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In this work, a straightforward methodology is proposed to establish at a glance, for binary systems,
whether a model of the equation of state type predicts the occurrence of double retrograde behavior
(DRB), and to also establish what the ranges of conditions of DRB existence are. This is accomplished by
computing three hyper-lines, which usually are highly non linear. One of them is the vaporeliquid critical
line. The other two are loci of cricondenbar points and of cricondentherm points. Each line is efficiently
calculated in a single computer run by resorting to a robust numerical continuation method.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

A well-known and common phenomenon in the high pressure
phase behavior of mixtures is the retrograde behavior (RB). RB was
predicted by Van der Waals and, according to ref [1], observed
experimentally for the first time by Kuenen (1897). Binary mixtures
which are asymmetric, with respect to molecular size and/or shape
and/or attractive forces, may present a more complex and less
common phenomenon, i.e., the so-called double retrograde
behavior (DRB). DRB usually occurs within a narrow range of
composition, close to that of the pure lightest component.

Available data on DRB seem to be scarce. Examples of binary
systems for which DRB was experimentally observed are the
following: methane þ n-butane [2], methane þ n-pentane [3],
NaClþH2O [4], ethaneþ limonene [5,6], ethaneþ linalool [7,8] and
ethane þ orange Peel oil [9] (pseudo-binary system). According to
Alfradique and Castier [10], the scarcity of experimental informa-
tion may be due to the fact that DRB occurs in very narrow
composition ranges.

Deiters [11] and Raeissi and Peters [12], analyzed the DRB from a
theoretical point of view, using the GibbseKonowalow equation,
abaloy).

llo, et al., Direct detection of
/dx.doi.org/10.1016/j.fluid.20
which is an extension of the Clayperon equation for multi-
component mixtures. Raeissi and Peters [6] described the DRB in
the context of either isothermal or isoplethic (constant composi-
tion) phase equilibrium diagrams, i.e., they considered the DRB at
constant temperature and composition. Different equations of state
(EoS) were used to study the DRB [10,13,14]. EoSs are important
models for describing the properties of vapor, liquid and super-
critical phases. Unlike other models, EoS offer a continuous
description of these three different states, as experimentally
observed.

Raeissi and Peters [6] have studied the ranges of conditions of
existence of the DRB using an EoS, by computing a number of phase
equilibrium diagrams, for binary systems.

This approach, which is typical in the literature, is not
straightforward, since several vaporeliquid equilibrium diagrams
are to be computed to find the ranges of conditions within which
the EoS predicts DRB. The availability of an alternative, more direct,
approach for establishing the occurrence or absence of DRB is
desirable. The goal of the present work was to propose and test one
such alternative straightforward approach. This is accomplished by
computing a couple of, in a way special, binary phase equilibrium
diagrams, which make possible the direct determination of the
ranges of conditions where liquidevapor DRB occurs, for a given
binary system, according to the EoS model chosen to describe its
double retrograde behavior in binary systems for equation of state
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Fig. 2. Schematic Pressure-Molar fraction of component 1 diagram for a supercritical
vaporeliquid equilibrium isotherm showing RBxT in the IeII composition range. CP:
critical point. Point 1: CCCT point.
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Fig. 3. Schematic Pressure-Molar fraction of component 1 diagram for a subcritical
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phase behavior.
One of the diagrams is named CCB diagram, and the other is

named CCT diagram. The diagrams cover the whole mole fraction
range, or only part of it, depending on the user's interest. A given
diagram, out of the two DRB diagrams, is made of a couple of lines,
each one calculated in a single computer run. One of the lines is
always the binary critical line. The second line is either the CCB line
or the CCT line. Different projections of these lines can be visualized
to study the DRB phenomenon.

The cricondenbar (CCB, e.g., point 1 in Fig. 8) is the maximum
pressure at which a mixture of given composition (isopleth) can be
heterogeneous. Analogously, the cricondentherm (CCT, e.g., point 1
in Fig. 1) is the maximum temperature at which a mixture of given
composition can be heterogeneous. For the detection of the DRBwe
have found that it is convenient to use an extended definition of the
CCB and of the CCT. Thus, in this work, a CCB point is a stationary
point (derivative equal to zero) of the vapor liquid-equilibrium
pressure, and a CCT point is a stationary point of the vapor
liquid-equilibrium temperature. Local maxima, local minima and
inflection points are all stationary points.

A continuous set of binary isopleths has associated continuous
sets of CCBs and of CCTs. Such binary CCB and CCT sets are
respectively the CCB line and the CCT line (or hyperlines). They can
be computed using an EoS. The analysis of the computed CCB and
CCT diagrams lead either to detect the DRB or to discard its
occurrence.

Wichterle [15] and Barrufet and Eubank [16] have shown that a
CCB point is also a Cricondencomp at constant pressure (CCCP).

A CCCp (e.g., point 1 in Fig. 9) is a phase equilibrium point, in a
constant pressure diagram (Txy diagram), for which the mole
fraction of one of the components (of the binary mixture) in one of
the equilibrium phases is locally maximum. Notice that the (not
shown) maximum temperature endpoint of the vaporeliquid re-
gion in Fig. 9 may be another critical point or a pure compound
saturation point. This applies also to Figs. 12 and 14.

Similarly, a CCT point is also a Cricondencomp, but at constant
temperature (CCCT). More specifically, a CCCT point (e.g., point 1 in
Fig. 2) is a phase equilibrium point in a constant temperature dia-
gram (Pxy diagram) for which the mole fraction of one of the
components (of the binary mixture) in one of the equilibrium
phases is locally maximum.
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Fig. 1. Schematic PressureeTemperature diagram for a vaporeliquid equilibrium
isopleth showing RBxT in the IeII temperature range. CP: critical point. Point 1: CCT
point.

vaporeliquid equilibrium isotherm showing RBxT in the IeII composition range. Points
2 and 3: CCCT points.
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Fig. 4. Schematic PressureeTemperature diagram for a vaporeliquid equilibrium
isopleth showing DRBxT in the IeII temperature range. CP: critical point. Points 1, 2
and 3: CCT points.

Please cite this article in press as: J.I. Ramello, et al., Direct detection of double retrograde behavior in binary systems for equation of state
models, Fluid Phase Equilibria (2016), http://dx.doi.org/10.1016/j.fluid.2016.02.044



Pr
es

su
re

Mole fraction x1

L+V

L

V

I II

C

D

VCP

2

3

4

5

1

Fig. 5. Schematic Pressure-Molar fraction of component 1 diagram for a supercritical
vaporeliquid equilibrium isotherm showing DRBxT in the IeII composition range. CP:
critical point. Points 2, 3 and 4: CCCT points.
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Fig. 6. Schematic PressureeTemperature diagram for a vaporeliquid equilibrium
isopleth showing RBxT in the IeII and IIIeIV temperature ranges. CP: critical point.
Points 1, 2 and 3: CCT points.
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Fig. 7. Schematic Pressure-Mole fraction of component 1 diagram for a supercritical
vaporeliquid equilibrium isotherm showing RBxT in the IIIeIV and IeII composition
ranges. CP: critical point. Points 1, 2 and 3: CCCT points.
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Fig. 8. Schematic PressureeTemperature diagram for a vaporeliquid equilibrium
isopleth showing RBxP in the IeII pressure range. CP: critical point. Point 1: CCB point.
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Fig. 9. Schematic Temperature-Mole fraction of component 1 diagram for a super-
critical vaporeliquid equilibrium isobar showing RBxP in the IeII composition range.
CP: critical point. Point 1: CCCP point.
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Notice that the temperature, pressure, and phase compositions
and densities, of a CCB point, are the same than those of its asso-
ciated CCCp point. An analogous statement applies to a CCT point
and its associated CCCT point.

