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Abstract

Knowing how individual abilities change is essential in a wide range of activities. The
most widely used skill estimators in industry and academia (such as Elo and TrueSkill)
propagate information in only one direction, from the past to the future, preventing them
from obtaining reliable initial estimates and ensuring comparability between estimates
distant in time and space. In contrast, the model TrueSkill Through Time (TTT) prop-
agates all historical information throughout a single causal network, providing estimates
with low uncertainty at any given time, enabling reliable initial skill estimates, and en-
suring historical comparability. Although the TTT model was published more than a
decade ago, it was not available until now in the programming languages with the largest
communities. Here we offer the first software for Julia, Python, and R, accompanied by
a detailed overview for the general public and an in-depth scientific explanation. After
illustrating its basic mode of use, we show how to estimate the learning curves of histori-
cal players of the Association of Tennis Professionals. Analytical approximation methods
and message-passing algorithms allow inference to be solved efficiently using any low-end
computer, even in causal networks with millions of nodes and irregular structures.

Keywords: Learning, skill, Bayesian inference, gaming, education, sports, Julia, Python, R.

1. Introduction
Knowing how individual skills change over time is essential in the educational system and the
labor market. Since skills are hidden variables, the best we can do is estimate them based
on their direct observable consequences: the outcome of problem-solving and competitions.
However, estimating learning curves is a sensitive issue, especially when they are used to make
decisions that may impact individuals. Considering only the frequency of positive results as
an indicator of the individual’s ability could lead to wrong approximations, mainly because
the outcome also depends on the difficulty of the challenge. For this reason, all widely used
skill estimators use pairwise comparisons. With the first generative models proposed almost
a century ago by Thurstone (1927) and Zermelo (2013), it is assumed that the observed result
probability r depends on the performance p of an agent i and their opponent j, expressed
as P ( r | pi, pj ). The field continued to progress with the work of Bradley and Terry (1952)
and Mosteller (1951a,b,c), leading to a breakthrough that took place when Elo (2008) devel-
oped a methodology for the US Chess Federation (USCF), used by the International Chess
Federation (FIDE) nowadays.
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More recently, these models were extended and solved through the Bayesian approach to
probability Glickman (2001); Herbrich et al. (2006). Using Bayes’s theorem we can quantify
the uncertainty of the skill hypotheses using the information provided by the observed result
and the specific model,

p(
Hidden︷ ︸︸ ︷
Skilli |

Observed︷ ︸︸ ︷
Result ,Model)︸ ︷︷ ︸

Posterior

=

Likelihood︷ ︸︸ ︷
P (Result | Skilli ,Model)

Prior︷ ︸︸ ︷
p(Skilli)

P (Result |Model)︸ ︷︷ ︸
Evidence or prior prediction

(1)

where the only free variable is the skill hypothesis of agent i. The prior quantifies the un-
certainty about the skill before seeing the result, and the posterior quantifies the uncertainty
after seeing the result. The likelihood and the evidence can be interpreted as predictions of
the observed results. Because the evidence is the same for all hypotheses, the only factor that
updates our beliefs is the likelihood.

1.1. TrueSkill

In this paper, we focus on a basic causal model in which skills generate the observable result of
a model (Figure 1). The agents exhibit different performances at each event, varying around
their actual skill, following a distribution N (p | s, β2). The model assumes that the agent
with the highest performance wins, r = (pi > pj). The parameter β2, being the same for all

rResult: r = (d > 0)

d d = pi − pjDifference:

pi pjPerformance:

si sj

p ∼ N (s, β2)

Skill:

Figure 1: Generative model in which skills cause the observable results mediated by the
difference of hidden performances of both random variables around their unknown true skill
(d = pi − pj). The one with the highest performance wins, r = (d > 0). Observable variables
are painted gray, hidden in white, and constants are shown as black dots.

agents, acts as the scale of the estimates: skills at a distance of one β mean a 76 % probability
of winning, independent of the absolute value of the estimates.
For example, we consider a winning case (pi > pj) using a Gaussian prior (i.e., N ( s |µ, σ2))
for each skill. Our prior belief about the difference in performances, d = pi − pj , is expressed
as a Gaussian distribution centered on the difference in the prior estimates (µi − µj), with
a variance that incorporates the uncertainty of both estimates (σi and σj) and the variance
of both performances (β), N (d |µi − µj , 2β2 + σ2

i + σ2
j ). As we observed that the agent i

won, we know from the causal model that the hidden difference in performance was positive.
Therefore, the prior prediction of the observed result, or evidence, is the cumulative density
(Φ) of all positive values of performance difference as expressed in Equation 2. During the
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rest of this work, the role of the model will be left implicit.

Evidence︷ ︸︸ ︷
P (r) = 1− Φ(0 |

Expected
difference︷ ︸︸ ︷
µi − µj ,

Total
uncertainty︷ ︸︸ ︷

2β2 + σ2
i + σ2

j ) (2)

The evidence is a prediction made with all the prior hypotheses. Since it is a constant,
the posterior uncertainty of each hypothesis is proportional to the product of their prior
uncertainty and likelihood, as shown in Equation 3. Section 3.4 shows how these expressions
are obtained by applying the sum and product rules.

p( si | r )︸ ︷︷ ︸
Posterior

∝ 1− Φ(0 |si − µj , 2β2 + σ2
j )︸ ︷︷ ︸

Likelihood P (r|si)

N (si |µi, σ2
i )︸ ︷︷ ︸

Prior p(si)

(3)

Dividing the right hand with the evidence P (r) leads to the normalized posterior. It is
interesting to note the similarities and differences between likelihood and evidence. The
likelihood quantifies the same cumulative density as the evidence but is centered on the
difference between the hypothesis we are evaluating (si) and the opponent’s mean estimate
(µj), with a variance that includes all uncertainties except the one of si.

0
µilow skill high skill

Hypothesis si

D
en

si
ty

Prior
Likelihood
Posterior

S
ur

pr
is

e 
=

 1
 −

 li
ke

lih
oo

d

Evidence

Figure 2: Update of the belief for the winning case. The proportional posterior is the product
of the prior (Gaussian) and the likelihood (cumulative Gaussian). The evidence is the integral
of the proportional posterior. The distributions are not necessarily on the same scale: the
prior integrates to 1, while the likelihood goes from 0 to 1.

The posterior is just the prior’s density that is not filtered by the likelihood. The surprise,
defined as the likelihood’s complement, works as a filter for the prior. In the region of very
high-skill hypotheses, where the winning result would have generated almost no surprise
(limsi→∞ P (r|si) = 1), the posterior receives all the prior’s density. In the region of low-skill
hypotheses, a win would generate a great surprise (limsi→−∞ P (r|si) = 0), and the posterior
receives no density from the prior.
It is important to stress that the posterior, although similar, is not a Gaussian distribution,
preventing us from using Equation 3 iteratively. But due to the shape of the exact poste-
rior, a Gaussian distribution could be used as a good approximation, allowing us to avoid
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the computational cost of the sampling methodologies. The success of the TrueSkill solu-
tion (Herbrich et al. 2006) is based on the usage of an efficient method for computing the
Gaussian distribution that best approximates the exact posterior (see Section 3.6),

p̂(si|r, sj) = arg min
µ,σ

KL( p(si|r, sj) || N (si|µ, σ2) ) (4)

in terms of Kullback-Leibler divergence minimization between the true and the approximate
distribution. This method allows us to efficiently apply Equation 3 iteratively over a sequence
of observations, which would otherwise be infeasible. The approach adopted by TrueSkill to
treat the dynamical process, known as filtering, uses the last approximate posterior as the
prior for the next event. The approximate posterior at any given time is defined as:

̂Posteriort ∝ ̂Likelihoodt

̂Posteriort−1 as Priort︷ ︸︸ ︷
̂Likelihoodt−1 . . . ̂Likelihood1Prior1︸ ︷︷ ︸

̂Posterior1 as Prior2

(5)

where ̂Posteriori and ̂Likelihoodi represent the approximations induced by the Equation 4 at
the i-th event. If we consider the likelihood as a filter of the prior, each posterior is the
accumulation of all previous filters. In this way, information propagates from past to future
estimates. Since skills change over time, it is necessary to incorporate some uncertainty γ
after each step.

p̂(sit) = N (sit |µit−1 , σ
2
it−1 + γ2) (6)

Because the filtering approach is an ad-hoc procedure that does not arise from any probabilis-
tic model, its estimates have some problems. The most obvious is that the beginning of any
sequence of estimates always has high uncertainty. But temporal and spatial decouplings may
also occur, preventing the comparison between distant estimates. Although the relative dif-
ferences between current estimates within well-connected communities are correct, estimates
separated in time and between poorly connected communities may be incorrect. All of these
issues are related to the fact that information propagates in only one direction through the
system and can be solved by inferring with the available information from events occurring
in parallel jointly with future events.

