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In silico study of heterogeneous 
tumour‑derived organoid response 
to CAR T‑cell therapy
Luciana Melina Luque  1*, Carlos Manuel Carlevaro 2,3, Enrique Rodriguez‑Lomba 4 & 
Enrique Lomba 5

Chimeric antigen receptor (CAR) T-cell therapy is a promising immunotherapy for treating cancers. 
This method consists in modifying the patients’ T-cells to directly target antigen-presenting cancer 
cells. One of the barriers to the development of this type of therapies, is target antigen heterogeneity. 
It is thought that intratumour heterogeneity is one of the leading determinants of therapeutic 
resistance and treatment failure. While understanding antigen heterogeneity is important for effective 
therapeutics, a good therapy strategy could enhance the therapy efficiency. In this work we introduce 
an agent-based model (ABM), built upon a previous ABM, to rationalise the outcomes of different 
CAR T-cells therapies strategies over heterogeneous tumour-derived organoids. We found that one 
dose of CAR T-cell therapy should be expected to reduce the tumour size as well as its growth rate, 
however it may not be enough to completely eliminate it. Moreover, the amount of free CAR T-cells 
(i.e. CAR T-cells that did not kill any cancer cell) increases as we increase the dosage, and so does the 
risk of side effects. We tested different strategies to enhance smaller dosages, such as enhancing the 
CAR T-cells long-term persistence and multiple dosing. For both approaches an appropriate dosimetry 
strategy is necessary to produce “effective yet safe” therapeutic results. Moreover, an interesting 
emergent phenomenon results from the simulations, namely the formation of a shield-like structure 
of cells with low antigen expression. This shield turns out to protect cells with high antigen expression. 
Finally we tested a multi-antigen recognition therapy to overcome antigen escape and heterogeneity. 
Our studies suggest that larger dosages can completely eliminate the organoid, however the multi-
antigen recognition increases the risk of side effects. Therefore, an appropriate small dosages 
dosimetry strategy is necessary to improve the outcomes. Based on our results, it is clear that a proper 
therapeutic strategy could enhance the therapies outcomes. In that direction, our computational 
approach provides a framework to model treatment combinations in different scenarios and to explore 
the characteristics of successful and unsuccessful treatments.

Chimeric antigen receptor (CAR) T-cell therapy is a promising new immunotherapy that combines advances 
in cellular engineering and personalised medicine for patient-specific, targeted cancer treatment. This therapy 
involves collecting, purifying, and genetically modifying a patient’s own T-cells to express a CAR that specifically 
targets the patient’s tumour. These engineered cells are expanded ex vivo and then re-infused into the patient 
where the CAR T-cells target and kill antigen-expressing tumour cells1–3. So far, the FDA-approved CAR T-cell 
therapies and many studies expanding CAR designs exclusively target “liquid” cancers, against which they have 
shown great success in the clinic with response rates between 70–90%4. In contrast, response rates for solid 
cancers are significantly lower ranging from 4–16%4.

One of the barriers to the development of effective cellular therapies in solid tumours, specifically CAR 
T-cells, is target antigen intratumour heterogeneity4,5. Intratumour heterogeneity (also known as intralesion 
heterogeneity) refers to distinct tumour cell populations with different molecular and phenotypic profiles 
within the same tumour specimen6,7, and it is associated with poor prognosis and outcome8–11. It is thought that 
intratumour heterogeneity is one of the leading determinants of therapeutic resistance and treatment failure 
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and one of the main reasons for poor overall survival in cancer patients with metastatic disease7,12. tumour 
heterogeneity has presented a considerable challenge to matching patients with the right treatment at the right 
time; therefore, it is a considerable handicap when it comes to accomplish the goals of precision medicine13,14.

One strategy to overcome antigen escape and heterogeneity is through the use of a multi-antigen recognition 
circuit involving complementary antigens15,16. One example of this is the syn-Notch receptor, which uses an 
engineered transmembrane receptor to induce expression of a tumour-specific CAR in response to recognition 
of an extracellular signal16,17. However, since tumour cells share antigens with other non-cancerous cells in the 
human body, to target the antigen that is specific to tumour cells and avoid normal human tissue has been a 
crucial challenge for the development of cellular therapies. While strategies such as those based on syn-Notch 
receptors are promising, great care has to be taken to find therapy strategies that will both be effective and 
minimally toxic to the patient.

Due to the interpatient variability and the genomic landscape of the disease, determining the outcome of 
therapies is not feasible in clinical settings. Instead, ex vivo models including classical monolayer cell culture18 and 
patient-derived xenografts19 have been used to study the effect of different treatments. In this regard, traditional 
cell culture models have had limited success because of their inability to recreate the complex interactions 
between the different cell types and the extracellular matrix (ECM). Although animal models have the advantage 
of providing the native three-dimensional (3D) microenvironment and multiorgan interactions, these models 
often fail to predict human responses to drugs as they do not accurately mimic human pathophysiology or the 
immune system.

Emerging advanced microengineering methods, including 3D cell culture platforms, have enabled scientists 
to develop new treatment strategies20,21. In this regard, as one of the powerful 3D tissue models, organoids offer 
a great opportunity to increase the scientific understanding of complex biology in a pathophysiological relevant 
condition22,23. Organoids have been used to establish living biobanks of cancer and normal tissues that preserve 
the genetic and functional heterogeneity among patients24,25. Moreover, tumour-reactive T-cells can be selectively 
expanded in co-culture with tumour organoids to study tumour-immuno interaction26,27.

However, exploring the multidimensional design space becomes prohibitively expensive and laborious, 
particularly when considering the time and resources required. Additionally, some design aspects and emergent 
properties are difficult to probe experimentally, such as cell-level behavioural states that impact treatment 
efficacy28. Employing in silico experiments has proven to be a resource-saving and valuable way to understand 
how underlying biological processes impact CAR treatment outcome and hypothesising new design features to 
improve efficacy29.

