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Article history: This study explores the relationship between ecomorphology and trophic segregation in
Received 13 January 2016 four closely related sympatric fish species (Teleostei, Sciaenidae) that are known to differ
Accepted after revision 20 July 2016 in their trophic habits. Only adult specimens were analyzed: 103 Cynoscion guatucupa, 77
Available online 23 August 2016 Pogonias cromis, 61 Micropogonias furnieri, and 48 Menticirrhus americanus. The four
species presented divergent ecomorphological traits related to swimming agility, prey
Keywords: spotting and capture, and the potential size of prey they were able to swallow. Results
Functional morphology suggest that these sciaenid species can partition the food resources, even though they
Gut content completely overlap in space. Differences in their ecomorphological traits appear to
Diet correlate closely with the diet and consequently could explain the trophic differentiation

Coexistent species

S observed. Arguably, these ecomorphological differences play a significant role in the
Resource partitioning

coexistence of the adults of these sympatric fish species.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RESUME
Mots clés : Cette étude explore la relation entre I'’écomorphologie et la ségrégation trophique chez
Morphologie fonctionnelle quatre espéces sympatriques de poissons proches (Teleostei, Sciaenidae), connus pour
Contenu de I'intestin différer dans leurs habitudes trophiques. Seuls les spécimens adultes ont été analysés : 103

Diéte
Espéces coexistantes
Partage des ressources

Cynoscion guatucupa, 77 Pogonias cromis, 61 Micropogonias furnieri et 48 Menticirrhus
americanus. Ces quatre espéces présentent des traits écomorphologiques divergents liés a
I'agilité au niveau de la nage, au repérage des proies et a leur capture, ainsi qu’a la taille
potentielle des proies qu’elles étaient capables d’avaler. Les résultats suggérent que ces
sciénidés peuvent partitionner les ressources alimentaires, méme s'ils se chevauchent
complétement dans I'espace. Les différences dans leurs traits écomorphologiques
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semblent en corrélation étroite avec le régime alimentaire et, par conséquent,
pourraient expliquer la différenciation trophique observée. Sans doute, ces différences
écomorphologiques jouent un role significatif dans la coexistence des adultes de ces
espéces de poissons sympatriques.

© 2016 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

Food is a key resource for living organisms given that
energy intake regulates individual growth, survival,
reproductive fitness and mortality rates [1,2]. Fish differ
in their diet compositions and/or in their space/time
distribution to reduce competition for resources [3]. In
many cases, related species may coexist in a given natural
community through several processes that make the
coexistence of these potential competitors long-term
sustainable [4]. Partitioning of resources involves diffe-
rences in morphology both internal and external, as well as
foraging behaviors [5]. Strategies used by related groups of
animals to exploit resources are of great interest in
ecological sciences. Many of the behavior patterns and
morphological adaptations of fish species have evolved in
response to the necessity of food capture, the requirements
of reproduction and predator avoidance [6,7]. Most of the
mechanisms that fish employ for feeding represent
adaptations that enable them to take advantage of
particular types of prey [8]. Research on the relationship
between morphological diversity and interspecific compe-
tition for food resources is a key issue in studies involving
ecomorphology and evolution [9-11]. This discipline
employs a variety of morpho-biometric indexes, known
as ecomorphological traits, to predict feeding patterns and
habitat use of fish species [12-14].