1.2. TrueSkill Through Time model
To solve the limitations of the TrueSkill algorithm, it is necessary to perform the inference
within a Bayesian network that includes all historical activities, enabling the information to
propagate throughout the system. This ensures both good initial estimates and comparability
of estimates distant in time and space. The connectivity between events is generated by the
basic assumption that a player’s skill at time t depends on his skill at an earlier time t − 1,
generating a network that acquires its structure depending on who participates in each event.
Coulom (2008) and Maystre et al. (2019) implemented similar algorithms based on Laplacian
approximations and Gaussian processes. Excluding the dynamic component, γ = 0, the prior
of the agent i at the t-eth event is just the product of all their likelihoods, except the one of
the t-eth event.

Priorit = Priori0
t−1∏
k=1

Likelihoodik︸ ︷︷ ︸
Past information

Ti∏
k=t+1

Likelihoodik︸ ︷︷ ︸
Future information

(7)
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where Ti is the total number of events with agent i participation, and Priori0 is the initial
prior. It produces a mutual dependence between estimates that forces us to iteratively use
the last available likelihoods until convergence is reached (details in Section 3.8). Figure 3
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Figure 3: Convergence of a Bayesian network consisting of two events and two agents: the
first game is won by player a, and the second one is won by player b. The brightness of the
curves indicates the order: the first one (the clearest) corresponds to the TrueSkill estimates,
and the last one (the darkest) corresponds to the TrueSkill Through Time estimates.

shows how the estimates converge in a Bayesian network with two agents and two events.
According to what the data suggests (one win each), TrueSkill Through Time recovers the
differences between skills, indicating that both players have the same skill (both posterior
centered on zero). On the opposite, TrueSkill offers biased estimates.
The advantage of TrueSkill Through Time lies in its temporal causal model, which allows
information to propagate throughout the system. Unlike neural networks that have regular
structures, these Bayesian networks acquire a complex structure typically growing up to
millions of parameters (e.g., video games). Notwithstanding, this procedure converges within
a few linear iterations over the data. The correction of biases is a fundamental step in
constructing reliable estimators that serve both for decision-making in sensitive areas and for
evaluation of scientific theories that use the skill as observable data. In this work, we make
available the first TrueSkill Through Time packages for Julia, Python, and R jointly with their
complete scientific documentation (Landfried 2021).

2. Illustrations
This section shows how to use Julia, Python, and R packages. We present four examples:
a single event, a three-event sequence, the skill evolution of a player, and the analysis of
the Association of Tennis Professionals (ATP) historical data. We use both TrueSkill and
TrueSkill Through Time models and show the steps to obtain the posteriors, the learning
curves, and the prior prediction of the observed data (i.e., evidence). We identify the different
programming languages using the following color scheme:

Syntax common to Julia, Python and R
Julia syntax Python syntax R syntax

where the full line is used when the syntax of the three languages coincides, and when the



6 TrueSkill Through Time

languages have different syntax, we use different colors: Julia on the left, Python in the middle,
and R on the right.

2.1. Single event
We define the class Game to model events and perform inference given the teams’ composition,
the result, and the typical draw probability for those events (p_draw). The features of the
agents are defined within the class Player: the prior Gaussian distribution characterized by
the mean (mu) and the standard deviation (sigma), the standard deviation of the performance
(beta), and the dynamic factor of the skill (gamma). In the following code, we define the
variables we will use later, assigning the default values.

mu = 0.0; sigma = 6.0; beta = 1.0; gamma = 0.03; p_draw = 0.0

Code 1: Package parameters and their default values.
The initial value of mu, shared by all players, can be freely chosen because the difference in
skills is what matters and not its absolute value. The prior’s standard deviation sigma must
be sufficiently large to include all possible skill hypotheses. beta (β) is, perhaps, one of the
most important parameters because it works as the estimate’s scale. A difference of one β
between two skills (si − sj = β) represents a 76 % probability of winning. Since it is the unit
of measurement, we choose beta=1.0. The dynamic factor gamma is generally a fraction of
beta. The draw probability (p_draw) is usually initialized with the observed draws frequency.

Parameter Default value
mu 0.0

sigma 6.0
beta 1.0
gamma 0.03
p_draw 0.0

(a) Parameters.

Gam
m

a Sigma

M
odel probability

(b) Optimization.

Figure 4: (a) presents the model’s parameters and their default values. (b) shows the combi-
nation space for sigma and gamma, including the zone which maximizes the model probability
given the data.

Figure 4 summarizes these default values and shows the possibility of optimizing two of them,
whose values depend on the data set. We create four identical players using these values.

a1 = Player(Gaussian(mu, sigma), beta, gamma); a2 = Player(); a3 = Player(); a4 = Player()

Code 2: Players initialization.
The first player is created by explicitly writing the parameters. For the rest of them, we use the
default values. The Gaussian class models the standard operations of Gaussian distributions,
including multiplication, summation, division, and subtraction (details in Section 3.3). In the
next step, we create a game with two teams of two players. When dealing with teams,
the observed result depends on the sum of the performances of each member (see details in
Section 3.4).
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team_a = [ a1, a2 ]
team_b = [ a3, a4 ]
teams = [team_a, team_b]

team_a = [ a1, a2 ]
team_b = [ a3, a4 ]
teams = [team_a, team_b]

team_a = c(a1, a2)
team_b = c(a3, a4)
teams = list(team_a, team_b)

g = Game(teams)

Code 3: Teams and game initialization.

where the teams’ order in the list implicitly defines the game’s result: the teams appearing first
in the list (lower index) beat those appearing later (higher index). This is one of the simplest
usage examples. Later on, we will learn how to specify the result explicitly. During the
initialization, the class Game computes the prior prediction of the observed result (evidence)
and the approximate likelihood of each player (likelihoods).

lhs = g.likelihoods[1][1]
ev = g.evidence
ev = round(ev, digits = 3)

lhs = g.likelihoods[0][0]
ev = g.evidence
ev = round(ev, 3)

lhs = g@likelihoods
ev = g@evidence
ev = round(ev, 3)

print(ev)
> 0.5

Code 4: Evidence and likelihoods queries.

In this case, the evidence is 0.5 because both teams had the same prior skill estimates.
Posteriors can be found by manually multiplying the likelihoods and priors, or we can call
the method posteriors() of class Game to compute them. The likelihoods and posteriors
are stored keeping the original order in which players and teams are specified during the
initialization of the class Game.

pos = posteriors(g)
print(pos[1][1])

pos = g.posteriors()
print(pos[0][0])

pos = posteriors(g)
print(pos[[1]][[1]])

> Gaussian(mu = 2.361, sigma = 5.516)
print(lhs[1][1] * a1.prior) print(lhs[0][0] * a1.prior) print(lhs[[1]][[1]]*a1@prior)
> Gaussian(mu = 2.361, sigma = 5.516)

Code 5: Posteriors query and their manual computation.

where the printed posterior corresponds to the first player of the first team. Due to the
winning result, the player’s estimate now has a larger mean and a smaller uncertainty. The
product of Gaussians (i.e., the likelihood times the prior) generates the same normalized
posterior.
We now analyze a more complex example in which the same four players participate in a
multi-team game. The players are organized into three teams of different sizes: two teams
with only one player and the other with two players. The result has a single winning team
and a tie between the other two losing teams. Unlike the previous example, we need to use a
draw probability greater than zero.

ta = [a1]
tb = [a2, a3]
tc = [a4]
teams_3 = [ta, tb, tc]
result = [1., 0., 0.]

ta = [a1]
tb = [a2, a3]
tc = [a4]
teams_3 = [ta, tb, tc]
result = [1, 0, 0]

ta = c(a1)
tb = c(a2, a3)
tc = c(a4)
teams_3 = list(ta, tb, tc)
result = c(1, 0, 0)

g = Game(teams_3, result, p_draw = 0.25)

Code 6: Game with multiple teams of different sizes and the possibility of tie.

where the variable teams contains the players distributed in different teams while the variable
result contains the score obtained by each team. The team with the highest score is the
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winner, and the teams with the same score are tied. In this way, we can specify any outcome,
including global draws. The evidence and posteriors can be queried in the same way as before.

