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We consider the inertial spin model (ISM) of flocking and swarming. The model has been in-
troduced to explain certain dynamic features of swarming (second sound, a lower than expected
dynamic critical exponent) while preserving the mechanism for onset of order provided by the Vic-
sek model. The ISM has only been formulated with an imitation (“ferromagnetic”) interaction
between velocities. Here we show how to add position-dependent forces in the model, which allows
to consider effects such as cohesion, excluded volume, confinement and perturbation with external
position-dependent field. We study numerically a one-particle case.

I. INTRODUCTION

Collective animal motion [1, 2] is a particularly strik-
ing aspect of emergent collective behavior where collec-
tive order (as in flocks of birds flying together) can arise
from simple short-range interactions between individuals.
Several models have been proposed to describe flocking
behavior, dating back at least to the 1980s [3, 4]. The
paradigmatic Vicsek model of flocking [5, 6] (and the re-
lated Toner-Tu field theory [7–9]) has received much at-
tention from the statistical physics community because
it predicts the appearance of ordered flocks starting with
a simple set of microscopic local rules, similar to the
way ferromagnetic order arises in the Ising or Heisen-
berg models. It turns out that the phase diagram of the
Vicsek model is more complicated than that of the classic
ferromagnetic order-disorder transition, featuring a dis-
continuous transition and region with microphase separa-
tion (see [10] for a review); however it remains true that
it allows to explain how a flock with fully ordered ve-
locities can result from a local “ferromagnetic” imitation
rule.

Although the Vicsek model is successful in explaining
the thermodynamics of flocking, it is not suitable to in-
terpret certain dynamical features related to the presence
of inertial effects. The finding of wave-like propagation
of direction information during turns in starling flocks
[11] led to the proposal of the inertial spin model (ISM)
[12], which we consider here. The model is described in
detail in Sec. II A, but it is essentially the Vicsek model
endowed with a Hamiltonian-like (second order) dynam-
ics, so that second time derivative of the velocity is pro-
portional to the effective social force, instead of the first
time derivative as in Vicsek. Although it is true that
in the thermodynamic limit the large-scale behavior is
described by an over-damped theory [13], namely the
Toner-Tu [8] hydrodynamic theory (which is a coarse-
grained version of the Vicsek model), inertial effects can
be observed in finite systems [14]. This is relevant in the
description of observations of biological flocks, which at

sizes of a few thousands of individuals are large but still
far enough from the thermodynamic limit that finite-size
effects are important. In the language of the renormal-
ization group (RG), a crossover phenomenon arises in the
RG flow such that at intermediate sizes the global prop-
erties will be described by an inertial fixed point with
an unstable direction, instead of the stable over-damped
fixed point that rules in the thermodynamic limit [15].

The dynamic critical behavior of midge swarms [16]
also displays inertial effects. At moderate system size,
the Vicsek transition looks continuous [17], and it can
be used to interpret static aspects of swarms such as the
presence of scale-free correlations [18], but it is again in-
sufficient to account for the dynamic behavior. In partic-
ular the dynamic critical exponent of the Toner-Tu the-
ory [19] is higher than the experimental value. A coarse-
grained version of the ISM was recently employed [20] to
show that both inertia and activity are needed to explain
the observations.

The ISM was introduced in refs. [11, 12] (see also the
review [21]). The formation of flocks at T = 0 was consid-
ered in [22] and [23], while the finite-temperature equilib-
rium in the mean-field case was studied in [24] and [25],
and [26] considered a variant incorporating uniform ex-
ternal fields controlling alignment and rotation, but with
a sort of mean-field spin. In these works, as well as in
the numerical simulations of [12, 20], infinite space or
periodic boundary conditions were employed.