To fix ideas, it is important to make the following remarks:

� a CCB point is, simultaneously, a local extremum in pressure
when the composition of one of the equilibrium phases is
constant (isopleth), and a local extremum in themole fraction of
one of the components in one of the equilibrium phases at
constant pressure (Isobaric Cricondencomp, CCCP).

� a CCT point is, simultaneously, a local extremum in temperature
when the composition of one of the equilibrium phases is
constant (isopleth), and a local extremum in themole fraction of
one of the components in one of the equilibrium phases at
constant temperature (Isothermal Cricondencomp, CCCT).

Hence, a CCB line is also a CCCP line, and a CCT line is also a CCCT
Please cite this article in press as: J.I. Ramello, et al., Direct detection of double retrograde behavior in binary systems for equation of state
models, Fluid Phase Equilibria (2016), http://dx.doi.org/10.1016/j.fluid.2016.02.044



Te
m

pe
ra

tu
re

Mole fraction x1

L+V

L

V
I II

F

G

1

2

Fig. 10. Schematic Temperature-Mole fraction of component 1 diagram for a sub-
critical vaporeliquid equilibrium isobar showing RBxP in the IeII composition range.
Points 1 and 2: CCCP points.
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Fig. 11. Schematic PressureeTemperature diagram for a vaporeliquid equilibrium
isopleth showing DRBxP in the IeII pressure range. CP: critical point. Points 1, 2 and 3:
CCB points.
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Fig. 12. Schematic Temperature-Mole fraction of component 1 diagram for a super-
critical vaporeliquid equilibrium isobar showing DRBxP in the IeII composition range.
CP: critical point. Points 4, 5 and 6: CCCP points.
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Fig. 13. Schematic PressureeTemperature diagram for a vaporeliquid equilibrium
isopleth showing RBxP in the IeII and IVeIII pressure ranges. CP: critical point. Points
1, 2 and 3: CCB points.
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Fig. 14. Schematic Temperature-Mole fraction (x1) diagram for a supercritical vapor-
eliquid equilibrium isobar showing RBxP in the III e IV and IeII x1 ranges. CP: critical
point. Points 4, 5 and 6: CCCP points.

J.I. Ramello et al. / Fluid Phase Equilibria xxx (2016) 1e144

Please cite this article in press as: J.I. Ramello, et al., Direct detection of
models, Fluid Phase Equilibria (2016), http://dx.doi.org/10.1016/j.fluid.20
line. These lines may eventually contain a finite number of points
which are inflection points to be seen in specific isothermal or
isobaric or isoplethic phase equilibrium sections.
2. Variants for the retrograde behavior

In this section, we describe the variants found for the RB, on the
basis of the present study and of some literature works [6,15,17].

Figs. 1e3 are schematic binary phase equilibrium diagrams
showing retrograde behavior at constant composition and tem-
perature (RBxT).

RBxT is present if two dew points are observed at set temper-
ature and composition. This is shown in the isopleth of Fig. 1 (AeB
trajectory). If the pressure is increased along the AB line (constant
temperature) from point A to point B, then, the phase condition
evolution is: Vapor (V) / Liquid (L) þ Vapor (V) / Vapor (V). The
retrograde stage of this evolution is the L þ V / V stage. RB is
observed in the temperature range enclosed by the vertical lines I
and II.

If RBxT is observed at given temperature in a constant
double retrograde behavior in binary systems for equation of state
16.02.044
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composition section as the one of Fig. 1, then, it must also be
observed at constant composition in the proper constant temper-
ature section. This is illustrated in Fig. 2 (CeD trajectory) for a su-
percritical isotherm, and in Fig. 3 (FeG trajectory) for a subcritical
isotherm (Pxy diagrams). By “supercritical isotherm”wemean that
the temperature that defines the isotherm is in between the critical
temperatures of the pure compounds; while “subcritical isotherm”

means that such temperature is less than either of the two pure
compound critical temperatures. Hence, a binary supercritical
isotherm has a single pure-compound vaporeliquid equilibrium
point, while a binary subcritical isotherm has two. The increasing
pressure paths CeD in Fig. 2 and FeG in Fig. 3 have the sequence
V/LþV/V. RB happens in the composition range enclosed by the
vertical lines I and II both, in Figs. 2 and 3.

The double retrograde behavior at constant composition and
temperature (DRBxT) is presented in Figs. 4 and 5. This behavior
happens if four dew points are observed at set composition and
temperature, as shown in the isopleth of Fig. 4, for the (increasing
pressure) A-B path, and in the isotherm of Fig. 5, for the C-D path. In
both cases, the evolution is V/L þ V/V/L þ V/V. Of this four
steps the second and the fourth are the retrograde ones (LþV/V).

In Fig. 4, the DRBxT is found in between the vertical lines I and II,
i.e., from the temperature of the critical point (CP) to the temper-
ature of point 1, which is the local maximum in temperature of
lowest temperature. In Fig. 5, DRBxT happens between the x1
values of points 3 and 2.

Figs. 8e10 illustrate the case of retrograde behavior at constant
composition and pressure (RBxP). Here, two dew points are
observed as temperature decreases, as it is shown in Fig. 8 (isopleth,
A-B path), Fig. 9 (supercritical isobar, C-D path) and Fig. 10
(subcritical isobar, G-F path). The progression as temperature de-
creases is V/L þ V/V (retrograde stage: L þ V/V).

The ranges for the RBxP are indicated by the lines I and II in
Figs. 8e10. Notice that critical points, local maxima and local
minima (e.g., Figs. 8e10) contribute to define the ranges of condi-
tions of the RB and DRB. Such local extrema are for instance a CCB
point (point 1 in Fig. 8), a CCCP point (point 1 in Fig. 9), and a couple
of CCCP points in Fig.10. Thewords “supercritical isobar” heremean
that the isobar pressure is in between the pure compound critical
pressures, while the words “subcritical isobar” mean that the
pressure is less than either of them.

Finally, the double retrograde behavior at constant composition
and pressure (DRBxP) takes place also when four dew points are
observed (Fig. 11, isopleth, A-B path; and Fig. 12, isobar, C-D path).
The observed progress again is V/L þ V/V/L þ V/V as tem-
perature decreases. Notice in Fig. 11 that in the pressure range from
P1 to P3 only RBxP is observed (not DRBxP), while the range of
existence of DRBxP is set by the local extrema points 1 and 2. The
retrograde transitions occur in Fig. 11 in part of the curve con-
necting points 2 and 3, and in part of the curve that connects point
1 and the critical point CP.