In marine fishes, individuals tend to concentrate in
estuarine and coastal areas, where they can take advantage
of the high abundance of food resources [9]. Estuaries are
particularly heterogeneous environments that connect
freshwater and marine systems. These estuarine areas are
highly productive and exhibit substantial variation in
biotic (e.g., predators, competitors) and abiotic parameters
(e.g., salinity, temperature) that likely influence resource
availability [15]. Just as resources vary within and between
estuaries, so does the feeding strategy used to acquire
different prey, and this represents challenges to fishes
[16]. Sciaenidae is a highly diverse family of about
283 shallow-water species, usually occurring near conti-
nental regions [17]. Several sciaenid species enter estuar-
ies due to their high adaptability to the fluctuating physical
conditions (temperature, salinity, turbidity and dissolved
oxygen) in these habitats [18,19]. In Argentina, sciaenids
are distributed from 34° South to 41° S and are the most
abundant species in the coastal waters of Buenos Aires
province [20]. Four species are commonly captured in Mar
Chiquita Coastal lagoon: Cynoscion guatucupa, Pogonias
cromis, Micropogonias furnieri and Menticirrhus americanus
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670, 8000 Bahia Blanca, Argentina.
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[21,22]. The later three species are commercially impor-
tant resources for the coastal fisheries of Argentina,
Uruguay and southern Brazil [23-26]. In Southwestern
Atlantic waters, juveniles of C. guatucupa feed on mysids
and penaeid shrimps, and shifts its diet to fish as it
develops into adulthood [27-30]. Adults of M. furnieri
based the diet mostly on decapod crustaceans and
polychaetes, while juveniles feed on copepods and small
polychaetes [31,32]. Trophic ecology of P. cromis has been
studied in the Gulf of Mexico [33-35] and in Mar Chiquita
coastal lagoon, Argentina [36], and it is composed by
brachyurans and bivalve mollusks. Lastly, M. americanus
has been studied in the coasts of Brazil and Mexico where it
feeds on brachyurans, amphipods, polychaetes and,
occasionally, mollusks [37-40], but no information on
the diet of this species exists in Argentina.

Morphology is expected to influence diet of fish on a
short-time scale, but on intermediate or longer time scales,
diet may influence morphology through phenotypic
plasticity or natural selection [13,41-45]. Giberto [46]
explored the role of internal structures in the trophic
relationships of the sciaenids M. furnieri, Paralonchurus
brasiliensis, M. americanus, C. guatucupa, Macrodon ancylo-
don, and Umbrina canosai from Rio de la Plata estuary.
Trophic segregation between these species was explained,
among other variables, by the differences in their internal
morphology [46]. Although fish species present variations
in their internal anatomy in relation to feeding type, these
differences are small and, in general, highly invariable
[18,47]. Therefore, external morphological differences can
produce more meaningful results in ecomorphological
studies [48]. In this context, the purpose of this study was
to answer the following questions: (1) Is there any
quantifiable ecomorphological variation among
C. guatucupa, P. cromis, M. furnieri and M. americanus that
can be related to mechanism of trophic partitioning? If so,
(2) which ecomorphological attribute are correlated to
differences in diet composition? Our hypothesis is that
ecomorphological traits related to detection and capture of
prey, vary among the four sympatric sciaenid species and
that this variation can explain the differences observed in
their diets.

2. Material and methods
2.1. Study area and field sampling

The study was carried out in Mar Chiquita coastal
lagoon (Argentina; 37° 32'-37° 45’ S and 57° 19'-57° 26’
W) which is a 25-km-long temperate shallow estuary
covering an area of 46 km?. The available literature on the
fish communities of Mar Chiquita lagoon suggests that the
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Cynoscion guatucupa
Size: 351 mm TL

Pogonias cromis
Size: 399 mm TL

Micropogonias furnieri
Size: 360 mm TL

Menticirrhus americanus
Size: 304 mm TL

Fig. 1. Four species of Sciaenidae captured in Mar Chiquita coastal lagoon.

area is likely important as nursery ground for marine and
freshwater species [21,22,49]. Sampling was carried out
monthly between April 2008 and June 2011, near to the
mouth of the lagoon in the sea. All specimens were
captured using 25m long and 2 m wide gill-nets with
120 mm, 68 mm and 57 mm stretch mesh sizes. Due to the
fishing method employed, fish were retrieved dead from
the nets. Fish collection permits were given by the Ministry
of Agriculture — Ministerio de Asuntos Agrarios, province of
Buenos Aires (www.maa.gba.gov.ar).