In this work we consider extending the ISM to include
position-dependent forces. In the original ISM the inter-
action is between velocities (actually, velocity directions),
such that particles tend to align the velocities with each
other, just as in the Vicsek model. Positions enter the
picture only indirectly, through the definition of the in-
teraction network (which can be metric or topological
[27]). There are several reasons why positional forces
are desirable. To treat finite systems with metric inter-
actions it is necessary to introduce some kind of con-
finement, because otherwise small velocity fluctuations
eventually lead to particles becoming isolated from the
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flock and thus “evaporating” the system to infinite dilu-
tion. This can be avoided using reflecting boundary con-
ditions, external fields, or inter-particle interactions pro-
viding cohesion. Reflecting walls for confinement [28] or
partial confinement [29–31], and cohesion through attrac-
tive forces [32] have been considered for the Vicsek case.
Position-dependent inter-particle interactions may also
be included for other purposes, e.g. to add an excluded
volume potential that will limit the local density [29]. A
position-dependent external field can also be interesting
to study perturbation and response: a field coupled to the
velocities is straightforward to add (as it has been done
for Vicsek [33]), but experimentally it may be easier to
impose a perturbation with a position-dependent field,
for example by implementing a moving artificial marker
to perturb an insect swarm [34].

Given the Hamiltonian structure of the ISM, which
involves velocity and spin as canonical variables, it is
not immediately obvious what is the best way to add
a position-dependent force. We discuss this in the next
section. After proposing a consistent way to implement
these forces, we explore numerically some results regard-
ing field-induced confinement.

II. INERTIAL SPIN MODEL WITH EXTERNAL

POSITION-DEPENDENT FORCES

Originally, the ISM was proposed [11, 12] based on
the experimental observation of second sound (i.e. order-
parameter waves) in the turning of starling flocks [11].
Second sound is an indication that an inertial mechanism
is at work that results in propagation with constant speed
(vs. diffusive propagation as it occurs in the overdamped
case). The goal is then to formulate a model with the
static properties of Vicsek’s model (i.e. capable of spon-
taneously producing orientational order) but with inertial
rather than diffusive dynamics [21]. It seems thus reason-
able to seek a Hamiltonian formulation, as this will lead
naturally to canonical (i.e. inertial) equations of motion.
One then needs to identify the correct canonical coordi-
nate / conjugate momentum pair. A key observation is
that when a flock changes direction of motion individ-
ual birds turn following paths of approximately the same
radius, rather than following parallel paths. This sug-
gests that invariance under internal (rather than global)
rotations is the relevant symmetry. Indeed, equal-radius
turns are not generated by rigid rotations (as are parallel-
path turns), but by rotations of the internal orientation of
each individual, which moves at approximately constant
speed. These considerations lead to recognize the Vicsek
interaction as an interaction between orientations, rather
than velocities, and to propose a Hamiltonian formalism
in which the particle orientation is the canonical coordi-
nate. Its canonical conjugate, the spin, is the generator
of internal rotations.

In a Hamiltonian theory, the symmetry under internal
rotations leads to conservation of the spin (the corre-

sponding momentum). Indeed this quantity can be con-
served in an equal-radius turn, in contrast to the angular
momentum (generator of global, rigid rotations). An-
gular momentum could be conserved in a turn following
parallel paths, but this is forbidden by the requirement
of constant speed. However, spin conservation cannot be
expected to hold exactly, so dissipation of the spin is in-
troduced by adding noise and friction terms (as in the
standard Langevin equation) in the spin equation of mo-
tion. This is how temperature enters the theory, making
it possible to tune the system between order and disorder.

A. The original ISM

Let us first introduce the original ISM and then our
proposal to include position-dependent forces. For what
follows, it is convenient to derive the ISM using the ve-
locity of the i-th particle vi and its canonical conjugate,
instead of orientation and spin. We do not consider speed
fluctuations, so that a set of hard constraints

fi(vi) = v
2

i − v20 = 0 (1)

will be imposed. Note however that vi is treated as an
internal canonical coordinate, and completely unrelated,
as far as the Hamiltonian formalism is concerned, to the
usual mechanical momentum. Its canonical momentum,
which we call wi, is defined by

{vµi , w
ν
j } = δijδ

µν , (2)

where {. . .} are Poisson brackets. The Hamiltonian for-
malism applies to the space of the internal degrees of
freedom (vi,wi); the connection between vi and the ac-
tual particle velocity is made through an extra equation

ṙi = vi, (3)

which complements the canonical equations of motion.
Since ri is also a parameter of the Hamiltonian (via
the potential), the whole theory is in this sense pseudo-
Hamiltonian.