In Fig. 12, the range of existence of DRBxP is defined by points 5
and 4. The retrograde transitions are located in part of the curve
connecting points 5 and 6, and in part of the curve connecting the
CP and point 4.

This work deals with the RB related to the dew point line and
not to the RB associated to the bubble point line. In this last case,
the evolution L /L þ V/ L is observed at constant pressure and
composition, as temperature decreases (simple retrograde vapor-
ization [upon temperature reduction]). If ever observed, the
sequence for double retrograde vaporization associated to the
bubble point line would be L / L þ V/ L / L þ V / L (upon
temperature reduction at constant pressure and composition). This
work does not deal either with what Kuenen named retrograde
condensation of the second kind. This happens when the CCT
Please cite this article in press as: J.I. Ramello, et al., Direct detection of
models, Fluid Phase Equilibria (2016), http://dx.doi.org/10.1016/j.fluid.20
temperature is located on the bubble point line (rather than on a
dew point line) in an isopleth. At a temperature in between that of
the CCT point and that of critical point, a liquidevapor system
would become a homogeneous liquid upon a pressure reduction.

3. Methodology

Through implicit differentiation it is possible to obtain the
mathematical conditions valid at a CCB (and/or CCT) point. Such
conditions are solved in a composition range by resorting to a nu-
merical continuation method (NCM) to compute a full CCB (or CCT)
locus. NCMs are the methods of choice for the straightforward
computation of highly non-linear lines, which are made of points
described by several coordinates (hyper-points). NCMs have been
used extensively in the literature [18e23]. The mathematical CCB
and CCT conditions considered in this work actually are the
necessary condition of local extrema, i.e., of stationary points (not
necessarily local maxima). In other words, the CCB and CCT con-
ditions in this work encompass a wider range of situations than the
conventional CCB and CCT definitions. From the calculation of these
CCB (or CCT) hyper-lines, multiple local extrema in, e.g., a given
isopleth can be detected. The presence of multiple local extrema in
a given isopleth is characteristic of DRB.

More specifically, we start by writing the system of equations
valid for a binary two-phase equilibrium, having a model of the
equation of state (EoS) type in mind. The (fluid) phases are named
phase “z” and phase “w”. We first define the vector function F

ð4Þ
as

follows:

F
ð4Þ ¼

2
664
F1
F2
F3
F4

3
775 ¼

2
664
P � hðT ; z1; vzÞ
P � hðT ;w1; vwÞ
lnbf 1ðT; z1; vzÞ � lnbf 1ðT;w1; vwÞ
lnbf 2ðT; z1; vzÞ � lnbf 2ðT;w1; vwÞ

3
775

(1a.1 e1a.4)

Next, we impose the equilibrium conditions, by setting F
ð4Þ

equal to the null vector:

F
ð4Þ ¼

2
664
F1
F2
F3
F4

3
775 ¼

2
664
P � hðT ; z1; vzÞ
P � hðT ;w1; vwÞ
lnbf 1ðT; z1; vzÞ � lnbf 1ðT;w1; vwÞ
lnbf 2ðT; z1; vzÞ � lnbf 2ðT;w1; vwÞ

3
775 ¼

2
664
0
0
0
0

3
775 ¼ 0

!

(1b.1 e1b.4)

where P is the absolute pressure, T the absolute temperature, z1 the
mole fraction of component 1 in phase “z”, w1 the mole fraction of
component 1 in phase “w”, vz the molar volume of phase “z” and vw
the molar volume of phase “w”. Function “h” is the relationship
between pressure, temperature, molar volume and composition set
by the chosen EoS, considered to be explicit in pressure in Eq. (1b.1)
and (1b.2). Such EoS determines the expression for the fugacity of
component “i”, i.e., bf i [which appears in Eq. (1b.3) and (1b.4)], as a
explicit function of temperature, molar volume and composition.
Eq. (1b.1) and (1b.2) imply that the pressure is the same in both
phases, and Eq (1b.3) and (1b.4) are the isofugacity conditions. The
variables of the system of Eq (1b) are those of vector X6 which we
define as follows:

X
T
6 ¼ ½T P z1 w1 vz vw� ¼ ½X1 X2 X3 X4 X5 X6� (2)

Since system (1b) has four equations and six variables, its
number of degrees of freedom is two. Thus, system (1b) defines a
binary two-phase equilibrium hyper-surface. The prefix “hyper”
means in this work “existing in a space having more than three
variables”. A binary two-phase hyper-line becomes defined once
double retrograde behavior in binary systems for equation of state
16.02.044
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we make a specification that spends one of the two available de-
grees of freedom. Frequent specifications correspond to setting one
of the variables of vector X6 equal to a constant. For instance the
temperature T could be set as equal to 298.1 K. This would lead to an
isothermal binary two-phase equilibrium hyper-line or diagram.
Likewise, if a phase composition, e.g., w1, is set equal to a constant
value, then, a kind of isoplethic hyper-line or diagram would be
obtained. Notice that this last choice only fixes the composition of
one of the two equilibrium phases without specifying, for the
heterogeneous system, the relative amount of such phase. Such
relative amount is the so called phase mole fraction, which should
not be confused with the mole fraction of a component in a given
phase. Phase mole fractions are variables which have no influence
on system 1b, i.e., they are not variables of system 1b.

At a CCB point (e.g., point 1 in Fig. 8), the derivative of pressure
with respect to temperature, at constant composition for one of the
phases at equilibrium, equals zero. This derivative is the derivative
at a point of a curve (isopleth, e.g., Fig. 8) along which the equi-
librium condition is preserved, i.e., along which system 1b remains
satisfied. At a CCT point (e.g., point 1 in Fig. 1), the derivative of
temperature with respect to the pressure equals zero. CBB and CCT
points are points of the saturation curve (e.g., the curve in Fig. 1).
Such curve is not explicitly defined as a function of the variable set
as the independent one, but only implicitly, by system 1b.

To obtain the system of equations valid at a CCB point at a
specified value for, e.g., w1 , the following procedure is followed:

I. Obtain the expression for the total differential of functions
F1 to F4 (which are defined in 1.a).

II. Set each of the previous differentials equal to zero (as
required by system 1b).

III. Set the differential of the independent variable w1 equal to
zero (this is imposed by the “isopleth” condition).

IV. Divide the expressions obtained in item II by dT, i.e., by the
differential of the remaining independent variable.

V. Set the ratio (dT/dT) equal to unity. This results in a sub-
system of four equations whose variables are
T , P , z1,w1, vz and vw and also the derivatives of P, z1,vz and vw
with respect toT , at setw1. This system, together with system
1b, makes a system of 8 equations with 10 variables.

The new system is solved for the 8 variables that remain un-
known after setting the desired value for w1 ; and a zero value for
the derivative ðdP=dTÞs;w1

(CCB condition), where subscript “s”

means that the equilibrium condition is preserved in the differen-
tiation process. For a range of w1 values, the new system is solved
and the values of the variables of interest (T, P, z1,vz and vw) recor-
ded. Thus, a locus of CCB points is generated, i.e., a CCB hyperline.
This locus is computed in this work by using a numerical contin-
uation method which is able to deal with the highly non-linear
nature of CCB hyper-lines.