2.2. Sequence of events

We can use the class History to compute the posteriors and evidence of a sequence of events.
In the first example, we instantiate the class History with three players ("a", "b", and "c")
and three games. In the first game, "a" beats "b". In the second game, "b" beats "c", and
in the third game, "c" beats "a". In brief, all agents win one game and lose the other.

c1 = [["a"],["b"]]
c2 = [["b"],["c"]]
c3 = [["c"],["a"]]
composition = [c1, c2, c3]

c1 = [["a"],["b"]]
c2 = [["b"],["c"]]
c3 = [["c"],["a"]]
composition = [c1, c2, c3]

c1 = list(c("a"),c("b"))
c2 = list(c("b"),c("c"))
c3 = list(c("c"),c("a"))
composition = list(c1,c2,c3)

h = History(composition, gamma = 0.0)

Code 7: Initialization of a History’s instance with a three events sequence.

where the variables c1, c2, and c3 model the composition of each game using the names of the
agents (i.e., their identifiers), the variable composition is a list containing the three events,
and the zero value of the parameter gamma specifies that skills do not change over time. The
results are defined implicitly by the order in which the game compositions are initialized: the
first teams in the list defeat those appearing later. The rest of the parameters are initialized
using the default values, as shown in Code 1.
In this example, all agents beat each other, and their skills do not change over time. The
data suggest that all agents have the same skill. After initialization, the class History
immediately instantiates a new player for each name and activates the computation of the
TrueSkill estimates, using the posteriors of each event as a prior for the next one. To access
them, we can call the method learning_curves() of the class History, which returns a
dictionary indexed by the names of the agents. Individual learning curves are lists of tuples:
each has the time of the estimate as the first component and the estimate itself as the second.

lc = learning_curves(h)
print(lc["a"])

lc = h.learning_curves()
print(lc["a"])

lc = h$learning_curves()
lc_print(lc[["a"]])

> [(1, Gaussian(mu = 3.339, sigma = 4.985)), (3, Gaussian(mu = -2.688, sigma = 3.779))]
print(lc["b"]) print(lc["b"]) lc_print(lc[["b"]])
> [(1, Gaussian(mu = -3.339, sigma = 4.985)), (2, Gaussian(mu = 0.059, sigma = 4.218))]

Code 8: Learning curves of players participating in a sequence of events.

The learning curves of players "a" and "b" contain one tuple per game (not including the
initial prior). Despite no player is more skilled than the others, the estimates obtained by
TrueSkill present strong variations between players. The estimates obtained after the first
game ("a" beats "b") have the same uncertainty and mean absolute value, being positive
for the winner and negative for the other. Estimates computed after the events with the
participation of "c" have lower uncertainty and mean values closer to zero.
TrueSkill Through Time solves TrueSkill’s inability to obtain correct estimates by allowing
the information to propagate throughout the system. To compute them, we call the method
convergence() of the class History.

convergence(h)
lc = learning_curves(h)

h.convergence()
lc = h.learning_curves()

h$convergence()
lc = h.learning_curves()
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print(lc["a"]) print(lc["a"]) lc_print(lc[["a"]])
> [(1, Gaussian(mu = 0.0, sigma = 2.395)), (3, Gaussian(mu = -0.0, sigma = 2.395))]
print(lc["b"]) print(lc["a"]) lc_print(lc[["a"]])
> [(1, Gaussian(mu = -0.0, sigma = 2.395)), (3, Gaussian(mu = 0.0, sigma = 2.395))]

Code 9: Computing TrueSkill Through Time learning curves.

TrueSkill Through Time returns correct estimates (i.e., same value for all players) and has
less uncertainty.

2.3. Skill evolution

We now analyze a scenario in which a new player joins a large community of already-known
players. In this example, we focus on the estimation of an evolving skill. For this purpose, we
establish the skill of the target player to change over time following a logistic function. We
generate the community to ensure that the opponents have a skill similar to our target player
throughout the evolution. We generate the target player’s learning curve and 1000 random
opponents in the following code.

import math; from numpy.random import normal, seed; seed(99); N = 1000
def skill(experience, middle, maximum, slope):

return maximum/(1+math.exp(slope*(-experience+middle)))
target = [skill(i, 500, 2, 0.0075) for i in range(N)]
opponents = normal(target, scale = 0.5)

Code 10: Initialization of the target’s learning curve and the community of opponents.

Here we only include the Python version (Appendix 5.1 includes Julia and R versions). The
list target has the agent’s skills at each moment: the values start at zero and grow smoothly
until the target player’s skill reaches two. The list opponents includes the randomly generated
opponents’ skills following a Gaussian distribution centered on each target’s skills and a
standard deviation of 0.5.

composition = [[["a"], [str(i)]] for i in range(N)]
results = [[1,0] if normal(target[i]) > normal(opponents[i]) else [0,1] for i in range(N)]
times = [i for i in range(N)]
priors = dict([(str(i), Player(Gaussian(opponents[i], 0.2))) for i in range(N)])
h = History(composition, results, times, priors, gamma = 0.015)
h.convergence()
mu = [tp[1].mu for tp in h.learning_curves()["a"]]

Code 11: Estimating the simulated learning curve from random results.

In this code, we define four variables to instantiate the class History to compute the target’s
learning curve. The variable composition contains 1000 games between the target player
and different opponents. The list results is generated randomly by sampling the agents’
performance following Gaussian distributions centered on their skills. The winner is the
player with the highest performance. The variable time is a list of integer values ranging
from 0 to 999 representing the time batch in which each game is located: the class History
uses the temporal distance between events to determine the amount of dynamic uncertainty
(γ2) to be added between games. The variable priors is a dictionary used to customize
player attributes: we assign low uncertainty to the opponents’ priors as we know their skills
beforehand.
The class History receives these four parameters and initializes the target player using the
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default values and a dynamic uncertainty gamma=0.015. Using the method convergence(),
we obtain the TrueSkill Through Time estimates and the target’s learning curve. Because
the estimates depend on random results, we repeatedly execute Code 11 to consider their
variability. Figure 5 shows the evolution of the actual (solid line) and estimated (dotted line)
target player’s learning curves. The estimated learning curves remain close to the actual skill
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Figure 5: True and estimated learning curves of a new player joining a large community of
already-known players. The solid line represents the target player’s skill, while the dashed
lines show the mean estimates. The dark and light gray areas show one and two times the
uncertainty of one of the estimates.

during the whole evolution as can be seen in Fig. 5(a). For Fig. 5(b), we select one of the
estimated learning curves and present its uncertainty, showing that the uncertainty interval
contains the actual learning curve. This example exhibits that TrueSkill Through Time can
follow the evolution of a new player’s skill.

2.4. The history of the Association of Tennis Professionals (ATP)

This last example analyzes the complete history of the Association of Tennis Professionals
(ATP) registered matches. The publicly-available database has 447 000 games from 1915 to
2020 with more than 19 000 participating players. The information stored in a single CSV
file1 includes single and double matches: if the column double has the letter t, the game
is a double match. Each game has an identifier (i.e., match_id) and its tournament’s round
number (i.e., round_number), where 0 represents the final game, 1 the semi-final increasing
until the tournament end. The file also contains players’ identifiers and names. For example,
column w2_id is the second player’s identifier of the winning team, and l1_name is the first
player’s name of the losing team. Finally, we have the tournament’s name (tour_name), its
identifier (tour_id), the tournament’s starting date (time_start), and the type of surface
(ground). Here we only show the Julia code because it is far more efficient than Python
and R versions (Appendix 5.2 shows the Python and R codes, and Section 4 compares the
performance between them).

using CSV; using Dates
data = CSV.read("atp.csv")

dates = Dates.value.(data[:,"time_start"] .- Date("1900-1-1"))

1Available at https://github.com/glandfried/tennis_atp/releases/download/atp/history.csv.zip.
Additional data at Jeff Sackmann’s site: https://github.com/JeffSackmann/tennis_atp.
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matches = [ r.double == "t" ? [[r.w1_id,r.w2_id],[r.l1_id,r.l2_id]] : [[r.w1_id],[r.l1_id]]
for r in eachrow(data) ]

h = History(composition = matches, times = dates, sigma = 1.6, gamma = 0.036)
convergence(h, epsilon = 0.01, iterations = 10)

Code 12: The history of the Association of Tennis Professionals.

In this code, we open the file atp.csv, create the variables times and composition, and
instantiate the class History. We define the event times as the days elapsed from a ref-
erence date to the tournament start date, assuming that the skill is the same within each
tournament. When generating the list composition, we discriminate whether the games are
doubles or singles. The composition’s order establishes the results, placing the winning team
first. When initializing the class History, we set the values of sigma and gamma based on
an optimization procedure previously performed (recall Figure 4(b)). Finally, we use the
convergence() method to obtain TrueSkill Through Time estimates explicitly selecting the
convergence criterion: when the change between iterations is less than 0.01 or when reaching
ten iterations. Table 6(a) shows the historical ranking of players in the top position of the

Pos. Player Weeks
1 Novak Djokovic 320
2 Roger Federer 310
3 Pete Sampras 286
4 Ivan Lendl 270
5 Jimmy Connors 268
6 Rafael Nadal 209
7 John McEnroe 170
8 Björn Borg 109
9 Andre Agassi 101
10 Lleyton Hewitt 80
11 Stefan Edberg 72
12 Jim Courier 58
13 Gustavo Kuerten 43
14 Andy Murray 41
15 Ilie Năstase 40
16 Mats Wilander 20

(a) Weeks at first position.
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(b) Estimated learning curves for some famous male players.

Figure 6: (a) Historical ranking according to the number of weeks that players reached the
first position in the ATP’s ranking until March 10, 2020. (b) Estimated skill of some of the
historical ATP’s leaders. The shaded area represents a standard deviation of uncertainty.
The top bar indicates which player was at the top of the ATP’s ranking. The dotted line is
located at six skill points and helps to compare the curves.