The sample comprised four sciaenid species (Fig. 1).
Adult specimens of sizes above length of first maturity
(according to Cervigon [50], Cousseau and Perrotta [20],
Macchi et al. [51] and [52]) were used for the analyses of
both diet and ecomorphology, in order to avoid ontoge-
netic variations. A total of 289 adult specimens was
measured and their stomach contents examined:
103 C. guatucupa, with a size range of 328-565 mm total
length (TL) and mean+SD of 436.3+71.9mm TL; 77
P. cromis: TL size range=330-623mm and TL
mean +£SD=457.9+84.6 mm; 61M. furnieri: TL size

range = 332-557 mm and TL mean + SD =402.6 4+ 58.9 mm;
and 48 M. americanus: TL size range =216-323 mm and TL
mean =+ SD =279 + 30.2 mm.

2.2. Do ecomorphological traits differ between species?

Ten external morphometric traits, related to foraging
activity and prey capture, were measured: standard length,
body height, body width, head length, eye diameter, caudal
peduncle length, caudal peduncle height, caudal peduncle
width, and mouth height and width. All measurements
were taken to the nearest millimeter with a digital caliper.
Both inter- and intra-specific size dependent differences
were eliminated following Cussac et al. [53] and Milano
et al. [54]. All measurements were adjusted to mean Lg
using the relationship:

AM; = log (OM;) — b [log (Ls;) — meanlog (Ls)]
where AM; and OM; are the adjusted and original measures

for the character in the individual i, Lg; is the individual
standard length and b is the regression coefficient of the
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logarithm of OM and the logarithm of Ls. The constancy of b
over the size range was assessed through double logarith-
mic scatter plots of AM vs. Ls.

Based on the adjusted morphometric measurements,
8 ecomorphological attributes were calculated to each
species, which were chosen according to the criteria
proposed by Colborne et al. [55], Gatz [56], Gibran [4],
Helfman et al. [57] and Winemiller [58]:

e compression index (CI): body height divided by body
width. Higher values indicate a laterally compressed fish
and this is positively related to swimming speed;

e relative body height (RBH): body height divided by
standard length. Lower values are directly related to the
capacity of making vertical turns. High RBH values
suggest greater lateral maneuverability;

o relative length of the caudal peduncle (RLP): caudal

peduncle length divided by standard length. High RLP is

associated with increased swimming endurance;
caudal peduncle compression index (CPC): caudal
peduncle height divided by caudal peduncle width.

Higher values of CPC are associated with a slow

swimming;

relative head length (RHL): head length divided by

standard length;

relative mouth height (RMH): mouth height, when fully

opened, divided by standard length;

relative mouth width (RMW): mouth width when fully

opened, divided by standard length. High values of RMH

and RMW, like RHL, imply the ability to capture larger
prey;

relative eye diameter (RED): eye diameter divided by

standard length. A high RED value is directly correlated

to prey detecting visual capacity.

Ecomorphological attributes were compared among
species by means of Discriminant Function Analyses (DFA).
This multifactorial analysis allowed the determination of
which combination of variables discriminated best among
species and detected which of them were the most
different [59]. The assumptions of DFA were previously
tested according to Zuur et al. [60].

Table 1

2.3. Does diet differ between species?

The stomach contents of each specimen were removed
and stored at -20 °C for subsequent analyses. Prey items
were identified under a stereomicroscope to the lowest
taxonomic level using reference guides [20,61]. For each
individual, the dietary items were weighed (+0.01 g) and
split in 7 categories for the statistical analyses: teleosts,
peneids, bivalves, brachyurans, amphipods, isopods and
polychaetes according to Wainwright and Richard [45].

In order to characterize the diet of the four fish species,
the percentage frequency of occurrence of each prey
category was calculated [62]. Discrimination among
species by their diet composition was determined using
a DFA [59]. To perform the DFA, the transformation log
(n+1) on the weight of each prey category found in the
stomach of each specimen was used. The assumptions of
DFA were previously tested according to Zuur et al. [60].

2.4. Are ecomorphological traits related to diet?

Canonical correspondence analysis (CCA) was used to
assess the relationship between ecomorphological traits
and diet composition [59]. This method relates two data
matrices, one of ecomorphological attributes of each
individuals and the other of weight of prey items from
the same samples. This method also correlates the
responses between them. If the correlation between the
two data matrices is statistically significant, it would
conclude that both are related [59].