The procedure for obtaining the system of equations valid at a
CCT point is analogous to the one described in items I to V. The key
condition is in this case: ðdT=dPÞs;w1

¼ 0.
Notice that the system of 8 equations with 10 variables

mentioned above becomes a system of 10 equations and 10 vari-
ables after setting the desired value for w1; and a zero value for the
derivative ðdP=dTÞs;w1

. In other words, the chosen value of w1 does
not need to be plugged into the equations where it appears.
Otherwise, in our implementation, an equation that sets w1 equal
to a given value is added, thus increasing the number of equations
from 8 to 9. Similarly, setting a zero value for ðdP=dTÞs;w1

is done by
adding the corresponding equation. In conclusion, we have a sys-
tem of 10 equations with 10 unknowns, i.e., a “square” system. Such
system includes a number of derivatives among its 10 variables.
Please cite this article in press as: J.I. Ramello, et al., Direct detection of
models, Fluid Phase Equilibria (2016), http://dx.doi.org/10.1016/j.fluid.20
Technically, this system is a differential algebraic equation (DAE)
system, because it is made of both, algebraic equations and differ-
ential equations (the latter are differential equations because a
number of derivatives appear in their expressions). This might lead
the reader to expect the application of a non elementary DAE solver,
such as Runge-Kutta, in order to trace the CCB line. In this work, it
was enough to apply Euler's method to predict the next point of the
CCB line, after having available an already converged point. The
procedure is essentially as follows: [a] set a value forw1 (i.e., define
one of the equations of the 10 � 10 system). [b] solve the 10 � 10
system (this provides a converged point of the CCB line, which
includes all the values for the derivatives at such point). [c] Set a
new value of w1 by using a previously defined step size. [d] Using
the known values for the derivatives at the converged point, pre-
dict, using Euler's method, the values of all variables of the CCB
point at the new value of w1. This is the predictor's result. [e] Use
this result as an initialization of the 10 � 10 system, and solve it
again. The result (corrector's result) is a new converged point of the
CCB line. The algorithm that we have implemented is actually more
sophisticated, since, before computing the next CCB point, the
specified variable is not necessarily w1. Otherwise, it is chosen
automatically so that the problems associated to turning points are
avoided. A turning point appears when, along the CCB hyper-line, a
variable reaches a local maximum or a local minimum. The auto-
matic choice of the specified variable was of utmost importance in
this work, due to the highly non-linear nature of computed CCB and
CCT lines. Besides, the step size in the specified variable is not made
constant during the computation of CCB or CCT lines: its value is set
on the basis of the convergence history of the last converged point.
For more details on numerical continuation methods, the reader is
referred to the specialized textbooks on the subject, and to previous
papers of our group.

4. Results and discussion

In what follows we present, for a binary mixture, EoS based
calculated critical lines and CCB and CCT loci, which make possible
to establish whether the model predicts the occurrence of vapor-
eliquid DRB, and, in such a case, to identify the ranges of conditions
of DRB existence. Each of the three lines is computed in a single run.
In this way, the computation of several phase equilibrium isopleths
and/or isotherms and/or isobars, for detection of the DRB, is avoi-
ded. All calculation results in this section are for the CO2 þ n-
decane system and they were obtained using the RK-PR EoS
coupled to mixing rules cubic with respect to mole fraction (CMRs)
with parameters obtained fromCismondi et al. [24]. The behavior of
this system, both experimentally and for the model, is of Type II in
the Scott and van Konynenburg classification [25] (see Ref. [26] for
more details on the classification of the fluid phase behavior).

4.1. Results on retrograde behavior at constant composition and
pressure (RBxP, DRBxP)

Fig. 15 presents the computed CCB and CCT lines in their PT
projections for system CO2 þ n-decane in the CO2-rich region. To
complete the diagram, the critical line and the carbon dioxide vapor
pressure curve are also included. To fix ideas, a point belonging to
the CCB line has the temperature and pressure coordinates at which
some isopleth has a CCB point. A analogous statement is valid for a
point of the CCT line. The saturated phase composition which de-
fines an isopleth is not shown in Fig. 15. Notice that the “saturated
phase composition” is the phase composition that remains con-
stant in an isopleth. This composition may be that of the vapor
phase (dew point) or that of the liquid phase (bubble point).

Although the system CO2þ n-decane is of type II in the Scott and
double retrograde behavior in binary systems for equation of state
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Fig. 15. CCB/CCT diagram. Calculated PressureeTemperature projection of CCB and CCT
lines in the CO2-rich region. CO2 þ n-decane system (Type II in Scott and van Kony-
nenburg classification [25,26]). Point A: CO2 critical point. All lines were calculated
using the RK-PR EoS and CMRs with parameters obtained from Cismondi et al. [24].
Points B and C: local maximum and local minimum in pressure of CCB line. Points B0

and C0: local maximum and local minimum in temperature of CCT line.
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Van Konynenburg classification [25], RB and DRB are qualitatively
identical to those observed in type I. This is because the liquid-
liquid-vapor (LLV) line does not interfere with the CCT and CCB
lines for this system.

Fig. 15 shows that the CCB line has a local maximum (point B)
and a local minimum (point C) in pressure. The CCT line shows two
local extrema in temperature (points B0 and C0).

4.1.1. Analysis of vaporeliquid equilibrium isopleths (RBxP, DRBxP)
Fig. 16 shows the CCB and critical lines in the CO2-rich region,

but in its Pressure- “saturated phase CO2 mole fraction” projection.
This projection provides the number (and pressure values) of CCB
Fig. 16. CCB diagram. Pressure-CO2 mole fraction in saturated phase projection of
calculated CCB line. The calculated critical line is also shown. CO2 þ n-decane system.
Horizontal dotted lines: constant pressure cuts. Vertical dotted lines: constant CO2

mole fraction in saturated phase cuts. See caption of Fig. 15. Point B: local maximum in
pressure and local minimum in CO2 mole fraction in saturated phase. Point C: local
minimum in pressure and local maximum in CO2 mole fraction in saturated phase.

Please cite this article in press as: J.I. Ramello, et al., Direct detection of
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points for a given isopleth. Similarly, it provides the number (and
composition values) of CCCP points for a given isobar. Hence, this is
the appropriate projection for establishing the eventual existence
and types of RB associated to the CCB line.

In Fig. 16 the branches LMAX-1 and LMAX-2 are loci of isopleth
local maxima in pressure, and the LMIN branch is the locus of
isopleth local minima in pressure. Simultaneously, branches LMAX-
1 and LMAX-2 are loci of isobar local maxima in saturated phase
CO2 mole fraction (xCO2), and branch LMIN is a locus of isobar local
minima in xCO2. Notice that a local minimum (maximum) in xCO2
must be a local maximum (minimum) in the saturated phase n-
decane mole fraction (xC10).