Within this broad context, a widely used modelling paradigm in the study of complex biological systems 
is the agent-based model (ABM)30,31. ABMs are implemented mainly to simulate the actions, behaviours and 
interactions of autonomous individual or collective entities, with the aim of exploring the impact of an agent or 
a type of behaviour in the system. An agent is the smallest unit in this model, and it can exhibit different types of 
behaviour, including interaction with other agents. Although these models simplify many aspects of reality, they 
have been shown to be extremely useful in a wide number of circumstances32–34. In cancer research, these models 
are emerging as valuable tools to study emergent behaviour in complex ecosystems35, and are used to study the 
mutational landscape of solid tumours36,37. Furthermore, they are increasingly used to optimise therapies, for 
example radiation therapy of solid tumours38. In immunotherapy, some models of immune-cell interactions have 
been proposed29,39,40. In particular, ABM that capture the temporal dynamics of effector T-cells and cancer cells 
during tumour progression in immune checkpoint inhibitors therapy40,41, are of great interest due to the similar 
characteristics that effector T-cells and CAR T-cells display. After primed in the lymph node, tumour neoantigen-
specific naïve T-cells differentiate into effector T-cells, which can be recruited to tumour. These effector cells 
begin to exert their cytotoxic activity upon recognizing their antigen target in the tumour microenvironment. 
Some models also address the CAR T-cells interaction with immune cells, in order to investigate how clinically 
relevant design choices and inherent tumour features impact treatment outcomes28,42. Although these studies 
gave important insight into parts of the tumour-immune interaction, they do not fully investigate therapeutic 
strategies on heterogeneous tumours. By adjusting model parameters and simulation rules, the characteristics 
of successful and unsuccessful treatments can be explored to learn how therapy outcomes vary with a patient’s 
tumour characteristics43–45. Cancer immunotherapy could thus benefit from simultaneously employing molecular 
approaches (what medicinal chemistry can be employed to target specific molecular biology?) and multicellular 
systems-level approaches (what therapy protocol will lead to the best cancer control and induce remission?).

This work introduces a computational multiscale agent-based model to study immunosurveillance against 
heterogeneous tumour derived organoids, with a special focus on the spatial dynamics of stochastic tumour-
immune contact interactions. It could predict the organoid response to different therapeutic strategies in order 
to discern whether a tumour is likely to respond to treatment or not. The model can be adjusted to reflect specific 
types of cancer to enable quantitative predictions of therapy-biomarker combinations and to be used as a platform 
for conducting virtual clinical trials.

Results
Less is better: increasing cellular dosage does not always increase efficacy
An important aspect of the CAR T-cell treatment is antigen selection. Since cancer share antigens with other 
non-cancerous cells in the human body, one of the major considerations when administrating CAR T-cell 
therapy is the potentially life-threatening side effects related to the number of (activated) CAR T-cells. Therefore, 
determination of the minimal number of CAR T-cells to be injected, such that the treatment is safe yet effective, 
is important. Such determination by trial and error can be lengthy, expensive, and inefficient. Moreover, CAR 
T-cell treatment involves complex dynamics of CAR T-cells—cancer interactions that make intuitive inference 



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:12307  | https://doi.org/10.1038/s41598-024-63125-5

www.nature.com/scientificreports/

problematic, particularly when considering intratumour heterogeneity. Unlike experimental procedures, 
computer simulations allow for fast and precise evaluation of a large number of possible therapy regimens, 
including those that are difficult or costly to implement in vivo/in vitro.

We used our model to study different dosage strategies. Simulations take place in a grid of size 
1000× 1000× 1000 µm . A spherical organoid of 3963 cells was seeded at the centre of the simulation box. To 
consider intratumour heterogeneity, each cell is assigned a mutant oncoprotein using a normal distribution 
that goes from 0 to 2 with a mean equal to 1 and a standard deviation of 0.25 (see “Methods” section below). 
Even though the oncoprotein expression is continuous, for practical reasons it was discretized in the plots. 
Cells are labelled to reflect their oncoprotein expression: Type 1 ( 1.5 ≤ o < 2.0 ), Type 2 ( 1.0 ≤ o < 1.5 ), Type 3 
( 0.5 ≤ o < 1.0 ), Type 4 ( 0.0 ≤ o < 0.5 ). Cell proliferation and immunogenicity scale proportional to o, and an 
oncoprotein expression lower than 0.5 is not enough to be recognised by T-cells.

As shown in Fig. 1a left, an organoid without treatment (black solid line) grows fast due to the fact that the 
cells with higher oncoprotein expression, i.e. the most proliferative cells, dominate its dynamics. It can be seen 
in Fig. 1a right, which shows the organoid mean oncoprotein expression value. By the end of the simulation this 
value went from 1.00 to to 1.31, meaning that, despite the initial state of the organoid in which oncoprotein was 
normally distributed, it will evolve into a rapidly growing organoid.

To examine the efficacy of the CAR T doses, we performed focused simulations in which different dosages 
of CAR T-cells at various T-cell-to-cancer ratios were applied at day 1. The ratios range from 0.25 to 2.50. CAR 
T-cells perform a biased random migration towards an immunostimulatory gradient to find cancer cells. While 
adhered to a target cell, the immune cell agent attempts to induce apoptosis with a probability that scales linearly 
with immunogenicity. If successful, the tumour cell undergoes apoptosis, while the immune agent detaches and 
resumes its chemotactic search for additional tumour cell targets. If the immune cell does not kill the tumour 

Figure 1.   Heterogeneous tumour derived organoid response to different dosages of antigen specific CAR T-cell 
therapy. Organoid metrics over time, after applying different dosages of CAR T-cells. Dosages are represented 
by CAR T-cells to cancer cells ratios: 0.25, 0.50, 1.00, 1.50, 2.00, 2.50. The control case, i.e. untreated tumour, is 
represented by a full black line. Shaded regions represent the standard deviations of 20 simulations. Red line at 
day 10 represent CAR T-cell mean exhaustion time. (a) Left: Number of cancer cells. Centre: Number of dead 
cells, Right: Average of the oncoprotein expressed in the organoid. (b) Top plots show the percentage of the cell 
types that constitutes the organoid after applying the different dosages of immunotherapy. The oncoprotein 
expression in the cells is continuous, but for practical reasons it was discretized in the plots. Cells are labelled 
to reflect their oncoprotein expression: Type 1 ( 1.5 ≤ o < 2.0 ), Type 2 ( 1.0 ≤ o < 1.5 ), Type 3 ( 0.5 ≤ o < 1.0 ), 
Type 4 ( 0.0 ≤ o < 0.5 ). Type 1 represent the most mutated cells, which means higher proliferation rate and 
higher probability of dying from an immune attack. Type 4, on the other hand, are those cells that cannot be 
killed, because the mutation burden is not enough to be recognised by the CAR T-cells. Their proliferation rate 
is very low. Below the plots there are schematic representations of the organoids at the day 30. (c) Organoid 
growth rate after therapy, for every different dosages. Control case is represented by a solid black line. (d) Dead 
cancer cell per CAR T-cell ratio for the different dosages. Red area highlights the cases for which the killing ratio 
is less than 1, meaning that there are CAR T-cells that never kill a cancer cell.
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cell, it remains attached while making further attempts to induce apoptosis until either succeeding or reaching 
a maximum attachment lifetime, after which it detaches without inducing apoptosis. In our model, T-cells have 
a stochastic lifespan with the exhaustion time mean at day 10 (please refer to “Methods” section below for more 
details).

