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Abstract: In recent years, numerous studies have emerged on the biological activities
of bryophytes and their potential for therapeutic use. However, mosses appear to be a
relatively overlooked group. The objective of this study was to conduct a phytochemical
analysis of one hydroalcoholic extract of Syntrichia laevipila and to evaluate its potential as an
antioxidant and antimicrobial agent. The moss was collected in the Chaco Serrano region of
Argentina, specifically on Jacaranda mimosifolia, and subsequently extracted by maceration
in ethanol/water. UHPLC/ESI/MS/MS analysis identified 32 peaks, including phenolic
compounds (phenolic acids, lignans, chalcones, and flavonoids) and non-hydrophilic
compounds (terpenoids, fatty acids, and brassinosteroids). Maslinic and oleanolic acids,
two triterpenoids present in S. laevipila, were also detected in J. mimosifolia, a substrate
of this moss. The concentration of phenolic compounds was 19.05 ± 0.21 µg GAE/mL,
while the total flavonoid concentration was 13.13 ± 0.33 µg QE/mL. The determination
of reducing and total sugars yielded 0.22 ± 0.03 mg GE/mL and 1.26 ± 0.24 mg GE/mL,
respectively, while the concentration of soluble proteins was 90.60 ± 4.50 µg BSAE/mL. The
extract exhibited antioxidant properties by scavenging ABTS•+, H2O2, AAPH, and HO•

radicals. Additionally, it demonstrated antibacterial activity by inhibiting the growth of four
strains of Staphylococcus aureus. The data obtained suggest that the hydroalcoholic extract
of S. laevipila possesses significant potential as a natural antioxidant and antimicrobial
agent, making it a promising candidate for the development of phytotherapeutic and
cosmetic products.

Keywords: bryophytes; antioxidant capacity; antimicrobial activity; phytochemical screening;
moss-derived bioactives

1. Introduction
Bryophytes are the closest modern relatives to the ancestors of the first plants that suc-

ceeded in adapting to life on land approximately 470 to 515 million years ago [1]. They have
diversified early into three distinct extant phyla: Marchantiophyta (liverworts), Bryophyta
(mosses), and Anthocerotophyta (hornworts). Bryophytes are important components of
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terrestrial ecosystems that can be found in all climatic regions, both in cool and humid
habitats [2]. This is probably a consequence of the poikilohydric nature of bryophytes,
meaning that they have a poor capacity to regulate internal water content and thus are
passively dependent on ambient water availability [3].

More than 2200 secondary or specialized and primary metabolites have been described
from bryophytes. The natural products isolated are mainly terpenoids (including mono-,
sesqui-, and diterpenoids), flavonoids, (bis)bibenzyls, polysaccharides, rare amino acids,
and lipids and derivates [3,4]. The biologically active compounds that can be obtained from
bryophytes include phytotoxic, antibacterial, antifungal, antispasmodic, insect antifeedant,
and molluscicide compounds; antioxidants; antipyretic, anti-inflammatory, anticancer,
and anti-HIV-1 compounds; and neurotrophic compounds [2,4]. Syntrichia laevipila Brid.
(Pottiaceae) (Figure 1) has been reported from Africa, America, Asia, Australia, Europe, and
New Zealand, growing on a wide variety of trees and occasionally on rocks and walls [5].
In the Chaco Serrano Forest from Argentina, it has been found on two native trees, Ceiba
speciosa (A. St.-Hil.) Ravenna (local name: Palo borracho) and Jacaranda mimosifolia D. Don
(local name: Jacaranda). The samples grow either purely or in combination with other
mosses, such as Dimerodontium balansae Müll. Hal. ex Besch., Tricherpodium beccarii (Müll.
Hal.) Pursell or Venturiella glaziovii (Hampe) Pursell. To the best of our knowledge, no
specific phytochemical or biological activity studies have been conducted so far. Therefore,
the aim of the present study was to determine the phytochemical compounds profile
and content of the hydroalcoholic extract obtained from S. laevipila collected in the Chaco
Serrano Forest from Argentina and evaluate its antioxidant and antibacterial activities on
human pathogenic bacteria of clinical interest.

Plants 2025, 14, x FOR PEER REVIEW 2 of 18 
 

 

have diversified early into three distinct extant phyla: Marchantiophyta (liverworts), Bry-
ophyta (mosses), and Anthocerotophyta (hornworts). Bryophytes are important compo-
nents of terrestrial ecosystems that can be found in all climatic regions, both in cool and 
humid habitats [2]. This is probably a consequence of the poikilohydric nature of bryo-
phytes, meaning that they have a poor capacity to regulate internal water content and thus 
are passively dependent on ambient water availability [3]. 

More than 2200 secondary or specialized and primary metabolites have been de-
scribed from bryophytes. The natural products isolated are mainly terpenoids (including 
mono-, sesqui-, and diterpenoids), flavonoids, (bis)bibenzyls, polysaccharides, rare amino 
acids, and lipids and derivates [3,4]. The biologically active compounds that can be ob-
tained from bryophytes include phytotoxic, antibacterial, antifungal, antispasmodic, in-
sect antifeedant, and molluscicide compounds; antioxidants; antipyretic, anti-inflamma-
tory, anticancer, and anti-HIV-1 compounds; and neurotrophic compounds [2,4]. Syn-
trichia laevipila Brid. (Pottiaceae) (Figure 1) has been reported from Africa, America, Asia, 
Australia, Europe, and New Zealand, growing on a wide variety of trees and occasionally 
on rocks and walls [5]. In the Chaco Serrano Forest from Argentina, it has been found on 
two native trees, Ceiba speciosa (A. St.-Hil.) Ravenna (local name: Palo borracho) and Jaca-
randa mimosifolia D. Don (local name: Jacaranda). The samples grow either purely or in 
combination with other mosses, such as Dimerodontium balansae Müll. Hal. ex Besch., Trich-
erpodium beccarii (Müll. Hal.) Pursell or Venturiella glaziovii (Hampe) Pursell. To the best of 
our knowledge, no specific phytochemical or biological activity studies have been con-
ducted so far. Therefore, the aim of the present study was to determine the phytochemical 
compounds profile and content of the hydroalcoholic extract obtained from S. laevipila 
collected in the Chaco Serrano Forest from Argentina and evaluate its antioxidant and 
antibacterial activities on human pathogenic bacteria of clinical interest. 