In Fig. 16, the CCB line goes from point A (CO2 critical point) to
point B, next to point C, and extends to higher pressures and lower
CO2 mole fraction values. Point B is simultaneously a local
maximum in pressure and a local minimum in the saturated phase
CO2 mole fraction of the CCB line. Point C is a local minimum in
pressure and a local maximum in the saturated phase CO2 mole
fraction. Points B and C are cusps in the projection of Fig. 16, but
they are not so in other projections, e.g., those in Figs. 15 and 20.
Hence, points B and C are not cusps in the multi-dimensional space
where the CCB line exists.

Fig. 18 shows a set of calculated vaporeliquid equilibrium iso-
pleths together with the calculated CCB line previously presented
in Fig. 15. It is seen that the CCB line connects the stationary points
(derivative of pressure with respect to temperature at constant
saturated phase composition equal to zero) of all isopleths. Clearly,
some of the stationary points are local minima in pressure, some
local maxima, and a couple of them are inflection points with zero
slope (points B and C).

In Fig. 16, the isopleth with CO2 mole fraction of 0.9965 (isopleth
XII, vertical line) intersects the CCB projection at a single point, i.e.,
at point f (pressure about 82.5 bar). Point f is a maximum in pres-
sure for isopleth XII (point f in Fig. 18). Isopleth XII (Figs. 16 and 18)
shows RBxP. Any other point belonging to the LMAX-2 branch of the
CCB line in Fig. 16, has the same character than point f, i.e., it is a
(local or absolute) maximum in pressure for some isopleth (see in
Fig. 18 the part of the CCB line that originates at point C and extends
to higher temperatures, and see its intersection points, with the
shown isopleths, e.g., points 15, 6, 1 in Fig. 18). As it is the case for
Fig. 17. Calculated CCB diagram. CO2 þ n-decane system. Vertical dotted lines: cuts of
constant CO2 mole fraction in saturated phase. See caption of Fig. 15.
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Fig. 18. PressureeTemperature projection of calculated CCB line and calculated set of
isopleths. CO2 þ n-decane system (RBxP and DRBxP). Full circles: critical points. Arabic
and roman numbers are consistent with those of Figs. 16 and 17.

Fig. 19. Calculated CCB diagram. CO2 þ n-decane system. Horizontal dotted lines:
constant pressure cuts. See caption of Fig. 15.

Fig. 20. Temperature e n-decane mole fraction in saturated phase projection of
calculated CCB line and set of calculated isobars. The calculated critical line is also
shown. System: CO2 þ n-decane (RBxP and DRBxP). See caption of Fig. 15.
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the LMAX-2 line, the LMAX-1 branch of the CCB line (Fig. 16) is also
a locus of isopleth (local or absolute) maxima in pressure (Fig. 18,
CCB line from point A to point B). Finally, the LMIN branch of the
CCB line in Fig. 16 is a locus of isopleth local minima in pressure
(Fig. 18, CCB line from point B to point C). Point B is an inflection
point of a specific isopleth (isopleth VI, Fig. 18). This is also the case
for point C (isopleth XI, Fig. 18).

Fig.17 is a zoom of Fig.16. Isopleths VII, VIII, IX and X intersect all
three branches of the CCB line. Hence, these isopleths have two
local maxima and a single local minimum in pressure (Fig. 18).

As it can be seen in Fig. 16, isopleth VI intersects the CCB line at
two points. One of them is point B, which is an inflection point of
isopleth VI (Fig. 18). At point B, a local maximum and a local min-
imum in pressure merge into a single stationary point (Fig. 18). At
point B, both, the first and second derivatives of pressure with
respect to temperature are simultaneously equal to zero. At this
point DRBxP is incipient. At a CO2 mole fraction less than that of
point B, only RBxP will be present in a given isopleth (e.g., isopleth
XII in Fig. 18).
Please cite this article in press as: J.I. Ramello, et al., Direct detection of
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Similarly to isopleth VI, isopleth XI also intersects the CCB line at
two points (Figs. 16 and 17). One of them is point C, the inflection
point shown in Fig. 18 for isopleth XI. At isopleth CO2 mole fraction
values greater than that of point C in Fig. 17, only RBxP will be
present (single intersection point).

Since (Fig. 17) point B is the intersection point of the LMAX-1
and LMIN branches, two local extrema of different kinds merge at
point B (as previously stated in the context of Fig. 18). This is only
possible if the slope is zero at point B for the pressure as a function
of temperature, indeed for the isopleth with the composition of
point B. Similar remarks can be made for point C. The isopleth
composition range where DRBxP is potentially present is from
point B composition to point C composition (Fig. 17).

We now go back to Fig. 11. Notice that if the pressure of point 2
(P2) were less than the pressure of the critical point (PCP), then,
there would still be DRBxP, which would happen in the range PCP
to P1. If P2 and P3were both less than PCP, then, there would not be
DRBxP. Thus, the condition for DRBxP, at set isopleth composition,
is the existence of two local maxima in pressure with pressure
values greater than that of the binary critical pressure. Both, iso-
pleths VIII and IX meet this requirement (Fig. 17), in spite of the fact
that three local extrema (points 5, 6 and 7) have all pressure values
greater than that of the critical pressure (point 8) in isopleth VIII
(Figs. 17 and 18), while, for isopleth IX (Fig. 17), the pressure of the
local minimum (point 12) is less than the critical pressure (point
11). On the other hand, isopleth X (Fig. 17) has two local extrema in
pressure (points 15 and 16) with pressures less than the critical
pressure (point 14). Thus, isopleth X does not show DRBxP (Fig. 18).

Isopleth VII (Fig. 17), meets the above criterion for the existence
of DRBxP (Fig. 18, curve VII). In this case, the pressure range where
DRBxP occurs is from P3 to P2 (Figs. 17 and 18). Schematically,
isopleth VII behaves as the isopleth in Fig. 11. Notice, in Fig. 17, that
point 2 of isopleth VII belongs to the LMAX-1 branch. Isopleth VIII
(Figs. 17 and 18) shows DRBxP in the pressure range from P7 (LMIN
branch) to P6 (LMAX-2 branch). Thus, with regard to the range of
existence of DRBxP, there is an exchange of branches when going
from the lowest pressure local maximum point 2 (LMAX-1 branch,
Fig. 17) in isopleth VII, to the lowest pressure local maximum point
6 (LMAX-2 branch, Fig. 17) in isopleth VIII.

Point 17 in Fig. 17 is the intersection point between branches
LMAX-1 and LMAX-2. The isopleth of point 17, shows DRBxP with
double retrograde behavior in binary systems for equation of state
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Fig. 21. CCT diagram. Temperature-CO2 mole fraction in saturated phase projection of
calculated CCT line. CO2 þ n-decane system. See caption of Fig. 15.
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both local maxima having the same pressure value (P17). Point 17 is
the one at which the exchange of LMAX branches takes place.

As previously stated, isopleth X does not show DRBxP (Figs. 17
and 18). However, it does show simple RBxP. Cleary, this isopleth
corresponds to the schematic diagram of Fig. 13. At a pressure P* in
between P16 and P15 in Fig. 17, which correspond respectively, in
Fig. 13, to points 2 and 1, an isobaric isoplethic decreasing tem-
perature path (C, D, G in Fig. 13) has the evolution:
V/V þ L/V/V þ L/L, where only the second step (V þ L/V) is
retrograde (RBxP). At P** in between P14 and P13 in Fig. 17 (corre-
sponding to points CP and 3 in Fig. 13) isopleth X also shows RBxP.