Figure 1a left shows that the number of cancer cells decreased after the treatment was introduced and before 
the CAR T-cells exhaustion time (solid red line). We can observe that the organoid shrinks as we increase the 
T-cell to cancer ratio, however, ratios larger than 1.00 resulted in no significant difference as all the curves fall 
within each other standard deviations. After the exhaustion time the organoid expands rapidly for smaller 
ratios. To further understand that behaviour, we can look at the organoid oncoprotein average (Fig. 1a right). 
Before exhaustion time, the oncoprotein average dramatically decreased for ratios larger than 1.00. Ratios 2.00 
and 2.50 almost reached an average of 0.50, which is the value for which the mutations present in cancer cells 
are not enough for CAR T-cells to recognise them, although there is no significant difference between them. 
If we look deeper into the cell types distribution within the organoids for the different experiments (Fig. 1b), 
we can see that small ratios are not enough to eliminate Type 1 and 2 cells (the more proliferative cells) and 
therefore, they take over the organoid. We can observe that in a quantitative manner in the plots at the top in 
which we analyse the percentage distribution of each cell type within the organoid during the entire simulation 
time. We can also observe the cell type distribution at the last day of the simulation in a qualitatively way in 
the screenshots at the bottom. If we compare ratios 0.25 and 2.50, Type 4 cells are more abundant in ratio 2.50, 
explaining the low oncoprotein average, the slowing down in the organoid growth after the exhaustion time and 
also the small number of cancer cell deaths. If we look at the accumulated value of dead cells in the centre plot 
of Fig. 1a we can see that by the exhaustion time, ratios 0.25 and 2.50 killed the same amount of cells. However, 
ratio 2.50 rapidly killed most of Type 1, 2 and 3 cells, and due to the fact that CAR T-cells cannot kill Type 4 
cells, it reached a plateau before the exhaustion day. On the other hand, ratio 0.25, killed as many cells as ratio 
2.25 by the exhaustion day, but because it did it slower, Type 1 cells had time to proliferate and took over the 
organoid. We can quantify this behaviour by plotting the organoid growth rate for each dosage (Fig. 1c). We can 
see that larger ratios drastically reduce the growth rate compared with the non treated organoid (black solid line).

After this analysis the logic conclusion would be that it is better to apply doses of larger ratios. However, since 
one of the major considerations when administrating CAR T-cell therapy is the potentially side effects related 
to the number of free CAR T-cells, we also looked at the ratio between dead cells and CAR T-cells (Fig. 1d). We 
found out that for ratios larger than 1.00, there were a large number of CAR T-cells that never killed a cancer 
cell. Our computational model suggests a possible explanation to this phenomenon, which relies on the organoid 
geometry and heterogeneity. Since CAR T-cells reach the organoids by its exposed surface, once the first CAR 
T-cells reach the organoid, they generate a layer that prevent the next CAR T-cells to reach the cancer cells. 
Whenever the first group of CAR T-cells finishes its attempt to kill the cancer cells, most of the cells that are left 
for the second group of CAR T-cells to kill are Type 4 cells, i.e., cells that cannot be killed by CAR T-cells. That 
means that most of the CAR T-cells that are following the first group, will not kill a cancer cell. The amount 
of free CAR T-cells increases as we increase the dosage. This result agrees with other studies that indicate that 
increasing dose does not result in a maximal rate of killing on a per T-cell basis46,47.

Based on the dead cells/CAR T-cells ratio and on the fact that ratios larger than 1.00 have no significant 
difference on cancer cells and on the average oncoprotein value before the exhaustion day, our model suggests 
that a ratio of 1.00 is the ideal “effective yet safe” dosage to treat a heterogeneous organoid. This agrees with 
murine experiments in which the estimated ratio between CAR-T and tumour cells was 1:147.

Finally, increasing the CAR T-cell number does not necessarily increase the killing ratio, however, higher 
ratios reduce the mutational load of the tumour, making it less prolific by the end of the simulation. One would 
like to reach those results without the problem of the free CAR T-cells. Current studies suggest that CAR T-cell 
“effective yet safe” approach might be improved by enhancing smaller doses. One possible strategy to improve the 
activity of CAR T-cells is to increase CAR T-cell persistence to prevent exhaustion48,49. Another strategy might 
be to provide multiple doses of highly active CAR T-cells to replace those that have become hypofunctional5. 
We will discuss both approaches in the following sections.

Long‑term persistence might not be needed
One of the major goals in CAR T-cell therapy research is to generate CAR T-cells with the longest possible 
persistence in order to minimise the extent of CAR T-cells infusion48,49. To further analyse the effect of long-
term persistent CAR T-cells, we apply the same dosages as before, but this time the CAR T-cells last the entire 
simulation time.

In Fig. 2a left we can see that enhanced CAR T-cells have a greater impact than non-enhanced ones. Ratios 
greater than 1.00 still significantly reduce the tumour growth as well as its average mutation rate (Fig. 2a right), 
but this time we also see a drastic reduction in ratios smaller than 1.00. Ratios 0.25 and 0.50 reduce the tumour 
growth compared to the previous case, but cannot completely eliminate the most mutated cells. Since the 
killing rate of CAR T-cells is lower than the proliferation rate of cancer cells, the organoids keep on growing. 
Interestingly, while CAR T-cells try to kill cells in the centre of the organoid, cancer cells proliferate on the 
surface. Particularly, for the ratio 0.50, an emergent behaviour due to the intratumour heterogeneity is that a 
layer of Type 4 cells grows on the surface of the organoid and the most mutated cells that could not be killed by 
the CAR T-cells, proliferate on the surface of such layer, which prevents CAR T-cells from killing them (Fig. 2b).