One proposes a Hamiltonian

H =
∑

i

w2

i

2µ
+ V({vi}) +

∑

i

λifi(vi). (4)

The first term, which has the form of a kinetic energy, in-
troduces inertia, with µ a social, or effective, mass. The
role of the third term is to enforce the constraints through
the Lagrange multipliers λi. The second term is an inter-
action potential, which in the ISM is chosen to implement
Vicsek’s [5] velocity-imitation. In continuous time this is
obtained from

V({vi}) =
J

v2
0

∑

ij

nijvi · vj , (5)

with J a coupling constant and nij the adjacency matrix,
which defines the interaction network (nij = 1 if i and j
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are interacting neighbours, and 0 if not). Positions en-
ter into H through the adjacency matrix, which can be
defined to implement metric (through a cut-off radius)
or topological (by choosing a fixed number of nearest
neighbors) interactions. As far as the Hamiltonian for-
malism is concerned, positions are just parameters of the
potential, but the extra equation ṙi = vi turns them into
coordinates, and the model into an active model.

The canonical equations of motion are

v̇i =
∂H

∂wi

=
wi

µ
, (6a)

ẇi = −
∂H

∂vi

= fi − 2λivi, (6b)

where fi = ∂V/∂vi is the interaction force. The
Lagrange multipliers can be found using the relations
v̇i · vi = 0 and (v̇i)

2
+ vi · v̈i = 0, which follow from

the first and second time derivatives of the constraint.
Eq. (6b) is then

ẇi = f
⊥

i −
(v̇i)

2

v2
0

vi, (7)

with ⊥ denoting the projection in the direction perpen-
dicular to the velocity:

a
⊥ = a− (a · vi)

vi

v2
0

= −
1

v2
0

vi × (vi × a) . (8)

Now it is convenient to introduce the spin of the i-th
particle as si = vi ×wi. The Poisson brackets

{sµi , v
ν
j } = δijǫ

µνρvρ, {sµi , w
ν
j } = δijǫ

µνρwρ, (9)

where greek superindices indicate cartesian components,
δij is Kroneker’s delta and ǫµνρ is the completely anti-
symmetric tensor, show that si does generate the inter-
nal rotations. Using the constraint again, the condition
vi ·wi = 0 allows to express the momentum in terms of
the spin, wi = −vi × si/v

2

0
and the Hamiltonian can be

written as

H =
∑

i

s
2

i

2χ
+ V({vi}), (10)

defining χ = v20µ. The final equations of the ISM are

ṙi = vi, (11a)

v̇i =
1

χ
si × vi, (11b)

ṡi = vi ×





J

v2
0

∑

j

nijvj −
η

v2
0

v̇i +
1

v0
ξi



 , (11c)

where we have added the friciton and stochastic terms,
with 〈ξµi (t)〉 = 0, 〈ξµi (t)ξ

ν
j (t

′)〉 = 2ηT δijδ
µνδ(t−t′). Note

that (11b) and the deterministic part of (11c) can be

derived either substituting si for wi in (6) or directly
from the Hamiltonian (10) and the Poisson brackets

v̇i = {vi,H} = −vi ×
∂H

∂si
, (12a)

ṡi = {si,H} = −vi ×
∂H

∂vi

− si ×
∂H

∂si
. (12b)

In contrast, (11a) does not follow from {r,H}.

B. Position-dependent forces

Now we want to introduce position-dependent forces
and fields. While a velocity-dependent field can be added
quite naturally in the formalism as a new term Hfield(vi)
in Hamiltonian (10), position-dependent forces require
some thought because position is not part of the canon-
ical variables of this Hamiltonian. There are in princi-
ple two ways to add these forces. One can expect that
they should appear in (11b), or (6a), just as in ordinary
Newton’s equation. Alternatively, one can argue that
the forces should appear in (11c) or (6b), since it is this
equation that encodes the inertial mechanism that con-
trols motion in this model. We shall add both kind of
force, but it will turn out that both can be handled as
a new force in the spin equation, provided it depends on
the velocity in a specific way.