Finally, the relation of each ecomorphological attribu-
tes and weight of each trophic item was tested with a
Pearson correlation test. The Pearson correlation coeffi-
cient measures the strength of the linear relationship
between two variables [60]. Correlation was considered
when the slope was significantly different from 0
(P <0.05).

3. Results
3.1. Ecomorphology traits variability

The Discriminant Analysis (DFA) among species based
on the 8 ecomorphological attributes showed highly

Ecomorphological attribute differences among the four sciaenids species. Standardized canonical discriminant functions 1 to 3 (DF1 to DF3), variance
explained, Wilks’ Lambda, significance (P) and canonical correlation. In bold, the highest contribution of each ecomorphological attribute to the five

discriminant functions.

Ecomorphological attribute DF1 DF2 DF3
Relative mouth width (RMW) -1.287 -0.358 -0.763
Relative mouth height (RMH) -0.452 0.224 -0.542
Relative head length (RHL) 2.728 -0.649 0.453
Relative eye diameter (RED) -0.154 0.290 -0.512
Relative body height (RBH) 0.522 -0.941 -0.238
Compression index (CI) -0.677 0.335 -0.002
Relative length of the caudal peduncle (RPL) 1.196 0.684 -1.009
Caudal peduncle compression index (CPC) -0.068 -0.001 0.555
Variance explained (%) 88.44 9.84 1.72
Total variance explained (%) 88.44 98.28 100
Wilks’ lambda 0.004 0.112 0.638
P-level < 0.001 < 0.001 < 0.001
Canonical correlation 0.983 0.909 0.602
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Fig. 2. Discriminant function 1 (DF1) versus discriminant function 2
(DF2) for ecomorphological attributes of Cynoscion guatucupa (A),
Pogonias cromis (M), Micropogonias furnieri (O0) and Menticirrhus
americanus (@). Compression index (CI), relative body height (RBH),
relative length of the caudal peduncle (RPL), caudal peduncle
compression index (CPC), relative head length (RHL), relative mouth
height (RMH), relative mouth width (RMW), relative eye diameter (RED).

Table 2
Squared Mahalanobis distance (D?) among four sciaenid species, F-value
to 8 and 278 d.f., and significance (P).

Species combinations D? F-value P-level

Cynoscion guatucupa x Pogonias 108.39 582.34 < 0.001

cromis
C. guatucupa x Micropogonias 101.29 473.15 < 0.001
furnieri
C. guatucupa x Menticirrhus 195.40 780.07 < 0.001
americanus
P. cromis x M. furnieri 25.46 83.40 0.007
P. cromis x M. americanus 58.10 209.46 0.002
M. furnieri x M. americanus 18.51 76.80 0.006

significant interspecific differentiation (Wilk’s A =0.037; F
24,806 =199.07; P < 0.001) and provided three significant
discriminant functions (Table 1). These three functions
together correctly classified 99.31% of the 289 individuals
in their respective species. The first discriminant function
(DF1) contributed 88.44% of the total variation and was
principally correlated with four ecomorphological attri-
butes related with body and head shape: RMW, RMH, RHL
and RED. The second discriminant function (DF2) accoun-
ted for 9.84% of the total variation. In DF2, three
ecomorphological characteristics showed the greatest
effect: RBH, CI and RLP. The third discriminant function
(DF3) only contributed 1.72% of the total variation and
showed major correlation with CPC (Table 1).

Based on DF1 and DF2 (Fig. 2), and according to squared
Mahalanobis’ distances (D?) (Table 2), four groups
corresponding each to one species could be identified.
Moreover, the analysis was able to distinguish the
intermediate position of the M. furnieri specimens (Fig. 2).

The distribution of the specimens (Fig. 2) and the
correlation of ecomorphological attributes (Table 1) with

Table 3
Percentage frequency of occurrence of each prey category of four sciaenid
species.