4.1.2. Analysis of vaporeliquid equilibrium isobars (RBxP, DRBxP)
The same analysis done for vaporeliquid isopleths can be done

for vaporeliquid isobars. To begin, it can be seen in Fig. 20 how the
CCB line connects all local extrema in mole fraction of a set of
vaporeliquid isobars. Next, we see in Fig. 16 that a constant pres-
sure section at 81 bar (c horizontal line) intersects the CCB line at a
single point. Thus, the isobar shows a unique local extremum in
composition, i.e., a local maximum in xCO2 (point 1 in Fig. 9).
Therefore, the c isobar exhibits RBxP. From this, a given isobar of
pressure greater than that of point B in Fig. 16, or in the pressure
range from point A (pure CO2 critical point) to point C (75.17 bar)
(Fig. 16), has a single local maximum in xCO2 (RBxP).

Fig. 19 is a zoom of Fig. 16. Isobar u has three local extrema in
xCO2 (points 19, 20 and 21 in Fig. 19). All of them fall to the right of
the critical point (point 18). Hence, the isobar will be as the one
schematically shown in Fig. 12, and it will thus show DRBxP. This
will happen in the composition range set by points 19 and 20 in
Fig.19. Isobaru is quantitatively shown in Fig. 20. Points CP, 4, 5 and
6 in Fig. 12 respectively correspond to points 18, 20, 19 and 21 in
Fig. 19. Notice that in Fig. 20 the abscissa is the mole fraction of the
least volatile component (n-decane) (xC10), while in Fig. 12 the
abscissa is the mole fraction of the most volatile component (x1).

In Fig. 20, a given local extremum in mole fraction (CCCP point)
has certain temperature (TCCCP), pressure (PCCCP) and n-decane
mole fraction (yC10-CCCP). Besides, the phase of composition yC10-
CCCP is at equilibrium with another phase of composition xC10-CCCP.
Composition yC10-CCCP is equal to the composition of the saturated
phase of an isopleth having a CCB point at conditions identical to
those of the CCCP point (TCCCP, PCCCP and xC10-CCCP). For a given
isobar in Fig. 20, the branch below the critical line is the one that
reports, at higher pressures, the xC10-CCCP values.

Isobar ε in Fig. 19, as it happens for isobar u, has also three local
extrema in xCO2 (points 22, 23 and 25). However two of them
(points 22 and 23) have xCO2 values that are less than the critical
xCO2 (point 24). This is the situation in the schematic diagram of
Fig. 14. Hence, isobar ε has only RBxP. It does in two different
composition ranges, as illustrated in Fig.14 (in this figure the path D
to G is not retrograde). Points CP, 4, 5 and 6 in Fig. 14 correspond,
respectively, to points 24, 25, 22 and 23. The calculated isobar u is
shown in Fig. 20.

Although it is not easily seen in Fig. 19, at about 77 bar there is a
pressure range where, for a given isobar, only the local minimum in
xCO2 has a xCO2 value less than the critical xCO2 value. The local
maxima both exceed the critical xCO2 value. Such isobar would look
as that of Fig. 12, except that point 5 in Fig. 12 would be shifted to a
x1 value less than that of point CP. In such a case we still have
DRBxP.

The isobar of point 10 in Fig. 19, delimits the range of isobar
pressurewhere DRBxP occurs, i.e., from the isobar pressure of point
10 to the isobar pressure of point B. In such range, the necessary
condition of DRBxP is met, i.e., at least two CCCP points have CO2
mole fraction values greater than that of the critical point of the
isobar. In Fig. 19, isobar m (P ¼ 75.174 bar) is the isobar of point C. At
Please cite this article in press as: J.I. Ramello, et al., Direct detection of
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the pressure of point C, the presence of three local extrema in xCO2
is incipient. Point C is an inflection point of the isobar m, as shown in
Fig. 20.
4.2. Results on retrograde behavior at constant composition and
temperature (RBxT, DRBxT)

4.2.1. Analysis of vaporeliquid equilibrium isopleths (RBxT, DRBxT)
Fig. 21 shows a convenient projection of the calculated CCT

hyper-line, for system CO2 þ n-decane, in the CO2-rich region: it is
the temperature versus saturated phase CO2 mole fraction projec-
tion. This diagram is helpful in identifying, for a given model, the
ranges of conditions where DRBxT occurs. The number of inter-
section points (Fig. 21), between the CCT line and a given constant
composition section (or constant temperature section), equals the
number of isopleth CCT points (or the number of isotherm CCCT
points). For instance, from Fig. 21, the 0.99825 CO2 mole fraction
vaporeliquid equilibrium isopleth has a single CCT point at 341 K.
Conversely, the 341 K vaporeliquid equilibrium isotherm has a
CCCT point at 0.99825 CO2 mole fraction.

Point A in Fig. 21 is the pure CO2 critical point. The cusp points B0

and C0 are not cusps in the multidimensional space of the CCT line.
These points are local extrema of the CCT line (Fig. 21) and they are
also inflection points of a couple of vaporeliquid isotherms
(Fig. 26a) and of a couple of vaporeliquid isopleths (Fig. 25a).

Fig. 22 again shows the CCT line, but together with a number of
isopleth and isotherm sections (vertical and horizontal lines,
respectively).

Isopleth I (xCO2 ¼ 0.9982, Fig. 22) intersects the LMAX-2 branch
of the CCT line at a single point (point d). This point is a local
maximum in temperature for isopleth I (point d in Fig. 25a, anal-
ogous to point 1 in Fig. 1). Consequently, the LMAX-2 branch is a
locus of isopleth local maxima in temperature (see Fig. 25a). Branch
LMAX-1 is also a locus of isopleth local maxima in temperature.
Isopleth I in Fig. 22 exhibits RBxT, given that it has a single
maximum in temperature (Figs. 1, 22 and 25a). All isopleths of CO2
mole fraction less than that of point B0, or greater than the one of
point C0, have a single CCT point, of the local maximum in tem-
perature type. Branch LMIN is a locus of isopleth local minima in
temperature.

The isopleth in Fig. 4 presents DRBxT. This isopleth has two local
double retrograde behavior in binary systems for equation of state
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Fig. 22. Calculated CCT diagram. CO2 þ n-decane system. Horizontal dotted lines:
constant temperature cuts. Vertical dotted lines: cuts of constant CO2 mole fraction in
saturated phase. See caption of Fig. 15.

Fig. 23. Calculated CCT diagram. CO2 þ n-decane system. Vertical dashed lines: cuts of
constant n-decane mole fraction in saturated phase. See caption of Fig. 15. Point B0:
local maximum in temperature and local maximum in n-decane mole fraction in
saturated phase. Point C0: local minimum in temperature and local minimum in n-
decane mole fraction in saturated phase.