The forces must be added in a way that respects the
constraint of constant speed, so that it is convenient to
start with (4), which uses wi and includes the constraint
explicitly through the multipliers λi. We propose to add
the forces writing

H =
∑

i

w2

2µ
+ V({vi})−

∑

i

vi · F({r})

+
∑

i

w ·
G({r})

m
+
∑

i

λi(v
2

i − v2
0
),

(13)

where G and F are the new position-dependent forces
and we have allowed the possibility that the mass associ-
ated to the positional force, m, is different from µ. The
corresponding canonical equations are

v̇i =
∂H

∂wi

=
wi

µ
+

Gi

m
, (14a)

ẇi = −
∂H

∂vi

= −
∂V

∂vi

+ Fi − 2λivi, (14b)

where again to eliminate the λi one uses the fact that
first and second time derivatives of the constraints must
vanish together with the equations of motion to find

λi =
µ

2v2
0

(

wi

µ
+

Gi

m

)2

+
vi

2v2
0

· (fi + Fi) +
µ

2mv2
0

Ġi · vi.

(15)
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Eq. (14b) becomes then

ẇi = f
⊥

i + F
⊥

i −
µ

v2
0

(

wi

µ
+

Gi

m

)2

vi −
µ

mv2
0

(Ġi · vi)vi.

(16)
As before, the equations assume a simpler form if one

introduces the spin. Defining si = vi ×wi, this can be
inverted with the help of the constraint to find wi =
−µ(vi · Gi)/(mv

2
0) − vi × si/v

2
0 and rewrite (14a) and

(16) as

v̇i = −
1

χ
vi ×

[

si +
µ

m
vi ×Gi

]

, (17a)

ṡi = vi × (fi + Fi)−
χ

X2
(vi ·Gi)(Gi × vi)

−
1

X
Gi × (vi × si), (17b)

with χ = v2
0
µ, X = v2

0
m, which reduce to (11) (apart

from noise) when Fi = Gi = 0. Eqs. (17) can be further
simplified, because not every form of Gi will lead to ob-
servable changes in particle trajectories. The situation is
similar to the case of the Hamiltonian formulation of elec-
tromagnetic forces, where a gauge transformation alters
the vector potential but not the trajectories. This can be
seen by redefining the momentum and spin. Eqs. (14a)
and (17a) suggest to define zi = wi + (µ/m)Gi, and
s̃i = vi×zi. Renaming s̃i −→ si and adding the stochas-
tic terms the equations of motion finally read

v̇i =
1

χ
si × vi, (18a)

ṡi = vi ×

[

−
∂V

∂vi

+ Fi +
χ

X
(vi · ∇)Gi

]

+

vi ×

[

−
η

v2
0

v̇i +
1

v0
ξi

]

. (18b)

The final equations of motion cannot be written from
Poisson brackets, because ri is not a canonical coordi-
nate, and in consequence Ġi = (vi ·∇)Gi does not follow
naturally from {G,H}. However it is possible to write
a slightly different Hamiltonian that will yield (18) from
v̇i = {vi,H}, ṡi = {si,H}, provided Gi can be written
as a gradient, Gi = ∇Γi:

H =
∑

i

s2i
2χ

+ V({vi})−
∑

i

vi · Fi(ri)+

µ

2m

∑

iµν

vµi v
ν
i

∂2Γ(ri)

∂rµi ∂r
µ
i

.

(19)

C. Overdamped limit and dimensionless quantities

It is possible to eliminate si and write a single, second-
order, equation of motion for the velocity. This can be
more convenient for numerical integration, as then one

can apply one of the well-known discretizations used in
molecular or stochastic dynamics [see e.g. 35]

χ
v̈i

v0
+ χ

(v̇i)
2

v2
0

vi

v0
+ η

v̇i

v0
=

J
∑

j

nij

v
⊥

j

v0
+ v0F

⊥ +
χ

X

(

vi

v0
· ∇

)

v2
0
G

⊥

i + ξ (20)

Writing the equation in this way makes it clear that the
lhs is independent of v0 (in effect, we are writing an equa-
tion of motion for the orientation), and so must the rhs.
The interaction force is clearly independent of v0 (as it
should since it comes from a potential energy involving
orientations), but in this form we realize that the posi-
tional forces must be such that v0Fi and v20Gi are inde-
pendent of the speed. For what follows it’s then conve-
nient to introduce ψi = vi/v0.