Prey items Cynoscion  Pogonias  Micropogonias Menticirrhus
guatucupa  cromis furnieri americanus

Teleosts 82.91 11.48

Bivalves 46.75 18.03

Brachyurans 77.92 29.51 56.25
Peneids 37.69 16.39

Amphipods 4.52 22.95 18.75
Isopods 2.51 18.03 14.58
Polychaetes 2.01 3.89 36.07 47.92

DF1 and DF2, allowed the identification of key ecomor-
phological characteristics for each species. C. guatucupa
was characterized by having a laterally compressed body
and head, and a relatively large eye and mouth. P. cromis
was characterized by having a relatively tall body and
M. americanus had a relatively long caudal peduncle.
M. furnieri showed intermediate values of mouth and head
size, fusiform body and intermediate values on caudal
peduncle length.

3.2. Diet composition variability

In terms of occurrence, the most frequent prey in the
diet of C. guatucupa were teleosts, followed by penaeids.
P. cromis fed mainly on brachyurans, and less frequently on
bivalves. M. furnieri presented a broader trophic spectrum,
with polychaetes, brachyurans and amphipods as the most
frequent prey items. Lastly, brachyurans and polychaetes
were the most common items found in the gut contents of
M. americanus (Table 3).

The DFA among species based on the diet composition
showed a significant differentiation (Wilk’s A =0.231; F 21,
793=25.11; P<0.001) and provided two significant
discriminant functions (Table 4). Predictive classification
of individuals showed that 70.63% of them were correctly
classified in their respective species. The DF1 accounted for
66.20% of the total variation and was associated with the
consumption of teleosts, peneids and brachyurans. In turn,
bivalves, polychaetes, amphipods and isopods were largely
associated with DF2 that contributed 29.11% of the total

Table 4

Prey item differences among the four sciaenids species. Standardized
canonical discriminant functions 1 to 3 (DF1 to DF3), variance explained,
Wilks’ Lambda, significance (P) and canonical correlation. In bold, the
highest contribution of each prey item variable to the five discriminant
functions.

Prey item DF1 DF2 DF3
Teleosts 0.774 -0.064 0.412
Peneids 0.494 0.007 0.315
Brachyurans -0.410 -0.301 0.230
Bivalves -0.363 -0.774 -0.371
Polychaetes -0.144 0.551 0.118
Amphipods -0.100 0.541 0.363
Isopods -0.067 0.596 0.422
Variance explained (%) 68.20 29.11 2.69
Total variance explained (%) 68.20 97.31 100
Wilks’ lambda 0.231 0.359 0.908
P-level < 0.001 < 0.001 0.063
Canonical correlation 0.866 0.620 0.302
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Table 5
Squared Mahalanobis distance (D?) among four sciaenid species, F-value
to 7 and 276 d.f,, and significance (P).

Species combinations D? F-value P-level
Cynoscion guatucupa x Pogonias 8.12 50.05 < 0.001
cromis
C. guatucupa x Micropogonias 7.07 37.48 < 0.001
furnieri
C. guatucupa x Menticirrhus 5.39 23.98 < 0.001
americanus
P. cromis x M. furnieri 5.41 25.49 0.005
P. cromis x M. americanus 4.20 20.01 0.037
M. furnieri x M. americanus 2.32 8.43 0.071
10
<
8
6 <

Micropogonias furnieri

DF2

Menticirrhus
americanus
0 ()

Cynoscion guatucupa

‘2 : 24
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A cromis
4
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Fig. 3. Discriminant function 1 (DF1) versus discriminant function 2
(DF2) for prey items of Cynoscion guatucupa (A), Pogonias cromis (W),
Micropogonias furnieri (O0) and Menticirrhus americanus (@).

variation. The DF3 only contributed 2.69% of the variation
(Table 4).

Significant differences in diet composition among same
species were found. C. guatucupa was separated from
P. cromis and this species was clearly differentiated from
M. furnieri and M. americanus. However, a separation
between M. furnieri and M. americanus was not observed
(Table 5). The resulting categorization of the individuals on
the basis of the DF1 and DF2 showed again a remarkable
separation of C. guatucupa from P. cromis and of M. furnieri
and M. americanus from the other two species (Fig. 3).