ATP’s ranking according to the number of weeks occupying the first position. The table is
updated to the date of writing this manuscript and, as the ATP’s tour was suspended due
to COVID-19, 22 weeks are excluded from consideration. Figure 6(b) presents the estimated
learning curves of some famous male players in ATP’s history, which we identified using dif-
ferent colors. The top bar indicates which player was at the top of the ATP’s ranking (the
bar has no color when player number 1 is not considered in our analysis).
ATP ranking points are updated every Monday according to the tournament’s prestige and
the stage reached. Only during brief periods, there is no coincidence between the estimated
skill and the top player of the ATP’s ranking, showing a good agreement between both
methodologies. Notwithstanding, there are some notorious differences between estimated
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players’ skills and the ATP’s ranking, especially concerning the historical ranking shown in
Table 6(a). On the one hand, Lleyton Hewitt’s position in the historical ranking is the product
of a window of opportunity opened around the year 2000 since his ability is relatively low in
historical terms. On the other hand, Andy Murray is the fourth most skilled player according
to our estimations, but he only reaches 14th place in the historical ranking, just one place
above Ilie Năstase.
TrueSkill Through Time allows comparing the relative ability of players over time, unlike
historical ATP’s ranking and estimators based on the filtering approach (such as TrueSkill).
The learning curves share a similar pattern: they begin with rapid growth, reach an unstable
plateau, and end with a slow decline (for visualization purposes, we hide the last portion of
the players having long final stages). Individual learning curves enable recognition of special
periods of crisis and prolonged stability of the professional players, and even the effects of
emotional slumps such as those suffered by Aggasi and Djokovic. It is worthwhile to note
that the skill of tennis players did not increase abruptly over the years: contrary to what is
expected, the players of the 1980s were more skilled than those of the 1990s and reached a
skill similar to what Federer, Nadal, and Djokovic had in 2020, even though the latter reached
higher values for a longer time.
The previous example summarizes the players’ skills using a single dimension. TrueSkill
Through Time allows estimating multi-dimensional skills. It is widely recognized that the
ability of certain tennis players varies significantly depending on the surface. To quantify
this phenomenon, we propose modeling each player as a team composed of a generic player,
who is included in all the games, and another player representing the player’s ability on a
particular surface. For example, Nadal is represented by a two-player team: Nadal_generic
and Nadal_clay when playing on this kind of surface, and Nadal_generic and Nadal_grass
when participating in the Wimbledon tournament.

players = Set(vcat((composition...)...))
priors = Dict([(p, Player(Gaussian(0., 1.6), 1.0, 0.036) ) for p in players])

composition_ground = [ r.double == "t" ? [[r.w1_id, r.w1_id*r.ground, r.w2_id,
r.w2_id*r.ground],[r.l1_id, r.l1_id*r.ground, r.l2_id, r.l2_id*r.ground]] : [[r.w1_id,
r.w1_id*r.ground],[r.l1_id, r.l1_id*r.ground]] for r in eachrow(data) ]

h_ground = History(composition = composition_ground, times = dates, sigma = 1.0, gamma =
0.01, beta = 0.0, priors = priors)

convergence(h_ground, epsilon = 0.01, iterations = 10)

Code 13: Modeling multi-dimensional skills in ATP history.
In this example, we keep the same prior as in Code 12 for all the generic players, but in this
code, we define them using the variable priors. We create the teams depending on whether
the game is double or single, similarly to Code 12 but now adding the specific surface skills of
each player as their teammate (we use the operator * to concatenate strings). As the specific
surface skills are not defined in the variable prior, we use the default values defined in the
class History for initialization. We also define beta as null for specific surface skills to avoid
adding additional noise to the players’ performance, keeping the scale of the estimates stable.
We select a sigma that we consider sufficiently large and a dynamic factor gamma representing
1 % of the prior uncertainty.
In Figure 7, we show the skill difference that Nadal and Djokovic have in each of the three
types of ground. Nadal has a notorious skill difference when playing on different surfaces. On
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(a) Nadal.
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Djokovic:   Clay Hard Grass

(b) Djokovic.

Figure 7: Skill difference on the three main types of surface. Each point on the y-axis
represents a distance of one β, i.e., 76 % probability of winning.

the contrary, Djokovic has very similar skills in the three types. The Nadal’s skill difference
between clay and grass grounds is greater than one β, which means at least a 76 % difference
in the probability of winning compared to itself. In the case of Nadal, it seems important
to consider the skill’s multi-dimensionality, while in Djokovic’s case, it seems reasonable to
summarize it in a single dimension. To assess whether the complexity added by modeling
multi-dimensionality is appropriate in general terms, we can compare the joint prior prediction
of the models, calling the method log_evidence() of the class History.
In tennis, it is sufficient to summarize the skills in a single dimension since the prior pre-
diction is maximized when the parameters of the surface’s factors (i.e., σ and γ) vanish. In
other examples, where the multi-dimensionality of skills could be more relevant, it should be
necessary to model the skills of all agents using different components. If we consider only
the games in which Nadal participates, optimality is achieved when the parameters take the
values σ = 0.35 and γ = 0, meaning that it is necessary to model multidimensional skills
(σ > 0) but considering that their effect does not change over time (γ = 0). In this scenario,
Nadal’s ability on Clay is 0.87β higher than on Hard and 1.05β higher than on Grass.

3. Models and software

This section provides the complete mathematical documentation of the TrueSkill Through
Time model. The advantage of this model lies in the strict application of probability the-
ory: all the assumptions are made explicit through a generative model, and the inference is
solved only with the rules of probability, nothing more than the sum and the product rules.
Section 3.1 introduces the sum-product algorithm, which allows us to apply these rules to
compute the marginal distributions, e.g., the posterior and the prior prediction. Section 3.2
lists the properties needed to derive the marginal distributions of interest. In Section 3.3,
we introduce the operations of the class Gaussian, which does most of the computation. In
sections 3.4, 3.5, and 3.6, we show how to solve the prior prediction and the exact posterior
of an event, then we introduce the model for a draw and explain how to approximate the
exact posterior in events with two teams. Section 3.7 explains the general multi-team solution
requiring an iterative algorithm. Section 3.8 justifies the mathematical steps required to solve
the full TrueSkill Through Time model.
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3.1. Sum-product algorithm

The sum-product algorithm (Kschischang et al. 2001) takes advantage of the structure of
the joint probability distribution imposed by the causal model to apply the probability rules
efficiently. Any model can be factorized into the product of conditional probabilities. Based
on the independence between variables, our model (Figure 1) can be factorized as,

p(s,p, d, r) = p(s1)p(s2)p(p1|s1)p(p2|s2)p(d|p)P (r|d) (8)

Figure 8 shows this factorization graphically. These representations, known as factor graphs,
have two kinds of nodes: variable-type nodes (white circles) and function-type nodes (black
squares). The edge between node variables and node functions represents the mathematical
relationship “the variable v is an argument of the function f”. In our case, we want to compute

P (r|d) P (r|d) = I(d > 0)

dDifference:

p(d|p) p(d|p) = δ(d = p1 − p2)

p1 p2Performance:

s1 s2

p(p1|s1) p(p2|s2) p(pi|si) = N (pi|si, β2)

Skill:

p(s1) p(s2) p(si) = N (si|µi, σ2
i )

Figure 8: Graphical way of representing the joint distribution factorization induced by the
basic causal model, represented by Equation 8. Black squares represent the functions, white
circles represent the variables, and the edges between them represent the mathematical rela-
tionship “the variable is the argument of the function”.

two marginals, the proportional posterior of the skills p(si, r) and the prior probability of
the result p(r). The sum-product algorithm is a general way of breaking down the rules of
probability as messages sent between the nodes of the factor graph. There are two types
of messages: those sent by variable-type nodes to their function-type neighbors (mv→f (v))
and the ones that function-type nodes send to their variable-type neighbors (mf→v(v)). The
former partially performs the product rule.

mv→f (v) =
∏

h∈n(v)\{f}
mh→v(v) (product step)

where n(v) represents the set of neighbor nodes to v. In brief, the messages sent by the
variable-type node v are the product of the messages that v receives from the rest of their
neighbors h ∈ n(v) except f . The messages sent by the function-type nodes encode a portion
of the sum rule.

mf→v(v) =
∫
· · ·
∫ (

f(h, v)
∏

h∈n(f)\{v}
mh→f (h)

)
dh (sum step)
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where h = n(f) \ {v} is the set of all neighbors to f except v, and f(h, v) represents the
function f , evaluated in all its arguments. In brief, the messages sent by a function f are also
the product of the messages it receives from the rest of its neighbors h ∈ n(f) except v, but
this time it is also multiplied by itself f(·) and integrated (or summed) over h. Finally, the
marginal probability distribution of a variable v is simply the product of the messages that v
receives from all its neighbors.

p(v) =
∏

h∈n(v)
mh→v (marginal probability)

This algorithm encodes the minimum number of steps required to calculate any marginal
probability distribution.

3.2. Mathematical properties and notation

The efficiency of TrueSkill Through Time is based on the analytical computation of marginal
probabilities. This section lists the needed properties to derive the exact and approximate
messages generated by the sum-product algorithm. The first property states that the product
of two Gaussian distributions evaluated at the same point x can be expressed as the product
of two other Gaussian distributions with only one evaluated at x.