We now seek the overdamped limit of (20). Rescaling
the time t → t̂ = t/a we have x̂i(t̂) = x̂i(t/a) = xi(t),

v̂i(t̂) = dx̂/dt̂ = av, v̂0 = av0, ψ̂(t̂) = v̂/v̂0 = ψ(t), and
˙̂
ψ = aψ̇, so that

χ

a2
¨̂
ψi +

χ

a2
(
˙̂
ψi)

2ψ̂i +
η

a
˙̂
ψi =

J
∑

j

nijψ̂
⊥

j + v0F
⊥+

χ

X

(

ψ̂i · ∇
)

v2
0
G

⊥

i +

√

2Tη

a
f(t̂),

(21)

where 〈f(t̂)f(t̂′)〉 = δ(t̂− t̂′). Choosing a ∝ η one arrives
at an equation that will become first order in the limit
χ/η2 → 0. It is convenient that a have units of time so
that t̂ is non-dimensional. We choose a = η/J , and write
the equations of motion as

˙̂x = v̂0ψ̂(t̂) (22a)

Ω
¨̂
ψi +Ω(

˙̂
ψi)

2ψ̂i +
˙̂
ψi =

∑

j

nijψ̂
⊥

j + F̂
⊥

+
χ

X

(

ψ̂i · ∇
)

Ĝ
⊥

i

+

√

2T

J
f(t̂), (22b)

where we have defined

Ω =
Jχ

η2
, (23a)

F̂i =
v0
J
Fi, (23b)

Ĝi =
v2
0

J
Gi. (23c)

All these quantities are dimensionless (provided one
chooses the units of G so that µ and m have the same
units so that χ/X is non-dimensional, see Eq. (14a)).
Ω is a measure of the relative weight of inertia vs. dissi-

pation. The overdamped limit is obtained taking Ω → 0,
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in which case the equation for the orientation becomes
first-order, yielding a continuous-time version of the Vic-
sek model:

˙̂x = v̂0ψ̂(t̂) (24a)

˙̂
ψi =

∑

j

nijψ̂
⊥

j + F̂
⊥ +

χ

X

(

ψ̂i · ∇
)

Ĝ
⊥

i

+

√

2T

J
f(t̂). (24b)

In what follows we shall consider the case of a single par-
ticle and a harmonic restoring force F̂ = −kx̂. For this
force, the overdamped equation (but not the full ISM)
reduces to a form that looks like the harmonic oscillator,

¨̂x = −v̂0kx̂
⊥ + v0

√

2T

J
f(t̂), (25)

but with a non-linearity introduced by the projector op-
erator. Explicitly, going back to dimensionful time,

ηẍ = −kJv0x+ kJv0(ψ · x)ψ +
√

2ηTf(t). (26)

III. NUMERICAL RESULTS

To gain some insight into the behavior of the modi-
fied model, we consider the case of a single particle in an
external field to study the confinement effects. We solve
the equations of motion numerically in their second-order
form (20). We have employed an integration scheme used
in Brownian Dynamics simulations [36], based on a Ve-
locity Verlet integrator with Lagrange multipliers to en-
force fixed speed. The procedure is described in detail in
ref. [35]. We consider the simplest form of the force to
achieve confinement, namely a simple harmonic force

Fi = −
1

v0
k0xi, (27)

and set Gi = 0. All results shown are in 2-d.
The mean squared displacement (MSD) d2(t) = [x(t)−

x(0)]2 is shown in Fig. 1 for the ISM with two differ-
ent values of the dimensionless parameter Ω (23a) (re-
call Ω ≫ 1 means inertia dominates, while Ω ≪ 1
corresponds to overdamped systems) and different field
strengths (i.e. different k0). In all cases, for very short
times there is a ballistic regime (d2 ∼ t2) which crosses
over to a diffusive (d2 ∼ t) regime for the free case. If
the confining field is present, the displacement eventually
saturates at an Ω-dependent plateau (Fig. 2). For weak
enough fields, the diffusive regime can be observed be-
fore the plateau, but at high fields the confinement effects
manifest before the transition from ballistic to diffusive
motion.