Overall, the DFA and D? separated C. guatucupa, which
feed mainly on teleosts and peneids, from P. cromis that
forage on brachyurans and bivalves, and from both
M. furnieri and M. americanus, which consume polychaetes,
isopods and amphipods.

3.3. Relation between ecomorphology traits and diet

The CCA explained 95.17% of the total variability found
in the relationship between ecomorphological attributes
and prey items, and showed highly significant correlation
between them (r=0.843; X? (56)=342.79; P < 0.001).

Correlation and significance test between each eco-
morphology attributes and prey items are shown in

Fig. 4. The consumption of teleosts and penaeids was
positively correlated with CI, RMH, RMW and RED, but
negatively correlated with RBH and RLP. This indicates that
species with laterally compressed body and relatively
larger mouths fed on teleosts and penaeids. On the other
hand, the consumption of brachyurans and bivalves were
correlated negatively with RHL, RMH and RMW, and
positively with RBH. These correlations indicated that fish
species characterized by a tall body and a short head with a
small mouth fed on brachyurans and bivalves. The
consumption of amphipods, isopods and polychaetes were
positively correlated with RLP and negatively correlated
with CI, RMH and RMW, providing evidence that fish
species with long caudal peduncle, slightly compressed
body and a relatively small mouth preyed on these items
(Fig. 4).

4. Discussion

Predation has three general components: prey search,
capture and processing. Prey search may influence overall
body shape to optimize mobility and energetic cost of
swimming in a given habitat, while capture and processing
are tightly related to head and jaw morphology [63]. In our
study, C. guatucupa, P. cromis, M. furnieri and M. americanus
diverged mainly in ecomorphological traits related to
swimming ability, prey spotting and capture, and the size
of prey that fish is able to swallow. Despite that the four
species are closely related, we were able to differentiate
two trophic groups. One group, characterized by demersal
and pelagic feeding habits, was composed by C. guatucupa,
whose diet consisted mainly of peneids and teleosts. The
other group, with benthic feeding habits, was composed by
M. furnieri, M. americanus and P. cromis, whose diet
consisted mainly of brachyuran crabs.

Similarly with our results, Zarate-Hernandez et al. [47]
found that Micropogonias undulatus at the Gulf of Mexico
feeds mainly on copepods and has a small mouth, whereas
Cynoscion arenarius possess a much bigger mouth and
feeds on larger prey, such as decapods and fish. This
phenomenon is not restricted to sciaenids. The feeding
habits of two sympatric pair species (Mullus barbatus-
M. surmuletus and Serranus cabrilla-S. hepatus) also were
related with the morphology of their feeding apparatus
[7]. Hugueny and Pouilly [64] correlated the diet and
morphology of 18 species of distantly related fishes from
West Africa. Pouilly et al. [65] concluded that species
morphology influences diet, even beyond taxonomic
barriers in a study of dietary-morphological relationships
of 48 species of fish in the Amazon. In summary, the
published literature, coinciding with our findings, suggests
that there is a significant relationship between diet and
morphology leading to the conclusion that species having
similar diet tend to converge for some morphological
attributes, allowing for niche segregation in coexisting
species.

C. guatucupa presented the greatest difference, both in
ecomorphological traits and diet composition, from the
other three sciaenid species. This species was character-
ized as a carcinophage and ichthyophage predator, with
eyes and mouth bigger than the remaining species studied.
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Fig. 4. Correlation between ecomorphology attributes and prey items. P: probability of the test; CI: compression index; RBH: relative body height; RPL:
relative length of the caudal peduncle; CPC: caudal peduncle compression index; RHL: relative head length; RMH: relative mouth height; RMW: relative
mouth width; RED: relative eye diameter.