Another interesting aspect is that for dosages of ratio greater than 1.00, the tumour growth rate reaches a 
plateau (Fig. 2c), indicating that tumour growth is the same regardless of the number of CAR T-cells. However, 
in Fig. 2d we see that the efficiency of each CAR T-cell is notably reduced for ratios greater than 1.00. This tells 
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us that, as in the previous section, most of the CAR T-cells remain free. To make matters worse, in this case they 
have an extended life, which increases the risk of side effects.

Finally, our model suggests that enhancing the smaller doses, as we hypothesised in the previous section, 
reduces the growth rate and tumour mutation compared to the previous case. However, smaller ratios result in 
CAR T-cells spatially distributed in an unfavourable manner, which reduces their function and, therefore, the 
efficiency of the therapy. On the other hand, larger ratios result in free CAR T-cells, which increases the risk of 
side effects. That gives us the hint that enhancing the persistence of the CAR T-cells will not necessarily improve 
the therapy outcomes, but it can be associated with increasing levels of T-cell hypofunction due to unfavourable 
spatial distribution and/or low dead cells to CAR T-cell ratios. This is in agreement with previous studies that 
indicates that clustering of CAR T-cells results in their exhaustion and therefore, a reduction in the therapy 
efficiency46,50,51.

Multiple dosing to prevent hypofunction
Another alternative to enhance small dosage of CAR T-cell therapy, and also avoid unfavourable spatial 
distribution, can be to provide multiple doses of highly active CAR T-cells to replace those that have become 
hypofunctional. We apply second doses of CAR T-cell therapy at different days from the first dose. The first and 
the second dose contain the same amount of T-cells. As we can see in Fig. 3a left, for doses of ratio 0.25, at the 
end of the simulation (day 30), a second dose (dashed dotted lines) has a similar impact on cancer cells compared 
to the impact that a first dose (dashed line) has on the non-treated organoid. If we look at the efficiency of the 
second dose before the exhaustion days (10 days after the application), doses applied before the 8th day, reduced 
the organoid size, while doses applied after that, delayed the organoid growth but weren’t capable of reducing 
its size. If we look at the organoid behaviour after the exhaustion time, the application day does not make much 
difference in terms of cancer cells, i.e. at day 30 all of the curves collapse. However, in terms of dead cells, the 
more we wait to apply the second dose, the more cells the CAR T-cells kill. This outcome can be related to a 
larger exposed area.

If we look at ratio 1.00 (Fig. 3a centre), the first dose already reduced the organoid size and killed most of the 
proliferative cells, causing early applications of the second dose to be less effective. We can see that in the Dead 
cells plot, in which doses applied before the 8th day barely killed a cancer cell. The two applications of ratio 1.00 

Figure 2.   Heterogeneous tumour response to long-term persistent CAR T-cells. We apply the same dosages as 
before, but this time the CAR T-cells lasted the entire simulation time. The control case, i.e. untreated tumour, 
is represented by a full black line. Shaded regions represent the standard deviations of 20 simulations. (a) Left: 
Number of cancer cells. Centre: Number of dead cells. Right: Average of the oncoprotein expressed in the 
organoid. (b) Top plots show the percentage of the cell types that constitutes the organoid after applying the 
different dosages of immunotherapy. Below the plots, the schematic representations show the organoid resection 
at the day 30. Blue cells represent CAR T-cells. (c) Organoid growth rate after therapy, for every different 
dosages. Control case is represented by a solid black line. (d) Dead cancer cell per CAR T-cell ratio for the 
different dosages. Red area highlights the cases for which the killing ratio is less than 1, meaning that there are 
CAR T-cells that never kill a cancer cell.
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dosage before the exhaustion day have a similar effect in terms of cancer cells. But at the end of the simulation, 
the second dose has a significant smaller impact than the first dose. Similar to case 0.25, late applications produce 
more dead cells. Finally, applying two doses of ratio 2.00 do not make any difference compared to one dose.

If we look at the tumour oncoprotein average at day 30 (Fig. 3b), when applying just one dose (dashed lines), 
only the dose of ratio 2.00 shows a significant reduction on the oncoprotein load of the tumour, compared to 
the control case (solid black line). When applying two doses (scatter points), the dose of ratio 0, 25 stays close 
to the control and the one dose cases, and remains almost constant across the application days. A second dose 
of ratio 1.00 shows a significant reduction compared to the application of only one dose, particularly when 
applied between days 4 and 8. Surprisingly, when applied at day 8, its effect is even better than the effect of a 
second dose of ratio 2.00. We can see a similar behaviour when looking at the growth rate (Fig. 3c). The largest 
reduction between first and second dose happens when applying two doses of ratio 1.00, with the second one 
applied on the 8th day.

The fact that the second dose, particularly in high doses, does not have the same impact as the first one on the 
size of the tumour but it has a high impact on the oncoprotein average and the growth rate, results from the fact 
that the first dose eliminated most of type 1 cells, which are the most likely to be killed by T-cells. This can be seen 
qualitatively in Fig. 3d, in which for a low dose such as 0.25, organoids are larger and present a high percentage 
of Type 1 cells, independently of the second dose application day. For higher doses, the therapy reduces the 
organoid size and the percentage of Type 4 cells (cancer cells that cannot be killed by T-cells) increased from 
one dose to another.