 

Figure 1. S. laevipila, (A)—Habit of dry plant, (B)—Habit of wet plant, (C)—Specialized asexual 
propagule. The drawing was made by the authors. 

2. Results and Discussion 
S. laevipila collected in Chaco Serrano, Tucumán, Argentina, was used in this study. 

The dry plant material was ground to obtain a fine powder, and an ethanolic extract was 
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Figure 1. S. laevipila, (A)—Habit of dry plant, (B)—Habit of wet plant, (C)—Specialized asexual
propagule. The drawing was made by the authors.

2. Results and Discussion
S. laevipila collected in Chaco Serrano, Tucumán, Argentina, was used in this study.

The dry plant material was ground to obtain a fine powder, and an ethanolic extract was
prepared by maceration and chemically characterized and standardized, and its functional
properties were determined (Figure 2).
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2.1. Phytochemical Composition of S. laevipila Extracts
2.1.1. Quantitative Analysis

The phytochemical composition of S. laevipila ethanolic extract was analyzed.
A higher concentration of total flavonoids was measured in the S. laevipila extract
(13.13 ± 0.33 µg QE/mL) compared with those previously reported for five bryophytes
species, i.e., Brachythecium rutabulum (Hedw.) Schimp., Callicladium haldaneanum (Grev.)
H.A. Crum, Hypnum cupressiforme Hedw., Orthodicranum montanum (Hedw.) Loeske and
Polytrichastrum formosum (as Polytrichum) (Hedw.) G.L. Sm. (1.31 ± 0.02, 1.03 ± 0.04,
0.68 ± 0.11, 1.12 ± 0.07, 2.12 ± 0.04 µgQE/mL, respectively) [6]. The content of total
flavonoids and the other phenolic compounds varies according to their ability to tolerate
both biotic and abiotic stress. Some factors, such as UV radiation, temperature, and water
deficit, have an important effect on the synthesis of flavonoids [7,8]. In addition, the highest
flavonoid content in S. laevipila is reasonable, because the genus Syntrichia contains some
of the most desiccation-tolerant species, and in turn this desiccation tolerance is usually
related to mechanisms of tolerance to UV radiation [9]. It has been widely documented
that mosses have a high production of flavonoids because they play a significant role in
this group of plants [10,11].

Regarding the sugars content, reducing sugars content of S. laevipila (0.22 ± 0.03 mg
GE/mL) is about six times lower than the total sugar content (1.26 ± 0.24 mg GE/mL).
Sucrose was not detected in S. laevipila, but the presence of melibiose, a reducing dis-
accharide formed by an α-1,6 bond between galactose and glucose, was demonstrated
by UHPLC/ESI/MS/MS (Table 1). This sugar was also found in the chemical profile of
another species of moss, such as P. formosum [12]. Several authors have reported that a
common characteristic in tissues tolerant to desiccation is a low level of reducing sugars,
glucose and fructose [13–16], and that the reducing sugars content does not vary during
dehydration events [17]. It has been suggested that the importance of this low level of
reducing sugars is to minimize protein damage resulting from the Amadori and Maillard
reactions [18]. In these reactions, glucose and fructose non-enzymatically attack the amino
groups of proteins to form glycosylated or fructosylated derivatives. These products can
undergo complex interactions with each other to form brown polymeric products (Maillard
reaction) [17]. Furthermore, it was reported that the content of reducing sugars decreases
during desiccation events, while sugars such as disaccharides remain unchanged. The
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content of soluble proteins was also low (90.60 ± 4.50 µg BSAE/mL). Bu et al. [19] reported
that the content of soluble proteins in mosses of soil biocrusts decreased in response to
dehydration and thermal stress events.

Table 1. High-resolution UHPLC-PDA-MS metabolite profiling data of S. laevipila.

Peak Tentative Identification [M − H]− Retention
Time (min.)

Theoretical
Mass (m/z)

Measured
Mass (m/z)

Accuracy
(ppm) Metabolite Type MS Ions (ppm)

1 Na formiate (internal
standard) C4H2O4 0.37 112.9829 112.9856 3.1 Standard

2 Melibiose C12H21O11 0.77 341.10894 341.10893 −0.0 Sugar
991.9541,

290.08844,
133.01217

3 L-glutamic acid C5H9NO4 1.12 146.04597 146.05394 0.57 Aminoacid 998.9541
4 Salicylic acid C7H6O3 6.45 137.02442 137.02441 0.0 Phenolic acid 998.9541
5 Pinellic acid C18H33O5 7.62 329.23335 329.23252 −2.50 Fatty acids 237.05534

6 2’,4’-
Dihydroxychalcone C15H11O3 8.51 239.07137 239.07021 −4.85 Chalcone 180.9677