Piscivorous feeding fish are hypothesized to have a slender
body, which is supposed to reduce drag during fast
acceleration while attacking fish prey [13]. C. guatucupa
showed many of these traits, with a relatively large head
and mouth, and a compressed body, indicating that it feeds
on large prey, and possesses a good swimming speed
[12]. Additionally to the external ecomorphological traits
described in our work, C. guatucupa possess a low number
of pyloric caeca, thin pharyngeal jaws with conical teeth
[46]. These internal morphological traits also indicate a
piscivorous feeding mode. Mouth position, in terms of

whether the mouth angles up, ahead, or down, also
correlates with trophic ecology in many fishes [57].

As other congeners (e.g., C. regalis and C. nannus),
C. guatucupa has a terminal mouth (which means that the
body ends in a mouth that opens forward), with a
prominent lower jaw, canine-like teeth and a pair of big
fang-like canines on the upper jaw’s frontal region, that
allows for an adequate prey capture [50]. Predatory fish are
faced with a tradeoff between mouth size, and swimming
speed and agility, which results in morphological and
dietary differences [4]. Small fishes with fairly hydrody-
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namic bodies, forked tails, limited dentition and protractile
mouths, that form a circle when open, are in all likelihood
zooplanktivores. Conversely, large robust deep-bodied
fishes with long jaws studded with sharp teeth, for holding
prey, and with broad tails are piscivores [57]. We have
observed such phenomenon in C guatucupa: adult
individuals had a more compressed body, allowing a
faster and more agile swimming, therefore enabling them
to capture fish, a prey that was not eaten by juvenile
individuals [27].

P. cromis is found on the other side of the spectrum,
exhibiting all the typical morphological characteristics of a
benthic feeder, i.e. small mouth, short head, and a
relatively deeper body that allow these fish to better
survey the seabed [4]. Fishes that feed on hard-bodied
prey, such as mollusks and crabs, often have teeth and jaw
characteristics that enable the activities of capturing and
processing prey, respectively [57]. P. cromis presents
numerous small villiform teeth [66], subterminal mouth
[20] and sensitive barbs [67]. It also has a tall head to
accommodate the pharyngeal muscles. In addition, the
presence of mollariform teeth that are located posteriorly
in pharyngeal jaws, are used to crush and grind hard-
shelled prey [68]. Accordingly, we found that P. cromis
feeds mainly on mollusks and crabs, as its morphological
characteristics would predict.

M. furnieri and M. americanus preyed on a variety of
pelagic, demersal and benthic organisms. Both presented a
set of morphological characteristics that are intermediate
between C. guatucupa and P. cromis (i.e. smaller head and
mouth than C. guatucupa and shorter body than P. cromis).
The morphology for M. furnieri and M. americanus can be
explained on the basis of their diets, which vary among prey
with different habitats, as was observed in other studies
[31,32,37,39,69] and also supported by their similar internal
morphology (i.e. number of pyloric caeca and strength
pharyngeal jaws) [46]. According to Horn [70], generalist
species have broad morphological variations, probably
related to the lack of specialization that characterizes them.
Along its ontogenetic development, these species must feed
on planktonic organisms and then shift their spectrum to
demersal and benthic prey, with a versatile morphology in
order to capture both infaunal and mobile prey [46]. Other
sciaenid species also switch from different type of resources,
presenting several strategies and shapes along their
ontogenetic development, from juveniles to adults
[18]. The relatively long caudal peduncle of M. americanus
is an unexpected ecomorphologic trait because it is neither
an active swimming predator nor it feeds on large prey
[37]. Consequently, this morphological trait did not present
any correlation with the diet of this species.

In conclusion, this study has shown that the four
sciaenid species studied can significantly partition the food
resources, even though they completely overlap spatially.
These sciaenids presented divergent ecomorphological
traits, which could minimize competition with each other,
representing an evolutionary advantage [71]. Evolutionary
pressure operates on the morphology, generating adapta-
tions that make resource partitioning possible, thus
reducing competition [12]. Differences in their ecomor-
phological traits appear to correlate closely with diet and

consequently could explain this trophic segregation. This
seemingly contribute to the coexistence of the adults of
these sympatric fish species in Mar Chiquita coastal
lagoon, as well as in other regions.
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