Figure 3.   Heterogeneous organoid response to multiple dosing strategies. We apply second doses of CAR 
T-cell therapy at different days from the first dose: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20. Dosages correspond to ratios 
0.25, 1.00, 2.00, and first and the second dose contain the same amount of T-cells. Shaded regions represent 
the standard deviations of 20 simulations. (a) Upper panels show the number of cancer cells for dosages of 
different ratios, while lower panels show the number of dead cells. (b) Average of the oncoprotein expressed 
in the organoid in terms of the day of the second dose application. Black solid line and dashed lines represent 
the average oncoprotein value expressed by the organoid on the 30th day of the simulation, in control case 
and organoids treated with only one dose of CAR T-cells respectively. Shaded regions represent the standard 
deviation. Scatter points represent the average oncoprotein value expressed by the organoid on the 30th day of 
the simulation, after two doses of immunotherapy. Error bars represent the standard deviation. (c) Organoid 
growth rate computed by the 30th day of the simulation, in terms of the day of the second dose application. 
Black solid line and dashed lines represent control case and organoids treated with one dose of immunotherapy, 
respectively. Scatter points represent the organoid growth rate after two doses of immunotherapy. Shaded 
regions and error bars represent the standard deviation. (d) Left: Pie charts showing the percentage of the cancer 
cell types that constitutes the organoid after applying two doses of immunotherapy. Type 1 represent the most 
mutated cells (higher proliferation rate and higher probability of dying from an immune attack), whereas Type 
4 cells, on the other hand, are those cells that cannot be killed, because the mutation burden is not enough to 
be recognised by the CAR T-cells. Y-axis represent the day of the second dose application, and X-axis contain 
the different dosages. Right: Schematic representation of the organoids after two doses of immunotherapy. The 
organoids framed were resectioned to show the spatial organisation of the different cell types.
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Additionally, the use of a second dose of CAR T-cells gave rise to an interesting emergent phenomena. Type 
4 cells form a shield-like structure that prevents Type 1 and Type 2 cells to be reached by T-cells. To have a 
quantitative approximation of this behaviour, Fig. 4 shows the radial distribution g(r) of the different cell types 
inside the organoid. The distance r ranges from the centre of mass of each organoid, to its surface and is divided 
in spherical shells of width, �r , of about 5 cells radii. Day 25 shows clearly how Type 1 and Type 2 cells (i.e. the 
more proliferative cells) take over the tumour dynamics, whereas after two doses of immunotherapy those cells 
substantially decrease in number and a shield of Type 3 and Type 4 cells forms around them. This is the main 
reason why second doses of ratios larger than 1.00 loose their efficiency.

This agrees with several discussions about the importance of the spatial distribution in heterogeneous tissues 
and how this can hamper the efficiency of different immunotherapies52. If one could only look at the reduction 
of the organoid size or at the growth rate, the logic decision would be to apply another dose of immunotherapy. 
However, if we look at the spatial distribution of the cells we can predict that a third dose will not be efficient 
unless a complementary therapy that eliminates the shield of Type 4 cells is previously applied. Moreover, a third 
dose of immunotherapy will result in free CAR T-cells that enhance the chances of side effects and increases costs 
renders the treatment inefficient. Moreover, before applying the CAR T-cell therapy the patient must receive 
chemotherapy in order to deplete his/her immune system. This carries the risk of infection and bleeding and is 
thus not suitable all patients. These potential complications should be avoided unless the therapy’s effectiveness 
fully justifies it.

Heterogeneous tumour response to multi‑antigen recognition CAR T‑cell therapy
These strategies are promising as regards the goal of reducing the CAR T-cell dosage and enhance its efficiency. 
However, due to the antigen heterogeneity, CAR T-cells are not able to fully eliminate the organoid, which tends 
to relapse with low-antigen presenting cells. We also observed that in some cases, low-antigen cells form a shield 

Figure 4.   Shield-like structure formation. (a) Radial distributions, g(r), of different types of cells, in terms of 
the distance from the centre of mass of each organoid to its surface. Left column shows the control case, while 
the centre column and the right column shows an organoid treated with one dose and two doses of CAR T-cell 
therapy respectively. Dosage corresponds to ratio 2.00. Type 1 cells are plotted in dark red, Type 2 in red, Type 
3 in orange and Type 4 in yellow. Cyan curves represent dead cells, whether they have died for a T-cell attack or 
for lack of oxygen. (b) 3D plot of the progression of a non treated organoid (left), and an organoid treated with 
one (centre) and two (right) doses of CAR T-cell therapy, on specific days. T-cells are shown in dark blue, dead 
cells are shown in light blue. At day 25, after two doses of CAR T-cell therapy one can observe that a shield-like 
structure of cells with low oncoprotein expression has formed over cells with high oncoprotein expression. This 
leads to a reduction of therapy efficiency. Animations of the heterogeneous organoid response to one and two 
doses of antigen specific CAR T-cell therapy can be seen in the Additional Information S1 Video.
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like structure that protects antigen rich cells from CAR T-cells, reducing the therapy efficiency. Thus, there is 
a general need for multiple antigen recognition strategies that can overcome the challenges of heterogeneity to 
increase the therapeutic benefit of CAR T-cells5. With that in mind, we tested, a multi-antigen recognition type 
of therapy, such as syn-Notch receptor. In this approximation, T-cells can target every cancer cell, regardless 
of its oncoprotein expression value. However they can also attack healthy cells, therefore one should be careful 
when planning the dosimetry strategy.

Figure 5 shows the main results of our strategy compared to a non treated organoid (black line). Simulation 
suggests that doses of ratio larger than 1.50, will successfully eliminate the organoid. Since one of the goals of 
this type of therapies is their capacity to target cancer cell not only in the primary tumour but in the whole body, 
this result is very promising if one considers that one might be dealing with a smaller, early stage metastasis 
that was not diagnosed. Doses of ratios smaller than 1.50 show a reduction in the organoid growth, but it is 
not enough to completely eliminate it. On the other hand, if we look at the Dead cells/CAR T-cells ratio, we see 
that the efficiency of each CAR T-cell is notably reduced for ratios greater than 1.50. This tells us that, as in the 
previous sections, most of the CAR T-cells remain free, an undesired result which is worsened by the multi-
antigen recognition feature. All these details increase the risk of side effects. Our simulations suggests that the 
ideal “effective yet safe” dosages are those of ratio smaller than 1.50. However, even though these ratios show a 
reduction in tumour growth, they do not suffice to completely eliminate it. Once again, an appropriate dosimetry 
strategy is necessary to produce effective therapeutic results.

Discussion
One of the barriers to the development of effective cellular therapies, specifically for CAR T-cells, is target 
antigen heterogeneity. It is thought that intratumour heterogeneity is one of the leading determinants of 
therapeutic resistance and treatment failure. While understanding antigen heterogeneity is important for effective 
therapeutics, a good therapy strategy could enhance the therapy efficiency.

In order to develop effective CAR T-cell strategies, physiological preclinical models are required that 
recapitulate the individual tumour phenotype as well as the complex three-dimensional tissue environment. 
Organoids allows long-term ex vivo expansion of different cell types in a 3D extracellular matrix. The technology 
has been used to establish living biobanks of cancer and normal tissues that preserve the genetic and functional 
heterogeneity among patients. Even though they lack two key aspects on tumour development, such as different 
cell types populations that are present in the tumour microenvironment and blood vessels, they proved to be a 
good platform for Cancer—CAR T-cells crosstalk. Unfortunately, patient derived organoids are difficult to grow 
due to cell type heterogeneity and also present challenges associated with their cost and ethics.