7 Caffeoyl -D-Glucose C15H18O9 9.68 341.1030 341.1041 −6.9 Phenolic acid 191.0513

8 2’,3’-
Dihydroxychalcone C15H11O3 10.01 239.07137 239.07011 −5.27 Chalcone 296.04122,

179.0316
9 Zinniol C15H22O4 10.22 265.14763 265.14763 11.68 Methoxybencene 150.05522

10 9,10-Dihydroxy-12-
octadecenoic acid C18H33O4 10.73 313.23906 313.23805 0.22 Fatty acid 150.05522

11 Kallolide B C13H27O8 11.05 311.17114 311.16930 −5.91 Pseudopterane
diterpenoid 270.21780

12 Hederagenin C30H47O4 11.55 471.24798 471.35001 4.29 Triterpenoid 293.21130

13 Asiatic acid C30H47O5 11.72 487.34290 487.34202 −1.82 Triterpene 291.19983,
267.20309

14 Coriolic acid C18H31O3 12.05 295.22787 295.22747 −1.36 Fatty acid 269.21455
15 Gypsogenin C30H45O4 12.18 469.33233 469.33334 −14.4 Triterpenoid 339.20057

16 Maslinic acid C30H47O4 12.45 471.34798 471.34846 1.00 Triterpenoid 339.20042,
297.24288

17 Piperochromenoic acid C22H27O3 12.58 339.17993 339.20244 −7.97 Chromene 319.22666,
297.24435

18 Piperochromenoic acid
derivative C23H29O3 13.23 353.21222 353.21538 8.94 Chromene 299.20221,

136.98970

19 5 Alpha-spirostan-3,6
-diol, 6-O-Glucoside C34H57O9 13.31 609.40557 609.40081 7.82 Spirostanol 589.24615

20 Kadangustin C C34H37O11 13.55 621.24001 621.23826 7.82 Lignans 476.34991,
539.24991

21 Mogroside I-A-1 C36H61O9 14.21 637.43211 637.42216 −15.61 Triterpene 606.24214,
499.33086

22 Recurvoside A C35H59O9 14.34 623.41646 623.41588 −0.92 Triterpene 473.32190
23 Oleanolic acid C30H47O3 14.72 455.35307 455.35473 3.64 Triterpene 339.25154

24 Bryonioside A C36H59O9 15.15 635.41646 635.42096 7.08 Cucurbitane
621.40445,
602.40931,
279.23243

25 (R)-2-Hydroxystearic
acid C16H31O2 15.62 299.26188 299.26182 1.24 Fatty acid 169.04162

26 Palmitic acid C16H31O2 16.02 255.23295 255.23207 −3.48 Fatty acid 169.04162

27 Cirsimaritin C17H13O6 15.87 313.0717 313.0662 7.8 Flavonoid
271.0798,
627.14120

(2M-H)-270.0795
28 6-Deoxocastasterone C28H47O4 16.13 447.34798 447.34829 0.68 Brassinosteroid 307.13505
29 Apigenin C15H10O5 16.45 269.04568 269.04554 0.48 Flavonoid 179.0318
30 Dictamnin A C36H59O8 17.17 619.42165 619.42155 1.62 Alkaloid 577.43479
31 Chrysoeriol C16H12O6 17.26 299.0502 299.0520 4.2 Flavonoid 271.0550
32 Homocastasterone C29H49O5 17.52 477.35855 477.35693 −3.39 Brassinosteroid 455.01804
33 Panaxynol linoleate C35H53O2 18.75 505.39753 505.40510 −14.98 Triterpene 414.99256

2.1.2. Metabolomics in S. laevipila Extracts

Thirty-two peaks (Figure 3; Table 1) were tentatively identified for the first time in
S. laevipila ethanolic extract using UHPLC/ESI/MS/MS in negative mode. The metabolites
identified in this species were mainly phenolic compounds, triterpenoid derivatives, and
fatty acids (Table 1; Figure 4). S. laevipila was collected from Jacaranda mimosifolia, and
some of the components previously reported in this plant source are coincident with those
reported here. For instance, some compounds identified in the S. laevipila extract are also
present in the bark of J. mimosifolia, such as triterpenoids and phenylpropanoids derived
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from apigenin [20–23]. The chemical composition of bryophyte extract could be influenced
by territorial factors, as substrate composition on which the moss grows, as well as climatic
variations, and this determines their pharmacological potential [24].
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Figure 4. Structures of some representative compounds detected in S. laevipila: peak 5, pinellic
acid; peak 6, 2’,4’-Dihydroxychalcone; peak 12, hederagenin; peak 16, maslinic acid; peak 17, pipe-
rochromenoic acid; peak 21, mogroside I-A1; peak 22, recurvoside A; peak 23, oleanolic acid; and
peak 27, cirsimaritin.

Phenolic compounds: Several phenolic compounds were found in 300 moss species
representing 59 families [25,26]. Phenolic acids, lignans, chalcones, and flavonoids have
been found in S. laevipila ethanolic extract.
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Phenolic acids: Peak 7 with daughter ion characteristic of caffeoyl-D-glucose (CG, par-
ent pseudomolecular ion at m/z: 341.1041, C15H18O9), was identified. This compound was
previously identified in several berries [27] and in the moss Cryphaea heteromalla (Hedw.)
Brid. [28]. Although biological data on CG is currently lacking due to challenges in isolating
and characterizing the compounds, it is anticipated that CG may exhibit numerous health
benefits. This is based on the potential of intestinal bacterial esterase and glycosidases
to hydrolyze the ester bond, producing caffeic acid, which has been shown to have vari-
ous functional properties, including antioxidant, anti-inflammatory, immunomodulatory,
antimicrobial, neuroprotective, antianxiolytic, antiproliferative, antiobesity, angiotensin-
converting enzyme inhibition, and antiglycation activities [29–32].