Fig. 24. Calculated CCT diagram. CO2 þ n-decane system. Horizontal lines: constant
temperature cuts. See caption of Fig. 15.
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Fig. 25. PressureeTemperature projection of calculated CCT line and set of calculated
isopleths. CO2 þ n-decane system (RBxT and DRBxT). See caption of Fig. 15.
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maxima in temperature (points 1 and 3) which have temperatures
(T1 and T3) greater than that of the critical point (TCP). The DRBxT
temperature range is the one indicated by lines I (TCP) and II (T1) in
Fig. 4. T2 in Fig. 4 is less than TCP. If T2 were greater than TCP, then,
there would still be DRBxT, but now in the temperature range from
T2 to T1. In Fig. 6, T3 is less than TCP and no DRBxT is observed.
However, simple RBxT is observed at two different temperature
ranges in Fig. 6. In conclusion DRBxT is observed when two local
maxima in temperature have temperatures greater than the
mixture critical temperature.

Fig. 23 is a zoom of Fig. 22. Notice that in Fig. 23 (and in its zoom,
i.e., Fig. 24) the composition variable (abscissa) is the n-decane
mole fraction in the saturated phase, and that this variable in-
creases from right to left (in Figs. 23 and 24), which is not the
Please cite this article in press as: J.I. Ramello, et al., Direct detection of double retrograde behavior in binary systems for equation of state
models, Fluid Phase Equilibria (2016), http://dx.doi.org/10.1016/j.fluid.2016.02.044



Fig. 26. Pressure - n-decane mole fraction in saturated phase projection of calculated
CCT line, and set of calculated iotherms. CO2 þ n-decane system (sub-critical RBxT and
DRBxT). See caption of Fig. 15.
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typical convention for Cartesian diagrams. This unconventional
increase in the abscissa makes possible to avoid confusion (i.e., to
avoid the “mirror effect”) when comparing Fig. 23 (and Fig. 24) with
Fig. 22. Figs. 23 and 22 show that Isopleth II intersects the CCT line
at three points (points 7, 9 and 10 in Fig. 23) and the critical line at
point 8. In order of increasing temperature, these points follow the
sequence: T7 < T8(crit) < T9(CCT) < T10.

Thus, since the two local maxima have a temperature greater
than the critical temperature, isopleth II has DRBxT, which occurs in
a narrow temperature range, i.e., from T8(crit) to T9, as it is shown in
Fig. 25a and b.

Isopleth III (Fig. 23) intersects the CCT line at points 1, 2 and 4
and the critical line at point 3. The temperature of the local
maximum 2 (T2) is less than the critical temperature (T3(crit)). Thus,
isopleth III does not exhibit DRBxT but simple RBxT, as shown
schematically in Fig. 6 and quantitatively in Fig. 25a and b.

Isopleth IV (Fig. 22) intersects the CCT line at two points. One of
them is point B0 at which the DRBxT is incipient. Point B0 is an in-
flection point in isopleth IV (Fig. 25a). Analogous statements apply
to point C’ (Figs. 22 and 23) and its associated isopleth, i.e., isopleth
V (Figs. 22 and 25).
Please cite this article in press as: J.I. Ramello, et al., Direct detection of
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Fig. 24 is a zoom of Fig. 23. Fig. 24 clearly shows that the critical
line is located below the LMAX-1 branch. We name z5 the n-decane
mole fraction at point 5 in Figs. 23 and 24. Point 5 is the intersection
point between branches LMAX-1 and LMAX-2. Isopleths in the
composition range from z5 to zB0 exhibit DRBxT, e.g., isopleth II
(Figs. 23 and 25, Fig. 4), while those in the range from zC0 to z5 show
no DRBxT but RBxT, e.g. isopleth III (Figs. 23 and 25, Fig. 6).

4.2.2. Analysis of vaporeliquid equilibrium isotherms (RBxT,
DRBxT)

With regard to constant temperature sections, Fig. 5 shows a
schematic isotherm with DRBxT. In such particular case all local
extrema are located to the right of the critical composition. There
would also be DRBxT if point 3 were located to the left of the critical
composition as long as points 2 and 4 remain on the right.

In Fig. 22 isotherm p (261.12 K, horizontal line) contains point C0,
i.e., the inflection point seen in Fig. 26a for isotherm p. 261.12 K is
less than the CO2 critical temperature (TC ¼ 304.21 K). At temper-
atures less than that of point C’ (261.12 K), isothermal sections do
not have RBxT because of the lack of local extrema in mole fraction.

In Fig. 22, isotherm a (T ¼ 320 K) intersects the CCT line at a
single point (point p), which is the single local extremum in mole
fraction shown in Fig. 26a (point p) for curve a.

Because of the two intersections with the CCT line for isotherm b
(T ¼ 290 K) in Fig. 22 (points q and r), two local extrema in
composition appear in Fig. 26a for isotherm b, which shows RBxT.

Isotherm g (T ¼ 306 K, Figs. 24 and 22) intersects the CCT line at
points 11, 12 and 13 (Fig. 24). All of them are located to the right of
the critical (point 14) line in Fig. 24. Thus DRBxT is present. One of
the intersection points is the local extremum point 11 seen in
Fig. 26a. The other two local extrema are more clearly seen in
Fig. 26b (points 12 and 13, g curve).

Isotherm d in Fig. 24 intersects the CCT line at points 15, 16 and
18, and the critical line at point 17. Thus, isotherm d exhibits DRBxT.

Isotherm k (T ¼ 306.69 K, Fig. 22), intersects the CCT line twice.
One of the intersection points is point B0, i.e., the inflection point in
curve k of Fig. 26b. The other intersection point is the local
extremum in mole fraction in curve k of Fig. 26a. Isotherm k is the
onewith highest temperature (T¼ TB0) at which DRB is observed. At
higher temperatures only RB will be present (e.,g., isotherm a, see
Fig. 26a and b). Isotherm k temperature is greater than the critical
temperature of pure CO2 (T ¼ 304.21 K).

At point 5 in Fig. 23 (and Fig. 24) lines LMAX-2 and LMAX-1
intersect each other, as previously stated. The isotherm of Point 5
is the one with lowest temperature at which DRB is observed. In
conclusion, DRBxT is observed for isothermal section temperatures
in the range [T5,TB0]. In this range, a couple of local extrema of the
same kind (L-MAX) are located to the same side of the critical line
(Fig. 24). This is not the case for the temperature range [Tcrit,pure CO2,
T5 ] where only RBxT is present (Tcrit,pure CO2 is the temperature of
point A in Fig. 22). This happens at two different ranges of
composition (Fig. 7). Although it is not shown in the figures, the
calculated binary critical line originates at the pure CO2 critical
point.

Finally, in the temperature range [TC0, Tcrit,pure CO2] (Fig. 22) RBxT
will be observed for any isothermal section (e,.g., isotherm b in
Fig. 26a), because of the intersections with the LMIN and LMAX-2
lines, at the set temperature (subcritical with respect to Tcrit,pure
CO2).