Within this broad context, the aim of this work is to introduce an agent-based model in order to rationalise 
the potential outcomes of CAR T-cell therapies over patient derived heterogeneous tumour organoids, using 
a computational approach. The importance of computational models lies at its ability to predict non-intuitive 
results. Here, we show that using an ABM model, we are able to analyse the results of different treatments 
characterised by different schedules and dosages, without wrecking the organoid with therapies that are not 
likely to produce any significant outcome.

We started our study by analysing different dosages in order to determine the optimal “effective yet safe” CAR 
T-cell to Cancer ratio. Our model suggests that increasing the CAR T-cell number does not necessarily increase 
the killing ratio. Since CAR T-cells reach the organoids by its exposed surface, this phenomenon is related to 
the organoid geometry and heterogeneity. In that sense, it is important to mention that even though we present 
spherical organoids in this work, the geometry is one of the parameters that can be adjusted in our model, not 
only as an input parameter but also during the execution time. Higher ratios reduce the mutational load of the 
tumour making it less prolific, but by the end of the simulation, the amount of free CAR T-cells increases as we 
increase the dosage, and so does the risk of side effects. We found out that a ratio of 1.00 is the ideal dosage to 
treat a heterogeneous organoid. It shows a considerably reduction in tumour size as well as in its growth rate, 

Figure 5.   Heterogeneous tumour response to multi-antigen recognition. Organoid metrics over time, after 
applying different dosages of a multi-antigen recognition type of therapy such as syn-Notch receptor. As in the 
previous cases, dosages are represented by different ratios: 0.25, 0.50, 1.00, 1.50, 2.00, 2.50. The control case, 
i.e. untreated tumour, is represented by a full black line. Shaded regions represent the standard deviations of 
20 simulations. Red line at day 10 represent CAR T-cell mean exhaustion time. Left: Number of cancer cells. 
Centre: Number of dead cells. Right: Dead cancer cell per CAR T-cell ratio for the different dosages. Red area 
highlights the cases for which the killing ratio is less than 1, meaning that there are CAR T-cells that never kill a 
cancer cell.
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but most important, free CAR T-cells do not occur. This agrees with murine experiments in which the estimated 
ratio between CAR-T and tumour cells was 1:147.

We then tested two possible strategies to improve the activity of CAR T-cells with particular interest in 
smaller ratios. On one hand we increased the CAR T-cells persistence to prevent exhaustion. We found that due 
to the antigen heterogeneity, enhancing small ratios persistence result in CAR T-cells spatially distributed in an 
unfavourable manner, which reduces their function and, therefore, the efficiency of the therapy. On the other 
hand, larger ratios result in free CAR T-cells, which increases the risk of side effects. That gives us the hint that 
enhancing the persistence of the CAR T-cells will not necessarily improve the therapy outcomes, but it can be 
associated with increasing levels of T-cell hypofunction. This outcome is the opposite to what one would expect 
due to the general consensus that the successes of CAR T-cells in patients with certain haematological cancers are 
closely linked with CAR T-cell persistence. However, the importance of persistence has not yet been established in 
clinical trials testing CAR T-cells in patients with solid tumours, for a number of reasons. Firstly, given the lack of 
clinical success in patients with solid tumours, along with uniformly short persistence, establishing correlations 
between CAR T-cell persistence and efficacy, as has been done in trials involving tumour infiltrated lymphocytes 
and with CAR T-cells in leukaemias and lymphomas, has not been feasible. Secondly, the relationship between 
persistence in blood and persistence in solid tumours has not yet been fully validated. Thirdly, and perhaps most 
importantly, data from solid tumour models indicate that CAR T-cell persistence is associated with increasing 
levels of T-cell hypofunction, as we observe in our model. Please refer to the recent review by Albelda5 for a 
insightful discussion on this topic.

The other strategy was to provide multiple doses of highly active CAR T-cells to replace those that have 
become hypofunctional. A second dose was applied at different days, for different dosage ratios. The tumour size 
was reduced as well as the tumour growth rate. Also, our model suggests that a second dose of ratio 1.00 shows 
a significant reduction compared to the application of only one dose, particularly when applied between days 4 
and 8, i.e. not very late but also not very soon. Surprisingly, when applied at day 8, its effect is even better than 
the effect of a second dose of ratio 2.00. Nevertheless, in terms of dead cells, second doses turned out to be less 
effective than the first dose. Computational outcomes suggests that this lack of efficiency might be due to the 
fact that the first dose eliminated most of the high-oncoprotein expressing cells. Since immunogenicity scales 
proportional to the oncoprotein expression, o, T-cells either do not recognise low-oncoprotein expressing cancer 
cell, or spend more time trying to kill them (sometimes without success).

One emergent phenomenon that came out of the simulations, and might be another reason for therapy 
inefficiency in solid tumours, is the formation of a shield-like structure of cells with low oncoprotein expression 
and reduced proliferation rate, that protected cells with high oncoprotein expression. It has been discussed 
in several reviews that CAR T-cell infiltration into the tumour is a major roadblock for its success in solid 
tumours42,53, and that various cell types have been found to prevent CAR T-cell infiltration as well as a dense 
extra cellular matrix53,54. For instance, another in silico model has found a similar behaviour when applying 
a binary heterogeneity antigen approach55. In a recent study, Baldominos et al.54, observed a similar effect in 
triple negative breast cancer, in which tumour cells that resist T-cell attack are quiescent, i.e. the key genes 
involved in proliferation and DNA replication, such as Mki67 and Pcna, were all downregulated. Similar to our 
Type 4 cancer cells. Quiescent cancer cells (QCCs) form micro-niches with reduced immune infiltration. The 
authors adapted single-cell RNA-sequencing with precise spatial resolution to profile infiltrating cells inside 
and outside the QCC niche. This transcriptomic analysis revealed hypoxia-induced programs and identified 
more exhausted T-cells, tumor-protective fibroblasts, and dysfunctional dendritic cells inside clusters of QCCs. 
This uncovered differential phenotypes in infiltrating cells based on their intra-tumour location. Thus, QCCs 
constitute immunotherapy-resistant reservoirs by orchestrating a local hypoxic immune-suppressive milieu that 
blocks T-cell function. Although the complex biological mechanisms that lead to the formation of the niches 
found by Baldominos, are simplified in our model, in both cases it is clear that the development of strategies 
to overcome immune suppression around QCCs/Type 4 cancer cells and eradicate these cells will be key to 
improving responses to immunotherapy and preventing recurrence after treatment.