Lignans: Peak 20 was identified as kadangustin C (ion at m/z: 621.23826, C34H37O11).
This compound was isolated from several fruit seeds and peels, and bioactivities related
to anti-HIV, immunodeficiency, cytotoxicity, and antiproliferative effects were previously
reported [33].

Chalcones: Two chalcones were identified, 2’,4’-dihydroxychalcone and 2’,3’-
dihydroxychalcone, peaks 6 and 8, (parent ions around m/z: 239.07021, C15H11O3), respec-
tively. 2’,4’-dihydroxychalcone isolated from Zuccagnia punctata Cav. exhibits a diverse
range of pharmacological effects, including anticancer, antioxidant, antibiotic, antifungal,
hypocholesterolemic, and hypoglycemic activities [34].

Flavonoids: Several flavonoids were identified, some of them co-spiking with au-
thentic standards: cirsimaritin, apigenin, and chrysoeriol, peaks 27, 29, and 31, (C17H13O6,
C15H10O5, and C16H12O6), respectively. These compounds are known to have a variety
of therapeutic properties, including antioxidant, anticancer, antiviral, anti-inflammatory,
antimutagenic, and antibacterial effects [35–37].

Non-hydrophilic compounds: non-hydrophilic compounds, including free fatty acids
and terpenoids, were identified.

Terpenoids: Nine terpenoids were identified in this work. Peaks 11, 12, 13, 15, 16, 21,
22, 23 and 24, were assigned as kallolide B, hederagenin 20(S); asiatic acid, gypsogenin;
maslinic acid, mogroside I-A-1; recurvoside A; oleanolic acid and bryonioside A, (formulas:
C13H27O8, C30H47O4, C30H47O5, C30H45O4, C30H47O4, C36H31O9, C35H59O9, C30H47O3,
C36H59O9) respectively. These compounds exhibit multiple pharmaceutical and biolog-
ical activities, including antitumor, anti-inflammatory, antidepressant, neuroprotective,
hepatoprotective, gastroprotective, hypolipidemic, anti-atherosclerotic, antidiabetic, an-
tileishmanial, antiviral antibacterial, and antifungal activity [38–42]. Maslinic and oleanolic
acids were reported from J. mimosifolia. bark [20–23]. Extracts of various parts of J. mi-
mosifolia are traditionally used in many countries to cure ulcers and amoebic infections,
syphilis, and as an astringent in diarrhea and dysentery. In addition to its broad spectrum
of biological features, such as antioxidant, antiulcer, antileishmanial, and antiprotozoal
activities [24].

Fatty acids (FAs): FAs from bryophytes, including saturated, mono-, polyunsatu-
rated, and acetylenic fatty acids. FAs are usually present as part of membrane phospho-
and glycolipids or as constituents in triacylglycerides (TAGs). In S. laevipila extract,
9(S),12(S),13(S)-trihydroxy-10R-octadecenoic acid (pinellic acid, peak 5), 9,10-dihydroxy-
12-octadecenoic acid (peak 10), 13-hydroxy-9Z,11E-octadecadienoic acid (coriolic acid,
peak 14), R-2-hydroxystearic acid (peak 25), and palmitic acid (peak 26, all ions with their
respective formulas: C18H33O5, C18H33O4, C18H31O3, C16H31O2, C16H31O2) were found.
The antioxidant, antimicrobial, anti-inflammatory, antiallergic, and cytotoxicity properties
were previously demonstrated to compound 1 in other plant material [43–46]. The com-
pounds derived from the metabolism of linoleic acid were identified for the first time in
S. laevipila. The compound coriolic acid was isolated previously from Salicornia herbacea (L.)
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L [47]. This compound decreased the transcriptional and translational levels of the c-Myc
gene, which is a breast cancer stem cell survival.

Brassinosteroid (BRs): 6-deoxocastastasterone and holocastasterone (peaks 28 and 32,
C28H47O4, C29H49O5) were identified. In a previous report it was demonstrated that non-
flowering land plants can synthesize BRs, including Marchantia polymorpha L. (liverwort),
Selaginella moellendorffii Hieron. (lycophyte), and Physcomitrella patens (Hedw.) Bruch &
Schimp. (moss) [48]. Although the physiological roles of BRs in lower plants have not
yet been established, the result implies that BRs are probably involved in regulating some
events in the growth and differentiation of lower plants [49]. This represents, to our
knowledge, the first report of BR presence in S. laevipila.

2.2. Biological Properties
2.2.1. Antioxidant Activity

During the oxidative stress process, reactive species centered in oxygen atoms (ROS),
such as hydroxyl radicals and non-radical species such as hydrogen peroxide, are produced.
These species can react with a wide range of molecules found in living cells, such as sugars,
amino acids, lipids, nucleic acids, and proteins, producing their oxidation and consequently
pathological processes or alterations in food or cosmetic products [50].