N (x|µ1, σ
2
1)N (x|µ2, σ

2
2) 5.3= N (µ1|µ2, σ

2
1 + σ2

2)N (x|µ∗, σ2
∗) (Gaussian product)

where µ∗ = µ1
σ2

1
+ µ2

σ2
2
y σ2
∗ =

(
1
σ2

1
+ 1

σ2
2

)−1
. Something similar occurs with the division of two

Gaussian distributions, both evaluated at the same point x.

N (x|µ1, σ
2
1)/N (x|µ2, σ

2
2) 5.6∝ N (x|µ÷, σ2

÷)/N (µ1|µ2, σ
2
1 + σ2

2) (Gaussian division)

where µ÷ = µ1
σ2

1
− µ2

σ2
2
y σ2
÷ =

(
1
σ2

1
− 1

σ2
2

)−1
.

The indicator function I(· = ·) is 1 when equality is true and 0 otherwise. It represents
probabilities distributions of non-random discrete variables, such as the result of the games
given the difference of performances p(r|d). Similarly, the Dirac delta function δ(· = ·) rep-
resents probabilities distributions of non-random continuous variables, such as the difference
of performances given the agents’ performances p(d|p). If we can use it to replace a variable
within an integral,∫∫

δ(x = h(y, z))f(x)g(y) dx dy =
∫
f(h(y, z))g(y)dy (Dirac delta function)

the dimensionality of the problem is reduced. We also use the properties derived from the
symmetry of Gaussian distributions.

N (x|µ, σ2) = N (µ|x, σ2) = N (−µ| − x, σ2) = N (−x| − µ, σ2) (Gaussian symmetry)

The Gaussian standardization,

N (x|µ, σ2) = N ((x− µ)/σ|0, 1) (Gaussian standardization)

Equality between the Gaussian distribution and the derivative of their cumulative distribution,
∂

∂x
Φ(x|µ, σ2) = N (x|µ, σ2) (Derivative of the cumulative Gaussian)
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which is valid by definition. The symmetry of the cumulative Gaussian distribution.

Φ(0|µ, σ2) = 1− Φ(0| − µ, σ2) (Symmetry of the cumulative Gaussian)

3.3. The Gaussian class
The Gaussian class does most of the computation of the packages. It is characterized by the
mean (mu) and the standard deviation (sigma).

N1 = Gaussian(mu = 1.0, sigma = 1.0); N2 = Gaussian(1.0, 2.0)

Code 14: Initialization of Gaussian distributions.
The class overwrites the addition (+), subtraction (-), product (*), and division (/) to compute
the marginal distributions used in the TrueSkill Through Time model.

N (x|µ1, σ
2
1)N (x|µ2, σ

2
2) 5.3∝ N (x|µ∗, σ2

∗) (N1 * N2)

N (x|µ1, σ
2
1)/N (x|µ2, σ

2
2) 5.6∝ N (x|µ÷, σ2

÷) (N1 / N2)∫∫
δ(t = x+ y)N (x|µ1, σ

2
1)N (y|µ2, σ

2
2)dxdy 5.4= N (t|µ1 + µ2, σ

2
1 + σ2

2) (N1 + N2)∫∫
δ(t = x− y)N (x|µ1, σ

2
1)N (y|µ2, σ

2
2)dxdy 5.4= N (t|µ1 − µ2, σ

2
1 + σ2

2) (N1 - N2)

Although these properties are widely known, we attach their complete demonstrations in the
supplemental material.

3.4. The exact solution for events with two teams
In the presence of teams, the Elo model assumes that a team’s performance is the sum of
the performance of its members. The team with the highest performance wins, r = (ti > tj).
Figure 9 shows the graphical factorization of the Elo team model. In this example, we have

fr

d

fd
ta

fta

p1

fp1
s1

fs1

p2

fp2
s2

fs2

tb

ftb

p3

fp3
s3

fs3

p4

fp4
s4

fs4

fr = I(d > 0)fd = δ(d = ta − tb)fte = δ(te = ∑
i∈Ae pi)fpi = N (pi|si, β2)fsi = N (si|µi, σ2)

Figure 9: Factor graph of a game with two teams with two players each. The Elo’s team
model incorporate a new variable, t, that models the team performance.

two teams with two players each. Every two-teams game has an analytical solution.
This section shows the steps to compute the exact evidence and likelihoods for a game with
two teams. We only need the sum-product algorithm and the properties mentioned above. We
will start first with the “descending” messages from the priors to the result until computing
the evidence. Then, we continue with the “ascending” messages from the observed result and
to the priors until computing each agent’s posterior.
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Descending messages. Following the sum step of the sum-product algorithm and the
factorization of the model displayed in Fig. 9, messages sent by the skill factors fsi to the
variable si are just the priors.

mfsi→si(si) = N (si|µi, σ2
i ) (prior)

We have access to this message by calling the prior attribute of the Player class. Following
the product step of the sum-product algorithm and the factorization of the model, the message
sent by the variable si to the performance factor fpi is the prior. Since it is trivial to calculate
the messages sent by the variables (they are the product of the messages received from behind),
we do not include them. Then, the message sent by the performance factors fpi to the variable
pi is:

mfpi→pi(pi) =
∫
N (pi|si, β2)N (si|µi, σ2

i )dsi = N (pi|µi, β2 + σ2
i ) (performance())

We have access to these messages through the performance() method of the Player class.

p1 = performance(a1)
p2 = performance(a2)
p3 = performance(a3)
p4 = performance(a4)

p1 = a1.performance()
p2 = a2.performance()
p3 = a3.performance()
p4 = a4.performance()

p1 = performance(a1)
p2 = performance(a2)
p3 = performance(a3)
p4 = performance(a4)

Code 15: Computing the individual prior performance.
where the agents a1, a2, a3, and a4 were initialized in Code 2. The message sent by the team
factors fte to the team variable te is an integral over all the individual performance variables,

mfte→te(te) =
∫∫

δ(te = pi + pj)N (pi|µi, β2 + σ2
i )N (pj |µj , β2 + σ2

j )dpidpj

= N (te|µi + µj︸ ︷︷ ︸
µe

, 2β2 + σ2
i + σ2

j︸ ︷︷ ︸
σ2
e

) (ta = p1 + p2)

where the Dirac delta function imposes the constraint that the sum of the individual perfor-
mances equals a constant team performance value te. Applying the already presented prop-
erties, we can solve this integral analytically, obtaining the prior performance of the teams,
which is a Gaussian distribution centered on the sum of the mean estimates µe = µi + µj
with a variance σ2

e including both the uncertainties of the estimates (i.e., σ2
i + σ2

j ) and the
variance of the individual performances (i.e., 2β2). We have access to this message using the
operator + of the class Gaussian to sum the agents’ performances,

ta = p1 + p2; tb = p3 + p4

Code 16: Computing the team prior performance.
The next message, sent by the difference factor fd1 to the difference variable d1, is:

mfd→d(d) =
∫∫

δ(d = ta − tb)N (ta|µa, σ2
a)N (tb|µb, σ2

b )dtadtb

= N
(
d| µa − µb︸ ︷︷ ︸

Expected difference
: ψ

, σ2
a + σ2

b︸ ︷︷ ︸
Total

uncertainty : ϑ2

)
= N (d|ψ, ϑ2) (d = ta - tb)

The prior difference of performance is a Gaussian distribution centered on the prior expected
difference between teams ψ = µa−µb with variance ϑ2 = σ2

a+σ2
b that includes the uncertainty
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of both teams. We have access to this message using the operator - of the class Gaussian to
get the difference of teams’ performances,

d = ta - tb

Code 17: Computing the prior perfomance’ difference

The last descending message, sent by the factor fr to the variable r, allows to compute the
evidence, i.e., the prior prediction of the observed result.

mfr→r(r) =
∫

I(d > 0)N (d|ψ, ϑ2)dd = 1− Φ(0|ψ, ϑ2) (evidence)

We have access to this message by computing the cumulative value from 0 to ∞ of the team
difference of performances distribution.

e = 1.0 - cdf(d, 0.0) e = 1 - cdf(0,d.mu,d.sigma) e = 1 - cdf(0,d@mu,d@sigma)

Code 18: Computing the prior prediction of the observed result (or evidence).

where e contains the value of equation evidence.