In order to overcome antigen escape and heterogeneity, another approach of therapy, based in the syn-Notch 
receptor, has been studied. In this context T-cells can target every cancer cell, regardless of its oncoprotein 
expression value. It has been found that doses of ratio larger than 1.50, will successfully eliminate the organoid. 
Since one of the milestones of this type of therapies is their capacity to target cancer cell not only in the primary 
tumour but in the whole body, this result is very promising if one consider this large ratio as an early stage 
metastasis—CAR T-cell ratio. In other words, If we apply a dose of a small ratio compared to the primary 
tumour, but the patient developed an early stage metastasis, i.e. a smaller tumour, the normal ratio will become 
a large ratio compared to the metastasis and will successfully eliminate it. Since cancers share antigens with 
other non-cancerous cells in the human body, great care has to be taken to find therapy strategies that will both 
be effective and minimally toxic to the patient. Our simulations suggests that the ideal “effective yet safe” dosage 
are those of ratio smaller than 1.50. However, even though these ratios show a reduction in tumour growth, 
they are not enough to completely eliminate it, so an appropriate dosimetry strategy is necessary to produce 
effective therapeutic results.

There are several limitations of this model which point towards new directions for further development. 
One of the main constraints for its widespread use is the computational cost of the model. Even though thread 
parallelisation in relevant sections of the algorithm is currently implemented, a full graphic processing units 
oriented re-writing of the most time consuming parts of the code is desirable. This will enhance the model’s 
capacity to reach time-space scales that are unattainable so far. From a more practical standpoint, at this stage the 
model has not been calibrated to any patient-specific cancer. This an obvious handicap for its direct application 
in the clinical practice. Clearly, a future line of work will have to focus on to tuning of model parameters to 
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reproduce the behaviour of a patient derived organoid. In this way, it will serve as a tool for hypotheses testing 
in the planning of alternative therapeutic protocols.

Finally, a few words concerning our model’s implementation. We have been particularly careful to construct 
a software platform in a modular and extensible fashion. The aforementioned modules can be replaced with ones 
with more fine-grained versions as discussed, so that more specific details can be incorporated (as properties) and 
new processes as well (as methods) with different degrees of detail. Even though our model is not a 1 : 1 in silico 
copy of the organoid and, therefore, it can not accurately describe in full detail the complex biological processes, 
it could serve as a tool to test different hypotheses, as well as for testing and analysing possible outcomes using 
multiple plausible parameter combinations. We are confident that once the goal of implementing patient specific 
factors is reached and the model undergoes a rigorous calibration and validation, it could be used as a platform 
for in silico conducting virtual clinical trials.

Methods
The model presented herein builds upon previous work by Luque et al. on tissue growth kinetics56. The following 
subsections will briefly recall details of the mentioned model. Please, refer to the previous reference for further 
details. Subsequently in subsections Intratumour heterogeneity and Immunosurviellance, we will comment on 
the new features related to intratumoural heterogeneity and immunosurviellance modules implemented in this 
work.

Model setup
Our model is implemented resorting to an object oriented programming model, and to that aim C++11 language 
have been used. Simulation CPU time depends on model parameters such as domain (lattice) size, cell number 
and simulation length (in time); a typical simulation run takes approximately 6 h on a single core of an Intel 
i7-10510U CPU. Model visualisation is performed with Ovito57, Paraview58 and Matplotlib59.

Diffusion solver
Cell behaviour is mostly dependent on the values and gradients of diffusing substrates in the tumour 
microenvironment. Diffusion process is modelled as a vector of reaction-diffusion partial differential equations 
for a vector of chemical substrates. It is discretized over a Cartesian mesh for computational convenience, in 
such a way that each voxel (volumetric pixel) stores a vector of chemical substrates. Each substrate diffuses and 
decays, and can be secreted or uptaken by individual cells at their specific positions.

To model the effect of blood vessels, which are not used in this work but can be easily added to the 
simulations, or to apply Dirichlet boundary conditions, the so-called Dirichlet nodes are also implemented. In 
that implementation, substrate values at any voxel within the simulation domain can be overwritten to turn the 
voxel into a continuous source of substrates.

Cell agents
In the context of cancer immunology, the agents represent cancer and immune cells (Fig. 6a). Their motion is 
governed by the balance of adhesive, repulsive, motile, and drag-like forces. It is important to note that repulsive 
forces are really an elastic resistance to deformation.

One of the main features that makes our model different from others in the literature is that cells are off-
lattice. Consequently, they are not confined to a particular lattice or spatial arrangement, they move through 
all space positions, and therefore underlying possible artifacts associated with the chosen lattice structure and 
spacing are removed.

Each cell has an independent cell cycle which is modelled as a directed graph, and can also progress through 
apoptotic and necrotic death processes. Any of the cell cycle (and death processes) time scales can be adjusted 
at the beginning of the simulation to match different types of growth and they can also be adjusted at any time 
on an individual cell in order to reflect the influence of its microenvironment.

As the cell progresses through its current cycle, it varies its volume (and sub volumes, such as nuclear volume, 
solid volume, fluid volume, etc.). These volumes are modelled with a system of ordinary differential equations 
that allow cells to grow or shrink towards a target volume.

As it was mentioned earlier, each cell can secrete to or uptake from its chemical microenvironment, or sample 
the value or gradient of any or all substrates. This is very important since most of the cellular processes depend 
on the substrates that diffuse in the microenvironment. In every simulation step, each cell checks the substrate 
concentration in its voxel and base its behaviour upon them. Figure 6b shows an organoid consuming oxygen 
from the microenvironment, and secreting an immunostimulatory factor. This is one of the most important data 
structures of the cell because it links the cell with its microenvironment. Its inner workings are modelled by a 
vector of partial differential equations which in practice implies the addition of a cellular secretion/uptake term 
to the diffusion equation described in section: “Diffusion solver”.

Intratumour heterogeneity
Even though eukaryotic cells replicate their DNA with astounding fidelity, the mechanism is not entirely error 
free. Every time a cell divides, a few mutational errors in the form of nucleotide substitutions and small deletions 
are introduced even in the absence of internal and external mutagens60,61. Owing to the constant turnover of 
tumour cells and the large size of tumour cell populations, some of these stochastic mutational hits unavoidably 
affect genes with known cancer relevance, leading to the activation of oncogenes and/or inactivation of tumour 
suppressors, such as the p53 gene. The TP53 gene provides instructions for making a protein called tumour 
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protein p53 (or p53). This protein acts as a tumour suppressor, which means that it regulates cell division by 
keeping cells from growing and dividing (proliferating) too fast or in an uncontrolled way.