Several methods are used to measure the antioxidant capacity of natural products
and permit them to evaluate their potential use as antioxidants. The ABTS•+ assay is a
popular, sensitive, and reproducible technique used to evaluate the antiradical potency of
extracts by donating hydrogen atoms to form a non-radical molecule [50]. The phenolic
compounds concentration values of S. laevipila extract required to achieve 50% of radical
scavenging capacity, SC50, were determined. This magnitude was obtained from the slope
of the linear variation in the percentage of radical scavenging (%RS) vs. the phenolic
compounds concentration of S. laevipila extract. This extract showed high scavenging
activity of ABTS•+ (SC50 4.38 ± 0.54 µg GAE/mL). Moss extract’s ability to scavenge the
ABTS•+ was previously reported in other species such as Philonotis hastata (Duby) Wijk
& Margad [51]. The hydroalcoholic extract of S. laevipila also showed scavenging activity
of hydroxyl radical with an SC50 value of 12.35 ± 0.57 µg GAE/mL. This capacity was
previously reported to other moss extracts [51,52]. According to our results, the reactivity
of the S. laevipila extract to scavenge ABTS•+ was higher than to scavenge HO•.

Hydrogen peroxide is basically a weak oxidizing agent. It can cross cell membranes
and react with ions such as Fe2+ to form a hydroxyl radical, which is a strong and toxic
oxidizing agent for the cell, so it is necessary to look for compounds that neutralize these
oxidizing agents. The analyzed extract was effective in the scavenging of hydrogen peroxide
(H2O2 SC50: 5.32 ± 0.51 µg GAE/mL). Although there is growing interest in the antioxidant
potential of mosses, research on their ability to neutralize reactive non-radical species is
still scarce. At present, only the moss Thuidium tamariscellum (Müll. Hal.) Bosch & Sande
Lac. is reported to have the ability to scavenge hydrogen peroxide [53].

The erythrocyte membrane contains a large amount of polyunsaturated fatty acids,
which makes it vulnerable to oxidative stress processes such as lipid peroxidation. This is a
process that plays a key role in oxidative stress in biological systems because it produces
membrane alteration and cell damage [53]. Studies have revealed that several plant-derived
drugs contain principles that possess the ability to facilitate the stability of biological mem-
branes when exposed to induced lyses. S. laevipila extract achieved 50% inhibition of cell
lysis produced by AAPH at a concentration of 0.68 ± 0.02 µg GAE/mL. This antioxidant
capacity can be compared with natural and synthetic antioxidants used commercially (butyl-
hydroxytoluene (BHT) SC50 = 1.20 ± 0.10 µg/mL; quercetin: SC50 = 0.90 ± 0.08 µg/mL).
Oyedapo et al. [51] found that phenolic-enriched extracts from the moss P. hastata inhibited
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the cellular lysis of red blood cells by 50% (19.19 ± 2.66), evidencing the ability of phenolic
compounds, principally flavonoids, to stabilize the erythrocyte membrane.

Pearson correlation (Table 2) showed an association between the scavenging effect
of ABTS•+, hydrogen peroxide, and hydroxyl radicals with the concentration of total
phenolic compounds and flavonoids. Additionally, there is a positive correlation among
the different antioxidant tests. Furthermore, the concentration of total phenolic compounds
and flavonoids also exhibits a positive association.

Table 2. Pearson correlation coefficients of the content of total phenolics, flavonoids, and antioxidant
capacity determined by different methods.

TPC TF ABTS•+ H2O2 HO• AAPH

TPC 1.00 0.20 0.30 0.11 0.23 0.07
TF 0.95 1.00 0.09 0.09 0.03 0.13

ABTS•+ 0.89 0.99 1.00 0.18 0.06 0.23
H2O2 0.98 0.99 0.96 1.00 0.12 0.04
HO• 0.93 1.00 1.00 0.98 1.00 0.17

AAPH 0.99 0.98 0.94 1.00 0.97 1.00
TPC: total phenolic compounds; TF: total flavonoids; ABTS•+: ABTS cation radical; HO• (hydroxyl radical), H2O2,
AAPH: 2,2’-Azobis(2-amidinopropane) dihydrochloride.

In previous reports, antioxidant activity was demonstrated in some phenolic com-
pounds identified in the S. laevipila extract, such as 2’,4’-dihydroxychalcone, cirsimarin,
apigenin, and terpenoids such as oleanolic acid and maslinic acid [29,31,54–59]. For this,
these compounds could be responsible for the antioxidant capacity that was found in S.
laevipila extract.

For this activity, the S. laevipila extract could be included in cosmetics, medicinal, or
food preparation to protect the preparation from oxidation or for skin care or the body
against the effect of free radicals.

2.2.2. Antimicrobial Activity

Staphylococcus aureus is a major human bacterial pathogen. This bacterium is widely
distributed in the environment and in the normal flora of the skin and mucous membranes
of healthy individuals. S. aureus does not cause infection on healthy skin; however, if it
enters internal tissues, it can produce severe infections. Treatment remains a significant
challenge due to the emergence of resistance to multiple antibiotics, such as methicillin
resistance [60]. Therefore, the discovery of antibiotic molecules or extracts for use against
methicillin-resistant S. aureus is very important.

There are no previous reports of the antimicrobial activity of the ethanolic extract of
S. laevipila against S. aureus. However, some authors have reported antibacterial activity
only against Paenibacillus larvae, by agar diffusion [61].

An initial evaluation of the antimicrobial activity of S. laevipila extract was performed
using the bioautographic method on two clinical strains of S. aureus, one methicillin-
resistant and the other methicillin-sensitive, isolated from skin and soft tissue infections,
and two ATCC strains. The extract showed notable activity against all tested strains,
prompting further investigation to establish the minimum inhibitory concentration (MIC)
required to arrest its growth and the concentration needed to achieve a 99.5% reduction in
microbial count.