Ascending messages. Now, we examine the ascending messages. The result factor fr
sends to the difference variable d the first ascending message.

mfr→d(d) = I(d > 0) (9)

This message contains the indicator function of the factor fr that transmits the information of
the observed result. The message sent by difference factor fd to the winning team performance
variables te is:

mfd→ta(ta) =
∫∫

δ(d = ta − tb)I(d > 0)N (tb|µb, σ2
b ) dd dtb

=
∫

I(ta > tb)N (tb|µb, σ2
b ) dtb = 1− Φ(0|ta − µb, σ2

b ) = Φ(ta|µb, σ2
b )

(10)

In this case, the previous upstream message is integrated with the downstream message
from the other team. This message, parametrized at ta, is the cumulative of the Gaussian
distribution of the opposing team’s performances from ta to ∞, and encodes the likelihood
of the winning team performance hypotheses. The message sent by team performance factor
fta to the variable of the individual performance p1 is:

mfta→p1(p1) =
∫∫

δ(ta = p1 + p2)N(p2|µ2, β
2 + σ2

2) Φ(ta|µb, σ2
b ) dtadp2

=
∫
N (p2|µ2, β

2 + σ2
2) Φ(p1 + p2|µb, σ2

b ) dp2

= 1− Φ(0|p1 + µ2 − µb︸ ︷︷ ︸
µ1−ψ

, β2 + σ2
2 + σ2

b︸ ︷︷ ︸
ϑ2−(σ2

1+β2)

)
(11)

Again, the previous upstream message is integrated with a downstream message, the prior
performance of their teammate. The message, parameterized at p1, encodes the likelihood
of the individual performance hypotheses of the winning player. The last message, sent by
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individual performance factor fp1 to the skill variable s1 is:

mfp1→s1(s1) =
∫
N(p1|s1, β

2) Φ(p1|µ1 − ψ, ϑ2 − (σ2
1 + β2)) dp1

= 1− Φ(0| (s1 + µ2)− (µ3 + µ4)︸ ︷︷ ︸
Expected difference
parameterized in s1

, ϑ2 − σ2
1︸ ︷︷ ︸

Total uncertainty
except the one of s1

) (12)

This corresponds to the exact likelihood presented in Equation 3, which computes the prior
probability of winning result if the player’s actual skill was s1.

3.5. A basic model for a draw

The model for a draw assumes that a tie occurs when the difference in performance does not
exceed a threshold, |ta − tb| ≤ ε. In Figure 10(a), we graphically display the probabilities of
the three possible outcomes.
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Lose Draw Win

(a) The three possible results.
0
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en
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ty

(b) Constant draw probability.

Figure 10: Distribution of performance difference under the draw model. (a): example of the
areas corresponding to the probability of losing, drawing and winning. (b) shows how the tie
margin should be adapted to keep the tie probability constant when the uncertainty of the
distribution changes.

This model requires establishing the threshold for considering a draw. Herbrich et al. (Her-
brich et al. 2006) propose using the empirical frequency of ties to define it. However, this
value depends on the actual skill difference, which is unknown. Assuming that we can define
the “probability of a draw between teams with the same skill” then the threshold also de-
pends on the number of players. Figure 10(b) shows that to keep the tie area constant, it is
necessary to adapt the threshold according to the uncertainty. Since the observed results are
independent of our beliefs, the only source of uncertainty is the variance of individual perfor-
mance β. Then, we can define an expression that links the threshold ε with the probability
of a tie:

Draw probability = Φ( ε√
n1 + n2β

)− Φ( −ε√
n1 + n2β

) (13)

In the Code 19, we use the function compute_margin() to get the size of the margin.

na = length(team_a)
nb = length(team_b)
sd = sqrt(na + nb) * beta

na = len(team_a)
nb = len(team_b)
sd = math.sqrt(na + nb)* beta

na = length([a1, a2])
nb = length([a3, a4])
sd = sqrt(na + nb) * beta
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p_draw = 0.25
margin = compute_margin(p_draw, sd)

Code 19: Computing the draw margin.

where the individual agents (a1 to a4) were initialized in Code 2 and beta in Code 1.

3.6. Optimal approximation of the exact posterior

In Section 3.4, we presented the procedure to obtain the exact posterior. In this section, we
show how to obtain the Gaussian distribution that best approximates the exact posterior,
considering the possibility of ties. The packages solve it with the two lines of Code 20.

g = Game(teams, p_draw = 0.25)
post = posteriors(g) post = g.posteriors() post = posteriors(g)

Code 20: Computing the approximate posterior.

where the variable teams was initialized in Code 3. The need to approximate the posterior
occurs because the distribution of the difference of performances is a truncated Gaussian.

p(d) =
{
N (d|ψ, ϑ2)I(−ε < d < ε) tie
N (d|ψ, ϑ2)I(d > ε) not tie

(14)

It is known that the exponential family, to which the Gaussian distribution belongs, minimizes
the Kullback-Leibler divergence with respect to the true distribution p, KL(p||q) when both
have the same moments (Minka 2005). The expectation and variance of a truncated Gaussian
N (x|µ, σ2) in the range from a to b are:

E(X|a < X < b) = µ+ σ
N (α)−N (β)
Φ(β)− Φ(α) (15)

V (X|a < X < b) = σ2
(

1 +
(
αN(α)− βN(β)

Φ(β)− Φ(α)

)
−
(
N(α)−N(β)
Φ(β)− Φ(α)

)2)
(16)

where β = b−µ
σ and α = a−µ

σ . With a single-sided truncation, they can be simplified as:

E(X|a < X) = µ+ σ
N (α)

1− Φ(α) , V (X|a < X) = σ2
(

1 +
(
αN (α)

1− Φ(α)

)
−
( N (α)

1− Φ(α)

)2)

Then, the Gaussian that best approximates p(d) is:

p̂(d) = N (d|ψ̂, ϑ̂2) =


N
(
d |E(d| − ε < d < ε), V (d| − ε < d < ε)

)
tie

N
(
d |E(d|d > −ε), V (d|d > −ε)

)
not tie

(approx())

tie = true tie = True tie = T
d_approx = approx(d, margin, !tie)

Code 21: Computing the approximation of the performance difference.
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where the difference distribution d was initialized in Code 17 and the variable margin in
Code 19. Given p̂(d), we can compute the approximate ascending message using the methods
of the Gaussian class. To derive the first ascending message, recall that any marginal dis-
tribution can be calculated as the product of the messages received from all its neighboring
factors.

md→fd(d) = p(d)
mfd→d(d) ≈

p̂(d)
mfd→d(d)

= N (d | ψ̂, ϑ̂ 2)
N (d|ψ, ϑ2) ∝ N(d, ψ÷, ϑ2

÷)
(approx_lh_d)

where mfr→d(d) = md→fd(d) holds due to the factorization of the model. We have access to
this message when we use the / operator of the Gaussian class to divide the distributions:

approx_lh_d = d_approx / d

Code 22: Computing the first approximate message.

All these approximate messages can be interpreted as likelihoods because they transmit the
information of the observed result. The approximate message sent by difference factor fd to
the winning team performance variables ta is:

m̂fd→ta(ta) =
∫∫

δ(d = ta − tb)N (d1|ψ÷, ϑ2
÷)N (tb|µb, σ2

b ) dd dtb

=
∫
N (ta − tb|ψ÷, ϑ2

÷)N (tb|µb, σ2
b ) dtb = N (ta |µb + ψ÷ , ϑ

2
÷ + σ2

b )
(17)

The approximate message sent by team performance factor fta to the winning individual
performance variables p1 is:

m̂fta→p1(p1) =
∫∫

δ(ta = p1 + p2)N (ta |µb + ψ÷ , ϑ
2
÷ + σ2

b )N (p2|µ2, σ
2
2 + β2) dtadp2

=
∫
N (p1 + p2 |µb + ψ÷ , ϑ

2
÷ + σ2

b )N (p2|µ2, σ
2
2 + β2) dp2

= N (p1 | µb − µ2︸ ︷︷ ︸
µ1−ψ

+ψ÷ , ϑ2
÷ + σ2

b + σ2
2 + β2︸ ︷︷ ︸

ϑ2−(σ2
1+β2)

)
(18)

The approximate message sent by the individual performance factor fp1 to the winning skill
variables s1 is,

m̂fp1→s1(s1) =
∫
N (p1|s1, β

2)N (p1|µ1 − ψ + ψ÷, ϑ
2
÷ + ϑ2 − σ2

1 − β2)dp1

= N (s1|µ1 − ψ + ψ÷, ϑ
2
÷ + ϑ2 − σ2

1)
(19)

Finally, the approximate proportional posterior of the variable s1 is obtained by multiplying
the messages received from its neighboring factors.

p̂(s1, r) = N (s1|µ1, σ
2
1)N (s1|µ1 − ψ + ψ÷, ϑ

2
÷ + ϑ2 − σ2

1) (posterior)

We have access to the normalized posterior using the operator * of the Gaussian class, or
getting the first element of the list post computed in Code 20.
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mu = a1.prior.mu
sigma2 = a1.prior.sigma^2
phi = d.mu
v2 = d.sigma^2
phi_div = approx_lh_d.mu
v2_div = approx_lh_d.sigma^2
prior = a1.prior
posterior = post[1][1]

mu = a1.prior.mu
sigma2 = a1.prior.sigma**2
phi = d.mu
v = d.sigma**2
phi_div = approx_lh_d.mu
v2_div = approx_lh_d.sigma**2
prior = a1.prior
posterior = post[0][0]

mu = a1@prior@mu
sigma2 = a1@prior@sigma^2
phi = d@mu
v2 = d@sigma^2
phi_div = approx_lh_d@mu
v2_div = approx_lh_d@sigma^2
prior = a1@prior
posterior = post[[1]][[1]]

print( prior * Gaussian(mu - phi + phi_div, sqrt(v2 + v2_div - sigma2)) )
> Gaussian(mu = 2.461, sigma = 5.507)
print(posterior)
> Gaussian(mu = 2.461, sigma = 5.507)

Code 23: Accessing the approximate posterior.

with a1, d, and approx_lh_d computed in codes 2, 17, and 22. The obtained posterior is the
same as the one returned by the Gaussian class.

