departure from the traditional re-
port in PDF format, as users can now leverage a multitude of
data assets available in CSV or JSON formats. This transition
empowers users to have more flexibility to access and work
with the ensemble data according to their particular needs.
Furthermore, these data assets are also available on an im-
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proved REST API for programmatic access. Constructed us-
ing the Django REST framework in Python, this REST API is
meticulously documented according to the OpenAPI 3.0 stan-
dard. This documentation is presented using Swagger Ul, en-
abling users to interact with the API on the website (https:
/Iproteinensemble.org/api). The API allows users to selectively
download specific data of interest, providing programmatic
access to all PED data. PED also introduces a minor redesign
of the browse page by grouping proteins for each entry, miti-
gating redundancy during the exploration of the database con-
tent. Another feature in this new version is the integration of
PED in the 3D-Beacons (50), a network that provides pro-
grammatic access to macromolecular data from different data
resources, therefore PED data is now also available through
the 3D-Beacons API.

PED introduces a dedicated deposition interface that is
accessible to all users. This new service enables depositors
to measure the quality of their ensembles through an auto-
mated validation process utilizing calculations provided by
tools such as MolProbity and DSSP. These calculations are fa-
cilitated by our distributed system, efficiently managing the
computational workload through SLURM, enabling parallel
calculation of multiple ensembles. The results are delivered
in CSV and JSON formats, similar to the main user interface
mentioned earlier. The service is integrated with the ORCID
authentication service, utilizing the OpenID standard to ver-
ify user identity. This authentication allows users to track the
status of their uploaded ensembles, which will undergo man-
ual validation by curators before being published in the main
database for public access. During this process, depositors
must provide an accurate description of their ensembles and
cross-reference them with other databases to enhance findabil-

ity.

Conclusions and future work

Over the past 3 years, research on IDPs/IDRs has made signif-
icant progress, marked by the introduction of a diverse range
of novel computational, experimental and ML-derived tech-
niques for resolving structural ensembles. In alignment with
the most recent advancements in this field, we remain de-
voted to customizing the database to the community’s needs.
Through a large community effort, the PED has experienced a
substantial increase in its repertoire, with a noteworthy rise in
the number of ensembles, entries and conformers. The reper-
toire has also expanded with an ever-growing range of dif-
ferent methods and their diverse combinations, recently en-
riched in EPR spectroscopy. Furthermore, we have integrated
NMR-derived ensembles of IDPs/IDRs into PED and gener-
ated structural ensembles using advanced ML and sampling
techniques without biasing them with experimental data.
Another key improvement in this release is the complete re-
implementation and redesign of the PED deposition service.
This tool has evolved beyond its previous capabilities, and
now offers depositors a user-friendly, step-by-step workflow
for retaining their structural ensembles. Furthermore, it in-
cludes a fully automated validation pipeline that comprehen-
sively assesses the structure file format and generates insightful
statistics. Additionally, the validation pipeline is now accessi-
ble as a standalone resource, enabling anyone interested to
assess the quality of structural ensembles independently.
Further developments must be made in the future to address
several key areas. To begin with, there is a need to smoothly
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integrate coarse-grained (CG) ensembles into PED. Recently,
a pair of IDP force fields have emerged that efficiently gen-
erate CG models of random coil-like IDPs/IDRs and capture
the global characteristics of disordered proteins, such as the
radius of gyration (23,51-53). The integration of such models
into PED is long-awaited and has the potential to significantly
expand the number of available ensembles for IDPs/IDRs.

The need for a conceptual categorization of entries within
PED becomes increasingly important as we progress towards
incorporating ab-initio and NMR ensembles, and in the
near future, CG ensembles. Furthermore, by including pre-
dicted ensembles by diverse algorithms, we can facilitate the
benchmarking and comparison of various ensemble genera-
tion methods for IDPs. Recently, the rapid growth of Dis-
Prot enabled the design of two community benchmark efforts,
termed Critical Assessment of Protein Intrinsic Disorder pre-
diction (CAID) challenge (website: https:/caid.idpcentral.org/
challenge) (54-56). We envision that the consistent growth of
PED will also facilitate organizing a similar benchmark using
withheld high-quality ensemble data and promote the devel-
opment of predictors for IDP structural ensembles.

The long-term sustainability of PED is ensured by its cen-
tral role in various initiatives involving large communities
of bioinformaticians and structural biologists working in
the disordered proteins field. Such communities include the
‘MLANGP’ COST Action and the ELIXIR IDP Community,
both of which foster collaboration and knowledge exchange
among experts.

Data availability

The data that support the findings of this study are openly
available in PED at https://proteinensemble.org/.
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