The S. laevipila extract showed antimicrobial activity (Table 3), inhibiting the growth of
methicillin-sensitive S. aureus ATCC 29213 and methicillin-resistant S. aureus ATCC 43300
with MIC values of 7.5 µg GAE/mL. The extract proved to be more active against the
clinical isolates (S. aureus INBIOFIV S1 and INBIOFIV S9) that were antibiotic multiresistant
(Table 3), inhibiting its growth at the lowest concentration tested for both strains (MIC:
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3.7 µg/mL). Crude extracts that present MIC values below 100 µg/mL [62], are generally
accepted as a criterion for selecting antimicrobials with promising properties. The MIC
values of the S. laevipila extract were 17 times lower than the maximum suggested to be
considered potentially antimicrobial.

Table 3. Antimicrobial activity of S. laevipila extract against clinical isolates and ATCC strain and
resistance profile of S. aureus.

S. aureus Strain MIC µg/mL Phenotype of S. aureus (MIC µg/mL)

INBIOFIV-S1 3.7 LEVS (CIM ≤ 1), METR, (CIM ≥ 4), GENR

(CIM ≥ 16)

(CIM ≥ 16)INBIOFIV-S9 3.7 LEVR, (CIM ≥ 4), METR (CIM ≥ 4), GENR,
(CIM ≥ 16)

ATCC 43300 7.5 METR (CIM ≥ 4)

ATCC 29213 7.5 METS (CIM = 0.25)
MIC: minimal inhibitory concentration. Levofloxaxina (LEV), methicillin (MET), gentamycin (GEN). R: resistant;
S: sensitive.

Currently, there are studies on other species of the genus Syntrichia, such as S. ruralis
(Hedw.) F. Weber & D. Mohr, that demonstrated activity against Gram-negative bacteria [63].
Other authors reported the absence of activity in S. ruralis against Gram-negative bacteria
and Gram-positive bacteria [64]. The variability in the potency of antimicrobial activity
observed in different studies may be attributed to the chemical composition of extracts that
are determined by factors such as the collection region and extraction methods, the type of
solvent, and the material vegetal/solvent ratio used. It is known that the chemical responses
of bryophytes are likely the result of both their evolutionary history and adaptations to
their local environment [65]. This variation can even occur among specimens of the same
species, depending on their geographical locations and collection dates [66].

Several authors demonstrated a strong antibacterial activity of 2’,4’-dihydroxychalcone,
a compound identified in S. laevipila extract, against an S. aureus strain (strain ATCC
25923) [67–69]. Furthermore, hederagenin, cirsimaritin and apigenin were ascribed as
antimicrobial on S. aureus with different potency in several higher plants [36,70,71].

The results suggest that the presence of 2’,4’-dihydroxychalcone, hederagenin, and
cirsimaritin would contribute to the antibacterial properties of the S. laevipila extract.

The S. laevipila extract provides significant opportunities for newer antibiotic drug
discoveries for human health care.

3. Materials and Methods
3.1. Chemicals, Reagents, and Materials

Folin–Ciocalteau reagent, Bradford reagent, AlCl3, FeCl3, gallic acid, quercetin, albu-
min serum bovine, phenol, 4-aminoantipyrene, peroxidase, 2,2′-Azobis(2-methylpropio-
namidine) dihydrochloride (AAPH), 2-deoxy-D-ribose, EDTA, H2O2, ascorbic acid, 2-
thiobarbituric acid, trichloro-acetic, 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium
bromide (MTT) and methanol ≥99.9% were acquired at Sigma Aldrich, St. Louis, MO,
USA; silica gel 60 F-254 (0.2 mm) was purchased in Merck, Darmstadt, Alemania. Mueller–
Hinton broth (CAMHB) and antimicrobial agents were supplied by Laboratorios Britania
S.A., Ciudad Autónoma de Buenos Aires, Argentina.

3.2. Plant Material

S. laevipila (Figure 1) was collected in Chaco Serrano, Tucumán, Argentina (26◦14′53′′ S;
65◦30′39′′ W; 1.126 m ASL, and 26◦15′22′′ S; 65◦32′22′′ W; 1.175 m ASL, and 26◦14′02′′ S;
65◦30′25′′ W; 1.118 m ASL) on J. mimosifolia. The entire plant was collected. The mosses were
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studied morphologically with the conventional techniques proposed by Zander et al. [72].
The voucher specimen was deposited in the collection INBIOFIV (INBIO 101). The plant
material was carefully washed with running water to remove soil particles and adhered
plants. The plant material was dried at 40 ◦C in a forced-air oven until constant weight and
then was ground in a Helix mill (Numak, F100 Power 1/2 HP-0.75 Kw, Brusque, Brazil) to
obtain a fine powder.

3.3. Plant Extract Preparation

Grounded and dried S. laevipila (1 g) was extracted in 20 mL of 80% ethanol for 30 min
at 40 ◦C in an ultrasonic bath (Ultrasonic bath Arcano Model PS-10A, Ultrasonic Technology
Co., Ltd., Jinan, China). Then, the extract was vacuum filtered and stored at −20 ◦C until
use. A fraction of extract was dried by rotary evaporator (BÜCHI R-110) to use in UHPLC-Q
TOF-ESI-MS analysis.

3.4. Determination of Chemical Composition
3.4.1. Total Polyphenols and Flavonoids Quantification

The extractive solution was standardized by the determination of total phenolic com-
pound (TPC) content by using Folin–Ciocalteu reagent [73] and total flavonoids (TF) by
using the method of Woisky and Salatino [74]. Absorbance was recorded in a UV/visible
spectrophotometer (Jasco v-630, Thermo Fisher Scientific, Tokyo, Japan). The calibration
curves were performed using gallic acid and quercetin as reference compounds (Supplemen-
tary Materials). The phenolic compounds content and flavonoid content were expressed as
µg of gallic acid equivalent (GAE) per mL (µg GAE/mL) and quercetin equivalents (QE)
per mL (µg QE/mL), respectively.