The effects of confinement can also be noticeable in
the velocity correlation function Cv(t) = 〈v(t) · v(0)〉
(Fig. 3). If the confining field strength is large enough,
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FIG. 1. Mean squared displacement d2(t) vs. time for the
ISM with harmonic confining force at different values of Ω
and k0. Left panels correspond to Ω = 3 · 10−5, and right
panels to Ω = 2.5. The top panels show the MSD for k0 = 1
(blue) compared to the free particle (k0 = 0, orange), and the
lower panels have k0 = 0.02 (green) and k0 = 0. Note that
the orange curves correspond to free particles with different
inertia, hence the diffusive regime is reached at different times.
The dashed lines have slope 2 (green) and 1 (orange) and are
a guide to identify the ballistic and diffusive regimes. Time is
measured in units of η/J and position in units of v0η/J . The
MSD is an average over 100 trajectories. Insets show sample
trajectories, with the same color code as the main panels.
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FIG. 2. Maximum (plateau) of the mean squared displace-
ment vs. Ω for the ISM with harmonic confinement, k0 = 1.
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C

v
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k0 = 0.02
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t [η/J ]

FIG. 3. Velocity time correlation function Cv(t) for Ω =
3 · 10−4 (left) and Ω = 2.5 (right) and three values of k0. The
vertical dotted line indicates the time at which the system
with k0 = 1 starts feeling the confinement effects of the field
(Fig. 1). For the lower value of k0, confinement is only ob-
served around t ≈ 20 to 25 η/J , which is out of the scale of
the abscissa.

there is a range of times for which anticorrelation is ob-
served and followed, at high Ω, by damped oscillations.
The first anti-correlation minimum should not be mis-
taken for an inertial effect: it is due to the fact that the
velocity changes direction due to the confinement force,
and it is actually observed both at low and high Ω for
large enough k0. For k0 = 1 it can be seen that Cv(t)
has its first minimum around t ≈ 3, which is the time at
which confinement effects start to be noticeable in d2(t)
(cf. top panels of Fig. 1). At this time, the diffusive
regime has not yet been reached, and correlation function
of the free particle is still non-vanishing. In contrast, for
weaker fields (e.g. k0 = 0.02 in Fig. 3) it can happen that
the MSD starts deviating towards the plateau already in
the diffusive regime, when the velocity has lost correla-
tion (as measured by Cv(t) for the free case). In this
case no anticorrelation minimum is observed. Inertial ef-
fects manifest, for large k0, in the presence of damped
oscillations in Cv(t), lasting roughly during the transi-
tion from the ballistic regime to the plateau in the MSD.
For all k0, when Ω is large the correlation function has
a flat derivative as t→ 0, a sign of second-order dynam-
ics (see discussion in [16]). This can be seen plotting
h(x) = − logC(x)/x with x = t/τ and τ is the correla-
tion time (Fig. 4). h(x) tends to a constant for x → 0 if
C(t) resembles a simple exponential for short times (over-
damped system), or to 0 if C(t) has a flat derivative. We
have computed τ using the spectral definition [37],

∫ ∞

0

dt

t

C(t)

C(t = 0)
sin

(

t

τ

)

=
π

4
. (28)

The velocity time correlations look similar to those of
an harmonic oscillator with Langevin dynamics, a system
that might be considered a minimal model for a single
confined particle. However, the behavior of the active

0.0 0.2 0.4 0.6 0.8 1.0

t/τv

0.00

0.25

0.50

0.75

1.00

h
(t
/
τ v
)

FIG. 4. The function h(x) = − logCv(x)/x|x=t/τ for Ω =

3 ·10−4 (full lines) and Ω = 2.5 (dotted lines). Colors indicate
values of k0 as in Fig. 3.