3.7. Multiple teams

The interface of the packages does not show any difference between two-team and multiple-
team games, as can be seen in codes 3 and 6. However, in cases where there are more than
two teams, we need to implement an iterative algorithm due to a mutual dependency between
results. Thanks to the transitivity of results, if k teams participate in an event, it is sufficient
to evaluate k − 1 differences of performance di between teams in consecutive positions. For
this purpose, we define an ordered list o containing the teams according to the observed
result. The winning team is the first element (i.e., o1), and oi represents the team in position
i. Figure 11 shows the factorization of the general TrueSkill model. The general idea is to

fr

I(dj > 0)

dj

fd

δ(dj = toj − toj+1)

toj

ft

δ(toj = ∑
i pi)

pi

fp

N (pi|si, β2)

si

fs

N (si|µi, σ2)

Members of team oj i ∈ Teamoj

o ≡ list of teams ordered according to the results 1 ≤ j ≤ |o| 1 ≤ j < |o|

Figure 11: General factor graph of the team model. The subscripts appearing at the bottom
right of the plates indicate replication. The j subscript of the left plate opens the k team
performances, and i subscript of the inner plate displays their players. The subscript j of the
right plate opens the k − 1 comparisons between consecutive teams.

repeatedly update forward and backward all messages in the shortest path between any two
marginals p(dj) until convergence.
Let’s analyze the algorithm involved in solving a game with three teams. Instead of using the
message notation proposed by the sum-product algorithm, we name the messages following
the criteria shown in Figure 12.
Before we start, we set the landscape: we compute the teams’ prior performance using the
function performance(). Then, we initialize the undefined messages using a neutral form,
such as a Gaussian distribution with infinite variance. Lastly, we compute the margins for
each comparison dj .
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fta

ta

ftb

tb

ftc

tc

d1 d2

lhood_lose_tb

prior_lose_tb

lhood_win_tb

prior_win_tb

prior_ta

lh
oo

d_
d1

lh
oo

d_
d1

_a
pp

ro
x

prior_d1

lh
oo

d_
tc

Figure 12: Factorization of a game with three teams. We only show factors from the teams
to the results. The names describe the iterative procedure known as loopy belief propagation.

team_a = [a1]
team_b = [a2, a3]
team_c = [a4]

team_a = [a1]
team_b = [a2, a3]
team_c = [a4]

team_a = c(a1)
team_b = c(a2, a3)
team_c = c(a4)

prior_ta= performance(team_a); prior_tb= performance(team_b); prior_tc= performance(team_c)
N_inf = Gaussian(0., Inf) N_inf = Gaussian(0, inf) N_inf = Gaussian(0, Inf)
lhood_win_ta = N_inf; lhood_lose_tb = N_inf; lhood_win_tb = N_inf; lhood_lose_tc = N_inf
margin = compute_margin(p_draw, sqrt(3)*beta)

Code 24: Setting the landscape.

where the teams are defined in Code 3. Since there are three players in both comparisons, we
adjust both margins with the same size. We start the iterative process by approximating the
distribution d1. Note that any marginal distribution is the product of the received messages
from the neighbors.

prior_lose_tb = prior_tb * lhood_win_tb
prior_d1 = prior_ta - prior_lose_tb
lhood_d1_approx = approx(prior_d1, margin, !tie) / prior_d1

Code 25: Approximating the distribution d1 with the last message sent by tb.

In the first line, we initialize the message that the variable tb sends to the factor node fd1 :
the product of the messages received from behind. Note that in the first loop, it is equivalent
to prior_tb because the variable lhood_win_tb has a neutral value. In the second line, we
compute the message sent by the factor fd1 to the variable d1. In the last line, we compute
the approximate message sent by the variable d1 to the factor fd1 . This allows us to update
the message received by the variable tb from the factor fd1 .

lhood_lose_tb = prior_ta - lhood_d1_approx

Code 26: Updating the messages of tb with the last approximation of d1.
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Here we compute the message sent by the factor fd1 to the variable tb. Then we approximate
the distribution d2 using the updated messages.

prior_win_tb = prior_tb * lhood_lose_tb
prior_d2 = prior_win_tb - prior_tc
lhood_d2_approx = approx(prior_d2, margin, tie) / prior_d2

Code 27: Approximating de distribution d2 with the last messages sent by tb.

In the first line, we initialize the message sent by the variable tb to the factor node fd2 . In
the second line, we compute the message sent by the factor fd2 to the variable d2. In the last
line, we compute the approximate message sent by the variable d2 to the factor fd2 . This
allows us to update the message received by the variable tb from the factor fd2 .

lhood_win_tb = prior_lose_tc + lhood_d2_approx

Code 28: Updating the tb distribution with the last approximation of d2.

Here we compute the message sent by the factor fd2 to the variable tb. The codes 25 to 28
must be included in a cycle until reaching convergence. Once finished, we send the upstream
messages to the teams at both ends.

lhood_win_ta = posterior_lose_tb + lhood_d1_approx
lhood_lose_tc = posterior_win_tb - lhood_d2_approx

Code 29: Computing the messages received by ft factors of the winning and losing teams.

These are the messages sent by the factors fd1 and fd2 to the variables ta and tc respectively.
Finally, we compute the likelihood of each team.

lhood_ta = lhood_win_ta
lhood_tb = lhood_lose_tb * lhood_win_tb
lhood_tc = lhood_lose_tc

Code 30: Ascending messages sent by factors ft to the variables t.

The following ascending messages are obtained as described in Section 3.6.

3.8. Information propagation in the history class

This section explains how the information provided by the data propagates throughout the
Bayesian network containing the history of events. TrueSkill Through Time creates a unique
causal model in which all historical activities are linked. The connectivity between events is
generated by the assumption that a player’s skill at time t depends on his skill at an earlier
time t− 1. The model states that within each time step t (e.g., day, week, month, year) each
agent i participates in all events. Figure 13 shows a part of the graphical factorization of
the event history: the neighboring nodes to a skill variable and the messages between these
nodes. By the sum-product algorithm, we know that the marginal distribution of any variable
is the product of the messages it receives from its neighbors. Using the names presented in
Figure 13, we know that the posterior distribution of an agent’s skill i at time t is:

posterior(st) = forwardPrior(st) · backwardPrior(st) ·
Kt∏
k=1

likelihoodk(st) (20)

where Kt is the number of events in which the agent participates in time step t. The like-
lihood messages are the likelihoods of the events described in sections 3.6 and 3.7, and the
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Figure 13: Nodes of the factor graph of a history of events that are neighbors to an agent’s
skill variable at time step t. The variables pt(j) represents the performance p that the agent
had in their j-th game within the time step t. The names of the arrows represent the messages
computed by the sum-product algorithm.

forwardPrior and backwardPrior messages are the neighboring skill estimates, to which some
uncertainty γ is added in each time step.

forwardPrior(st) = N (st |µf , σ2
f + γ2) , backwardPrior(st) = N (st |µb, σ2

b + γ2) (21)

where forwardPosterior(st−1) = N (st−1 |µf , σ2
f ) and backwardPosterior(st+1) = N (st−1 |µb, σ2

b ).
The message forwardPrior(st) is the forwardPosterior(st−1) after the dynamic uncertainty
of time t is added, fst . These messages match the prior and posterior definitions of the ba-
sic TrueSkill model. The coincidence arises from applying the sum-product algorithm. But
from its application also emerges the backwardPrior(st) message, which is the backwardPos-
terior(st+1) after the dynamic uncertainty of time t+ 1 is added, fst+1 .
The amount of dynamic uncertainty added to the forwardPrior and backwardPrior messages
in Equation 21 is the same. However, sometimes we would like the dynamic uncertainty to
depend on the temporal distance between adjacent skill variables. Our packages support both
options. When we initialize the class History without specifying the time of the events, as we
did in Codes 7 and 11, the dynamic factors always incorporate a single γ2 between variables
that are adjacent according to the composition of the events. When we specify the time of
the events, as performed in Code 12, the adjacency depends on those times, and the dynamic
uncertainty depends on the elapsed time between two adjacent variables st and st−1.

fst = N (st|st−1, elapsedTime(st, st−1) · γ2) (22)

The priors, used to compute the likelihoods of the event, are the descending messages within-
Prior. Following the sum-product algorithm, we know that the messages sent by the variable
are the product of the messages they received from behind, so the message withinPrior is:

withinPriorq(st) = forwardPrior(st) · backwardPrior(st) ·
Kt∏
k=1
q 6=k

likelihoodk(st)

= posterior(st)
likelihoodq(st)

(23)
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The withinPrior contains the information of the posterior(st), except for the event’s likelihoodq
for which it is prior. To solve the mutual dependency between likelihoods, we repeatedly up-
date the forward and backward messages until reaching convergence. At each forward pass, we
keep track of the last forward message of each agent forwardPosterior, and at each backward
pass, we keep track of the last backward message of each agent, backwardPosterior.

forwardPosterior(st) = posterior(st)
backwardPrior(st)

= forwardPrior(st) ·
Kt∏
k=1

likelihoodk(st)

backwardPosterior(st) = posterior(st)
forwardPrior(st)

= backwardPrior(st) ·
Kt∏
k=1

likelihoodk(st)
(24)

The messages that are not yet defined, for example, the backwardPrior(st) in the first forward
pass, should be replaced by a neutral form such as the Gaussian distribution with infinite
variance. This algorithm requires only a few linear iterations on the data to converge and
allows scaling to millions of observations in a few seconds.