4.3. Example of a system without double retrograde behavior

Appendix A presents a number of figures for the case of a binary
system not showing double retrograde behavior. Indeed, such
system behaves in a simpler way than the CO2 þ n-decane system.
double retrograde behavior in binary systems for equation of state
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4.4. Step by step summary for the detection of DRB

To fix ideas, we provide in this section a step by step practical
recipe to establish whether an EoS predicts the occurrence of DRB.
We only address in this section the DRBxP case. The DRBxT case has
a step by step procedure analogous to the one for the DRBxP case.
The basic algorithm for the study of the DRBxP is the following:

1. Compute the binary critical line
2. Compute the CCB line
3. Plot (Plot A) the pressure versus x1 projection of the CCB line

(PxCCB-line, x1 ¼ mole fraction of lightest component) together
with the pressure versus x1 projection of the binary critical line.

4. For studying a vaporeliquid equilibrium isopleth of composition
z1:
a. Add to Plot A a vertical line at composition z1 (z1-line)
b. Find the intersection point between the z1-line and the crit-

ical line: point [z1, Pcrit(z1)]
c. Find the intersection points between the z1-line and the

PxCCB-line. Record the pressure values and the number of
intersection points (NIP).
Pleas
mod
i. If NIP ¼ 1 there is no DRBxP
ii. If NIP ¼ 3 there is potential DRB (Pressures: P_LMAX_1,

P_LMAX_2, P_LMIN)
➣ If the set { P_LMAX_1, P_LMAX_2, P_LMIN } has two

pressure values greater than Pcrit(z1), then, there is
DRBxP observable in the P-T projection of the isopleth
of composition z1). Otherwise there is no DRBxP
5. For studying a vaporeliquid equilibrium isobar of pressure P
a. Add to Plot A an horizontal line at pressure P (P-line)
b. Find the intersection point between the P-line and the critical

line: point [x1crit(P), P]
c. Find the intersection points between the P-line and the

PxCCB-line. Record the composition values and the number
of intersection points (NIP).

i. If NIP ¼ 1 there is not DRBxP
ii. If NIP ¼ 3 there is potential DRB (mole fractions:

z1_LMAX_1, z1_LMAX_2, z1_LMIN)
➣ If the set { z1_LMAX_1, z1_LMAX_2, z1_LMIN } has

2mol fraction values greater than x1crit(P), then, there is
DRBxP observable in the T-x1 projection of the isobar of
pressure P. Otherwise there is no DRBxP
We consider the described algorithm to be a straightforward
one. Notice that step 4 can be applied to a range of z1 values, and
step 5 to a range of pressure values.

As stated above, the DRBxT case has a procedure analogous to
that of the DRBxP case. The main differences are that, now, it is the
CCT line the one to be plotted together with the critical line, and
that their temperature versus x1 projections are the ones to be
studied.

5. Conclusions

In this work, a method to determine the ranges of conditions
where (vaporeliquid equilibrium, VLE) double retrograde behavior
(DRB) is present, for a given binary system, as represented by an
equation of state (EoS) model, is proposed. The application of the
newmethod is illustrated for the case of carbon dioxideþ n-decane
modeled by the RKPR EoS coupled to cubic mixing rules (CMRs).
Themethod is based on the computation of cricondenbar (CCB) and
cricondentherm (CCT) lines (each one in a single run) which are
combined with computed critical lines to study the DRB. Plots of
computed binary CCB (Fig. 16) and CCT (Fig. 21) lines, also including
computed critical lines, make possible to evaluate, at a glance,
e cite this article in press as: J.I. Ramello, et al., Direct detection of
els, Fluid Phase Equilibria (2016), http://dx.doi.org/10.1016/j.fluid.20
whether the DRB is present. In this way, the computation of several
VLE isopleths (or of several isobars or isotherms) is avoided. The
high non linearity of the CCB and CCT lines is dealt with by using a
numerical continuation method.

The case where a CCB or CCT line ends due to the instability of
the liquid phase (liquideliquidevapor equilibrium) was not
considered in this work. This will be the matter of future work.
Acknowledgments

We are grateful, for their financial support, to Consejo Nacional
de Investigaciones Científicas y T�ecnicas de la República Argentina
(CONICET), Universidad Nacional del Sur (U.N.S., Arg.), Universidad
Nacional de C�ordoba (U.N.C., Arg.) and Agencia Nacional de
Promoci�on Científica y Tecnol�ogica (ANPCyT, Arg.).
Appendix A. A system without double retrograde behavior

This appendix presents calculation results for the system
propane þ n-octane, as represented by the model indicated in the
caption of Fig. A-1.

Fig. A-1 presents in the P vs T plane the calculated critical and
CCB lines, and calculated phase envelopes at three different satu-
rated phase propane mole fraction values. Points 1 and 2 are
isopleth CCB points: both points belong to the CCB line. Points 3 and
4 are isopleth critical points which indeed belong to the critical line.
Point A is simultaneously a CCB point and a critical point: the CCB
and critical lines meet at point A.

Fig. A-1. Calculated PressureeTemperature projections of CCB, critical and pure
compound vapor pressure lines, and calculated set of isopleths. Propane þ n-octane
system (Type I in Scott and van Konynenburg classification [25,26]). Point B: Critical
point of pure n-octane. Point C: Critical point of pure propane. All lines were calculated
using the RK-PR EoS and quadratic mixing rules with parameters k12 ¼ 0.01443 and
l12 ¼ �0.03298 obtained from Ref. [27]. XC3: isopleth propane mole fraction.

Fig A-2 shows the projection Pressure vs. saturated phase pro-
pane mole fraction for the calculated critical and CCB lines. Since a
vertical line at any set composition (isopleth) intersects the CCB
line only once, this binary system shows no DRBxP. The same
conclusion is reached by considering horizontal lines at any set
pressure value (isobar).
double retrograde behavior in binary systems for equation of state
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Fig. A-2. Calculated Pressureepropane mole fraction in saturated phase projections of
CCB and critical lines. Propane þ n-octane system. See caption of Fig. A-1.

Fig. A-3 is analogous to Fig. A-1. It presents the CCT line instead
of the CCB line. Points 1, 2 and 3 are isopleth CCT points inter-
connected by the CCT line. Points D, E and F are spurious (only
apparent) intersection points between the CCT line and the
isopleths.

Fig. A-3. Calculated PressureeTemperature projections of CCT, critical and pure
compound vapor pressure lines, and calculated set of isopleths. See caption of Fig. A-
1.

Fig. A-4 shows the calculated Temperature e propane mole
fraction in saturated phase projections of CCT and critical lines.
Vertical lines at constant composition (isopleth) would lead to the
conclusion of absence of DRBxT due to existence of just a single
intersection point between the vertical and CCT lines. The same
conclusion would be obtained by considering horizontal lines at
constant temperature (isotherms).

In conclusion, none of the two DRB types (DRBxP, DRBxT) is
presented by the propane þ n-octane system, which therefore
behaves in a much simpler way than the CO2 þ n-decane system,
considered in the main text of this paper.
Please cite this article in press as: J.I. Ramello, et al., Direct detection of
models, Fluid Phase Equilibria (2016), http://dx.doi.org/10.1016/j.fluid.20
Fig. A-4. Calculated Temperature e propane mole fraction in saturated phase pro-
jections of CCT and critical lines. See caption of Fig. A-1.
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