3.4.2. Reducing and Total Sugars Quantification

Reducing sugars and total sugar were determined using the Somogyi-Nelson
method [75,76] and phenol-sulfuric method [77], respectively, for S. laevipila powder extrac-
tive solution. Absorbance was recorded with a UV/visible spectrophotometer (Jasco v-630,
Thermo Fisher Scientific, Tokyo, Japan). The calibration curves were performed using
glucose as the reference compound. The results were expressed as glucose equivalents per
mL (mg GE/mL).

3.4.3. Soluble Protein Quantification

Soluble proteins were determined by Bradford [78]. Absorbance at 595 nm was recorded
with a UV/visible spectrophotometer (Jasco v-630, Thermo Fisher Scientific, Tokyo, Japan).
The calibration curves were performed using bovine serum albumin (BSA) as a reference
compound. The results were expressed as BSA equivalent per mL (µg BSAE/mL).

3.4.4. UHPLC-Q TOF-ESI-MS
LC Parameters and MS Parameters

The separation and identification of the compounds present in the S. laevipila extracts
were performed on a UHPLC-ESI-QTOF-MS system equipped with UHPLC Ultimate
3000 RS with Chromeleon 6.8 software (Dionex GmbH, Idstein, Germany) and Bruker
maXis ESI-QTOF-MS with the software Data Analysis 4.0 (all Bruker Daltonik GmbH,
Bremen, Germany). A total of 5 mg of dry extract was dissolved in 2 mL of methanol
≥99.9% and filtered with a polytetrafluoroethylene (PTFE) filter, and 10 µL was injected
into the equipment. The chromatographic equipment consisted of a quaternary pump,
an autosampler, a thermostated column compartment, and a photodiode array detector.
Elution was performed with a binary gradient system with eluent (A) 0.1% formic acid in
the water, eluent (B) 0.1% formic acid in the acetonitrile and the gradient: 12% B isocratic
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(0–1 min), 12–99% B (1–15 min), 99% B isocratic (15–18 min), 99–12% B (18–18.20 min),
12% B (18.20–20 min). Separation was carried out with a Thermo 5 µm C18 80 Å column
(150 mm × 4.6 mm) at a flow rate of 0.3 mL/min. ESI-QTOF-MS experiments were recorded
in negative ion mode, and the scan range was between 100 and 1200 m/z. Electrospray
ionization (ESI) conditions included a capillary temperature of 200 ◦C, a capillary voltage
of 2.0 kV, a dry gas flow rate of 8 L/min, and a nebulizer pressure of 2 bar. The experiments
were performed in automatic MS/MS mode. The structural characterization of specialized
metabolites was based on HR full MS, fragmentation patterns, and comparisons with the
literature data.

3.5. Biological Properties
3.5.1. Antioxidant Activity
Total Antioxidant Capacity Assay

The total antioxidant activity of extracts was measured by the improved ABTS radical
cation (ABTS•+) method as described by Correa Uriburu et al. [79] ABTS•+ was mixed
with different amounts of extract (1–8 µg GAE). Then, 80% ethanol was used as a negative
control. Absorbance was recorded at 734 nm after 6 min with an in-microplate reader (Mi-
croplate Reader Thermo Scientific Multiskan GO, Vantaa, Finland). Results are expressed
as scavenging concentration of 50% (SC50) of ABTS•+ expressed as µg GAE/mL.

Hydrogen Peroxide (H2O2) Scavenging

The H2O2 scavenging was assessed by Fernando and Soysa [80]. Briefly, different
concentrations of the extract (3–8 µg GAE/mL) were mixed with 80 µL H2O2 (0.7 mM),
allowing it to stand for 3 min at room temperature. Then, 87.5 µL of phenol (12 mM),
25 µL of 4-aminoantipyrene (0.5 mM), and 15 µL of peroxidase (1.0 U/mL) dissolved in
sodium phosphate buffer (84 mM, pH 7.0) were added. It was incubated for 30 min at 37 ◦C,
and the product was determined by recording the absorbance at 504 nm in a microplate
reader (Microplate Reader Thermo Scientific Multiskan GO, Vantaa, Finland). Results are
expressed as SC50 values (µg GAE/mL).

Stabilization of Human Red Blood Cell Membrane

The assay was performed according to Orqueda et al. [81]. The protective effect of
different concentrations of the S. laevipila extract (0.20 to 5 µg GAE/mL) on the red blood
cell membrane (5% human red blood cell suspension) by oxidation with 2,2′-Azobis(2-
methylpropionamidine) dihydrochloride (AAPH) (200 mM) was tested spectrophotomet-
rically (Jasco v-630, Thermo Fisher Scientific, Tokyo, Japan) at 545 nm under hypotonic
conditions. Results are expressed as the inhibitory concentration of 50% of stabilization of
red blood cell membranes (IC50 values) in µg GAE/mL.