Among the many factors that drive tumour heterogeneity, genomics instability is most prominent in all 
malignancies. Many of the biological hallmarks associated with cancer development, such as limitless replicative 
potential, increase the mutational rate and genomics instability of malignant cells, which in turn give rise to other 
malignant traits62–64. This cascading effect often results in heterogeneity in the tumour as different cells acquire 
unique mutations that give rise to genetically distinct subpopulations65–68.

To study intratumour heterogeneity, each cancer cell is provided with a random expression of a mutant 
“oncoprotein”, o, using a normal distribution (a similar computational approach could be made to model 
intratumour heterogeneity based on the inactivation of the tumour suppressor p53 gene). This oncoprotein drives 
proliferation, i.e. the greater the expression of o, the more likely the cell cycles and divides. In the absence of other 
selective pressures, the cells with the greatest o expression clonally expand and dominate the dynamics of the 
tumour. Under the simplifying assumption that a highly-expressed mutant protein would be reflected as a more 

Figure 6.   Immunosurviellance process. Immune cells perform a biased random migration towards an 
immunostimulatory gradient to find cancer cells. (a) Schematic representation of an organoid being attacked by 
immune cells. Scale bar represent 200µm . (b) An heterogeneous organoid consuming oxygen (mmHg) from 
the microenvironment, and secreting an immunostimulatory factor (in arbitrary units). (c) Immunosurviellance 
flow diagram. tlife represents the CAR T-cell exhaustion time.
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immunogenic peptide signature on major histocompatibility complexes (MHCs)69, each cell’s immunogenicity 
is modelled as proportional to o.

Immunosurviellance
To model immunosurveillance T-cell agents are introduced. One of the main difference between T-cells and 
cancer cells present in our model, is that the former are self-propelled. In other words, in addition to the 
forces due to the interaction with other cells and the basement membrane, immune cells move in response 
to chemical stimuli. As it was mentioned before, cancer cells secrete an immunostimulatory factor which 
diffuses through the microenvironment. Immune system cells perform a biased random migration towards 
this immunostimulatory gradient to find cancer cells. The migration performed along the direction d, which is 
updated according the immunostuimulatory factor gradient, is governed by the bias b, which can take values 
0 ≤ b ≤ 1 where 0 means Brownian motion and 1 represents deterministic motion along d. Immune system 
cells change their migration velocity stochastically between t and t +�tmech with probability �tmech/tper , where 
tper is the CAR T-cell’s mean persistence time. To change the velocity a random direction, dr , is chosen by 
dr = [sin (φ) cos (θ), sin (φ) sin (θ), cos (φ)] , where θ is a random angle between [0,π] and φ is a random angle 
between [ 0, 2π ]. The migration velocity vmig is then updated according to

where vmot is the migration speed. Notice that if the migration bias b is 1, the CAR T-cell will perform a 
deterministic motion over the immunostimulatory factor gradient direction d , while on the other hand, if b = 0 , 
it will perform a Brownian motion over the random direction dr . If the immune cell is attached to a cancer cell, 
its velocity is set to zero. Finally, when updating the immune cell’s velocity, its migration velocity vmig is added 
to the current velocity computed by the interaction with other cells.

T-cells continuously test for contact with cancer cells. In fact, if they detect contact, in any time interval, 
they have a probability of forming an adhesion regulated by radh�t , where radh is the rate of forming new 
adhesions. Once they form an adhesion they switch off their motility and cancer cells stop their cycling activity. 
While adhered to a target cell, the immune cell agent attempts to induce apoptosis (e.g., by the FAS receptor 
pathway70) with a probability that scales linearly with immunogenicity. In the multi-antigen recognition case, 
the immunogenicity is not taking into account, and the probability of inducing apoptosis follows a uniform 
distribution. If successful, the tumour cell undergoes apoptosis, while the immune agent detaches and resumes 
its chemotactic search for additional tumour cell targets. If the immune cell does not kill the tumour cell, 
it remains attached while making further attempts to induce apoptosis until either succeeding or reaching 
a maximum attachment lifetime, after which it detaches without inducing apoptosis. Scanty information is 
available regarding the functional and/or immunophenotypic characteristics of the CAR T-cells after infusion71. 
CAR T-cell exhaustion is thought to be due to persistent antigen stimulation, as well as an immunosuppressive 
tumour microenvironment72. Previous studies observed that CAR T-cells are only detected for about a month 
after infusion, with a peak typically seen at 5–14 days5,71. To capture such dynamics, exhaustion time is stochastic 
in our model, with a mean of exhaustion time, tlife = 10 days, meaning that some CAR T-cells can get exhausted 
before or after the 10th day, but most of them will do it at the 10th day. In our model, when a CAR T-cell gets 
exhausted it is removed from the simulation, similar to dead cells. A schematic representation of the inner 
working of CAR T-cells is depicted in Fig. 6c.

Reference tables
In this section we provide the table that enumerates the model parameters (Table 1). The goal of this work is to 
develop a computational platform to study how clinically relevant design choices and inherent tumour features 
impact treatment outcomes. Even though the cancer cell cycle times correspond to those of the hepatocellular 
carcinoma in order to follow up with our previous study, we do not limit our model to represent any specific 
cancer type at this stage, thus model calibration and parametrization is qualitative at this stage. Values of 
parameters were taken from the literature, from experimental studies or adopted from previous models if they 
apply to a range of cancers. For those parameters for which we are unable to find an experimental value, or those 
that differ across cancer types, we estimate a range based on best biological knowledge. In addition to that, most 
of the parameters used in this work were used were used in a previous study on tissue growth kinetics. In that 
occasion we performed a sensitivity analysis in which we varied 10% the input variables that feed our model 
in order to find out which parameters were most likely to make an impact on the tumour growth. We invite 
the reader to delve into the sensitivity analysis and the parameter choice of our model in our previous work56.

(1)vmig = vmot
(1− b)dr − bd

||(1− b)dr − bd||



13

Vol.:(0123456789)

Scientific Reports |        (2024) 14:12307  | https://doi.org/10.1038/s41598-024-63125-5

www.nature.com/scientificreports/

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on 
reasonable request.

Code availability
The code used for running experiments is available at https://​github.​com/​lmluq​ue/​abm.
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