system is different from the harmonic oscillator’s. One
way to see this is considering the correlation times of the
three dynamical variables position x, velocity v and spin
s. Since the spin can be computed from the trajectories
as s = µv × v̇, this definition can also be applied to tra-
jectories of the harmonic oscillator to obtain a correlation
function Cs(t), so we can compute the time correlation
functions for position Cx(t), velocity Cv(t) and spin Cs(t)
in both systems. Writing the oscillator equation as

mẍ+ ηẋ + kx = ξ(t) (29)

the inertial parameter is ΩHO = km/η2. The ratios
τv/τx and τs/τx show quite different behavior as a func-
tion of Ω or ΩHO (Fig. 5). In the HO, both ratios in-
crease monotonically as the system becomes more un-
derdamped, while in the ISM τv/τx is monotonically de-
creasing and τs/τx reaches a maximum near Ω = 1 and
then decreases. The third ratio, τs/τv, is monotonically
increasing in both cases, but as Ω → 0 it tends to 1 for
the HO while it goes to zero for the ISM, as in the latter
the spin correlation time vanishes more quickly than that
of the velocity.

It is harder to discriminate between ISM and HO work-
ing at fixed Ω (which would be the situation in exper-
imental observations). But in principle one could use
h(x) for the velocity correlation function Cv(t) to esti-
mate whether Ω is high or low, then study the relaxation
time ratios. If h(x) stays finite for x → 0 (low Ω), then
τs/τv < 1 is not compatible with simple harmonic mo-
tion, and neither is the presence of a ballistic regime in
d2(t). At high inertia instead, τs/τx and τv/τx both less
than one and of similar value would be incompatible with
an HO.

Finally, we have considered a measure of the trajecto-
ries’ shape. The sample trajectories in Fig. 1 show that
in the inertial case the particle finds it more difficult to
turn back on itself, and responds to confinement making
turns with smoother curvature than in the over-damped
case. This suggests that measuring the number of times
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FIG. 5. Correlation times ratios vs. inertial parameter for the
2-d stochastic harmonic oscillator (left) and ISM (right).
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FIG. 6. Number of times a trajectory crosses itself during one
velocity correlation time vs. inertial parameter. Top: ISM,
bottom: 2-d stochastic harmonic oscillator. Insets show, as
an example, the trajectories for Ω = 1 for each system, with
circles indicating the intersections.

the trajectory intersects with itself might be a way to
detect inertial effects directly from the trajectory. We
show the number of times the trajectory intersects itself
during one velocity correlation time in Fig. 6. It is clear
that at low inertia the trajectory crosses itself much more
often than at high Ω. This tendency is also observed in
the harmonic oscillator, the ISM case there seems to be
a rather sharp crossover around Ω = 1.

IV. DISCUSSION AND CONCLUSIONS

We have shown how the inertial spin model equa-
tions of motion must be modified to include position-
dependent forces in this model. The most compact for-
mulation is in terms of velocity and spin, Eqs. (18), where
the positional forces enter only in the equation for the
spin.

As a simple application of the new equations, we have
considered a single harmonically confined active particle,
and shown how inertia can be detected in this simple
case without collective effects. The appearance of an
anti-correlation minimum in the velocity temporal self-
correlation function is an effect of strong confinement
and it appears in over- and under-damped systems, but
longer-lasting damped oscillations are only found with
high inertia. Such damped oscillations were recently re-
ported for male Anopheles gambiae (malaria mosquitoes)
in laboratory swarms [38]. Also, the trajectories recorded
in that work look more “open” than the Vicsek trajecto-
ries, displaying loops roughly similar to the simulated
trajectories at high Ω in Fig. 1. The present develop-
ments are useful for attempting to apply the ISM to the
analysis of these and other experiments on laboratory-
confined swarms (e.g. [39, 40]).

As a next step, it is clearly of interest to study systems
of many particles with open boundary conditions, main-
taining a finite density through confinement or cohesive
interactions. This can be done with the present formula-
tion of the inertial spin model, and it is worth pursuing
to achieve a better description of experimental results as
well as to gain further theoretical understanding of the
collective properties of active models. As an example,
in a series of recent papers [41–43], it has been claimed
that, for the Vicsek model, replacing periodic boundaries
with an harmonic confinement alters the behavior of the
model near ordering, giving rise to a phase transition
characterized by scale-free chaos and an extended crit-
icality region and yielding different static and dynamic
critical exponents. Open conditions thus deserve deeper
inquiry, both for over- and under-damped inertial sys-
tems. Finally, position-dependent forces can also be used
to investigate the response of a swarm to external per-
turbations that do not directly alter the velocities. Work
in these directions is in progress.
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