Hydroxyl Radical Scavenging Assay

The experiment was performed based on the deoxyribose degradation assay devel-
oped by Chobot [82]. The reaction mixture contained S. laevipila extract (0.5–10 µg GAE/mL)
in KH2PO4/KOH buffer (pH 7.4), 50 mL of 10.4 mM 2-deoxy-D-ribose, 50 mL of 50 mM
FeCl3, and 50 mL of 52 mM EDTA. To start the Fenton reaction, 50 mL of 10 mM H2O2 and
50 mL of 1.0 mM ascorbic acid were added. The reaction mixture was incubated for 1 h at
37 ◦C. Then, 500 mL of 2-thiobarbituric acid (1%, w/v) dissolved in 3% (w/v) trichloroacetic
acid was added. After 20 min at 100 ◦C, the absorbance was read at 532 nm (Jasco v-630,
Thermo Fisher Scientific, Tokyo, Japan). The hydroxyl radical scavenging activity was
expressed as SC50 values (µg GAE/mL).
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3.5.2. Antibacterial Activity
Bacterial Strain

Methicillin-resistant S. aureus strains (INBIOFIV–S1 and S9) were obtained from clinical
samples of skin and soft tissue infections from Nestor Kirchner Hospital, San Miguel de
Tucumán, Tucumán, Argentina. Methicillin-resistant and -sensitive S. aureus ATCC 29213
and ATCC 43300, respectively, were used as controls. All organisms were preserved in
brain–heart infusion containing glycerol 30% at −80 ◦C. The strains were transferred to
Mueller Hinton agar (MHA) and incubated at 35 ◦C for 12 h. Individual colonies were
suspended in 5 mL of 0.9% NaCl solution. The cell suspensions were prepared by adjusting
turbidity to 0.08 at 560 nm (108 CFU/mL). The cell number in cation-adjusted Mueller–
Hinton broth (CAMHB) was estimated using a serial dilution technique, as described in
CLSI [83], for each assay.

Bioautographic Assay

Plates of silica gel 60 F-254 (0.2 mm, Merck) were seeded with 40 µg of TPC of S. laevipila
extract. A bioautographic assay was performed using 2 mL of soft medium (BHI with 0.6%
agar) containing 105 CFU/mL of methicillin-resistant S. aureus (INBIOFIV–S1, INBIOFIV-S9)
and ATCC 29213, ATCC 43300. The plates were covered with the inoculated soft medium,
incubated at 37 ◦C for 16–20 h, and then developed with 3-[4, 5-dimethylthiazol-2-yl]-2,
5-diphenyltetrazolium bromide (MTT) solution (2.5 mg/mL) in PBS [84]. The bacterial
growth inhibition zones were colored yellow on a bluish background, which showed
bacterial growth.

Minimal Inhibitory Concentration (MIC)

MIC values of S. laevipila extracts were determined using the serial microdilution
method. Briefly, 86 µL of Mueller Hinton broth was added to each well of 96-well mi-
croplates. Plant dry extract was dissolved in dimethylsulphoxide (DMSO) to obtain a
stock solution, and then 4 µL was added to each well containing the medium to obtain
a final concentration range of TPC between 200 and 1.8 µg GAE/mL. Subsequently, the
culture media were inoculated with 10 µL of a bacterial suspension previously adjusted
to an optical density at 560 nm (OD560nm) of 0.08 and then diluted 1:100 to reach a final
concentration of 105 CFU/mL. The plates were then incubated at 37 ◦C for 20 h. Culture
medium containing DMSO (60 µL/mL) was used as solvent control. Culture medium
without extract and without DMSO was considered as the negative control of inhibition.
Different antibiotics were used as positive controls on the INBIOFIV strain collection as
described by Leal et al. [85]. The concentrations tested for each antibiotic were those recom-
mended by the CLSI. MIC was defined as the lowest concentration of extract in which the
appearance of a button of cells visible to the naked eye was not observed after incubation.
The minimum bactericidal concentrations (MBCs) were determined by serial subcultivation
of 2 µL of each well without visible growth in Petri dishes with 2 mL of MH medium. The
lowest concentration with no visible growth was defined as MBC, indicating 99.5% killing
of the original inoculum [86].

3.6. Statistical Analysis

All assays were conducted at least three times with three different sample preparations.
Each experimental value is expressed as the mean ± standard deviation (SD). The scientific
statistic software InfoStat (Student Version, 2011) was used to evaluate the degree of
statistical correlation between the different groups [87]. Comparisons between groups were
performed by using Pearson’s test.
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4. Conclusions
In this study, the phytochemical composition of the ethanolic extract of S. laevip-

ila was described for the first time, along with its potential use as an antioxidant and
antibacterial agent. The moss was collected on J. mimosifolia, a tree that grows in the
Tucumán Serrano Chaco region. The compounds identified in the extract included both
hydrophilic compounds (caffeoyl-D-glucose, kadangustin C, 2’,4’-dihydroxychalcone, 2’,3’-
dihydroxychalcone, cirsimaritin, apigenin, chrysoriolin) and non-hydrophilic compounds
(hederagenin 20(S), gypsogenin, maslinic acid, mogroside I-A1, recurvoside A, oleanolic
acid, bryonoside A, pinellic acid, 9,10-dihydroxy-12-octadecenoic acid, dodecylbenzene
sulfonic acid, coriolic acid, R-2-hydroxystearic acid, palmitic acid, 6-deoxocastasterone,
and holocastasterone), several of which are reported for the first time in the hydroalcoholic
extract of mosses. Until now, most chemical studies have focused on vascular plants,
with liverworts receiving greater attention, while mosses have been relatively overlooked.
However, this study demonstrates that the production of antioxidants and antibacterial
extracts from mosses can have a significant impact on the development of cosmetic and
pharmaceutical products. As far as we know, some bryophyte-based products are marketed
based on the collection of wild populations, which represents a threat to their conservation.
Until now, only a few studies on cultivating to generate large amounts of biomass or the
production of biomolecules by metabolic engineering have been carried out. Alternative
production platforms of bioactive compounds from bryophytes are necessary.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants14020253/s1, File S1: Q TOF-MS and MSn spectra of some
representative compounds and standard curves.
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