3.9. Predictive performance

This section evaluates the predictive performance and efficiency of our TTT model imple-
mentation. We compare its predictive performance to other models. In contrast to commonly
used skill estimators that propagate information in only one direction, using the last pos-
terior as the prior probability to the next event (filtering approach), the TrueSkill Through
Time model (Dangauthier et al. 2007) propagates all historical information throughout the
entire network of events, providing estimates with low uncertainty at any given time, offering
reliable initial skill estimates, and guaranteeing comparability between estimates which are
distant in time and space (smoothing approach). Other smoother approaches were proposed
by Glickman (1999) (Smooth Glicko), Coulom (2008) (Whole History Rating), and Maystre
et al. (2019) (KickScore).
To verify the predictive performance, Table 1 compares our implementation of the TTT
algorithm against KickScore, TrueSkill, Elo, and a “Constant” model in which skills do not
change over time. By definition, the probability of a model given the data is

P (Model|Data) = P (Data|Model)P (Model)
P (Data) (25)

When we do not have access to all models, we cannot compute the probability P (Model|Data),
but we can compare models.

P (Modeli|Data)
P (Modelj |Data) = P (Data|Modeli)P (Modeli)

P (Data|Modelj)P (Modelj)
if ∗= P (Data|Modeli)

P (Data|Modelj)
(26)

This expression is known as the Bayes factor, usually expressed using a logarithmic scale to
report the difference in orders of magnitude (log2BF). When we have no prior preference over
any model (if ∗), we only need to compare the prior predictions of the models.

P (Data|Model) = P (d1|Model)P (d2|d1,Model) . . . P (dn|d1, . . . , dn−1,Model) (27)

where each element of the product is a prediction of the following data point based on the
previous data set and the model. In this work we report the geometric mean (GM) because
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it can be interpreted as the growth rate of the joint prediction,

Geometric Mean(P (Data|Model)) = P (Data|Model)1/n (28)

where n is the total amount of data.
We follow the methodology employed by Maystre et al. (2019), analyzing the four databases on
which they reported their prior predictions: ATP (tennis), NBA (basketball), FIFA (football),
and FIDE (chess). This methodology splits the data into two subsets: the initial 70 % used to
train the hyperparameters and the last 30 % to evaluate the models. To predict the outcome
of one observation at time t, we use all the data up to the day preceding t (in both training
and test sets). Table 1 summarizes the model comparisons in each of the four databases. The

Dataset
Test size

Constant† Elo† TrueSkill KickScore† TTT
GM log2BF GM log2BF GM log2BF GM log2BF GM LOOCV

Tennis
186 361

0.5593 7910 0.5695 3051 0.5722 1780 0.5758 93 0.5760 0.5908

Basketball
20 300

0.5006 1771 0.5305 72 0.5316 11 0.5328 -55 0.5318 0.5382

Chess
92 004

0.3570 520 0.3552 1190 0.3580 148 0.3584 0 0.3584 0.3641

Football
5759

0.3949 30 0.3867 204 0.3921 89 0.3961 4 0.3963 0.3974

Table 1: Model comparison in four databases. The GM columns report the geometric mean of
the prior predictions of the models, Equation 28. The log2BF columns report the Bayes Factor
(Equation 26) between TTT and the other models in the logarithmic scale. For reference,
the LOOCV column reports the geometric mean of the predictions using all historical data,
p(di|d1, . . . , di−1, di+1, . . . , dn,M). The geometric mean of the models marked with the symbol
† was presented in Maystre et al. (2019).

TTT model outperforms KickScore in the tennis database by 93 orders of magnitude, while
KickScore outperforms TTT in the chess database by 55 orders of magnitude. We consider
that the models are tied in the chess and football databases as long as the difference between
them is less than ten orders of magnitude. Unifying the four databases into one, the TTT
model outperforms KickScore by more than 40 orders of magnitude.
To compute the predictions, Maystre et al. (2019) use an HPC cluster to create, in parallel,
a different model per day, each requiring about 100 iterations to reach convergence. Instead,
it was sufficient for us to use a desktop computer to create a single model adding data one
day at a time and performing a single iteration at each step. The model selection was made
by optimizing the hyperparameters, but a fully Bayesian model selection should compute
predictions by integrating the entire hyperparameter space. This procedure usually penal-
izes complex models when the search in the hyperparameter space is unnecessary. With no
more than three intuitive hyperparameters (prior uncertainty, dynamic uncertainty, and draw
probability), TTT achieves similar or even better results than KickScore. Moreover, TTT
can compute these results more efficiently because KickScore must optimize on a much larger
hyperparameter space, which includes the definition of a kernel and then the hyperparameters
specific to that kernel.
When the goal is to estimate the learning curves over time as accurately as possible, instead
of forcing the model to make the inference using only past information (as we did to compare
the performance of the models), it is convenient to make the inference using all the historical
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data. This is useful because probabilistic models can use information from the future to
infer past events, something we intuitively do when we suspect that outstanding athletes
were also skilled some time before they became famous. The LOOCV column of Table 1
reports the geometric mean of predictions that use all historical information except the event
under consideration, p(di|d1, . . . , di−1, di+1, . . . , dn,M). Although we do not use these offline
predictions to compare models (Bayes Factor), it is interesting to note that incorporating all
historical information into the TTT model improves its estimates by hundreds of orders of
magnitude.
Because skill estimation is a sensitive topic for individuals, we present an explanation that is as
intuitive and complete as possible in the following sections. The communities under evaluation
in the video game industry and educational systems need to know how the algorithm that
measures their ability works. This paper offers a complete and accessible scientific report to
the general public jointly with the software tool.

4. Summary and discussion

The main contribution of this work is the implementation of one of the most important models
in the video game industry, which was not yet available in the programming languages with
larger communities, such as Julia, Python, and R. The fact that such an important algorithm
has been absent in these programming languages possibly has been the consequence of the
lack of documentation that would allow software developers to understand all the theoretical
aspects required for its implementation. This information is not present either in the original
articles (Herbrich et al. 2006; Dangauthier et al. 2007) or in available informal technical
reports such as the one developed by Mosser (2011). For this reason, we have devoted the
methodology section to documenting all the theoretical arguments step by step to make
it comprehensible to anyone with basic knowledge of probability. But in addition, as skill
estimation is a sensitive topic, we explain in the introductory section the details of this skill
estimation model, contextualizing the importance and benefits of the skill model we propose.
Most online game servers and scientific articles still use some skill estimates based on a filtering
approach. These models share a major shortcoming: they propagate historical information in
only one direction through the system, from the past to the future. This strategy produces
poor initial skill estimates and also prevents the comparison of estimates distant in time and
space. The strict application of the rules of probability forces us to perform inference using
all available information, including that of the future, something we intuitively do when we
conclude that famous athletes were also skilled before becoming famous. For this reason,
the TTT model, by propagating all historical information through the entire causal network,
provides estimates with low uncertainty throughout the time series, allowing reliable initial
skill estimates and ensuring historical comparability. In this way, the prior predictions are
several orders of magnitude more accurate than those obtained with other models (as shown in
Table 1). With no more than three intuitive hyperparameters (a priori uncertainty, dynamic
uncertainty and tie probability), the TTT model achieves similar or even better results than
more complex models such as KickScore.
Propagating the historical information correctly throughout the causal network of events
produces a mutual dependency between the estimates that forces the implementation of an
iterative algorithm. Based on the analytical approximation methods and message-passing
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algorithms, the TTT model can be solved efficiently using any low-end computer, even in
causal networks with millions of nodes and irregular structures. We have shown that this
procedure requires a few iterations to converge even on large databases such as the Association
of Professional Tennis. In the next section, computational details, we study the execution
times of the three packages presented in this paper. Our Python package solves individual
events ten times faster than the original trueskill 0.4.5 package (Lee 2012). In turn, the
Julia package solves event sequences ten times faster than our Python package. In contrast,
our R package is slower than the others, including the original trueskill 0.4.5 package.
We hope that this first open implementation in Julia, Python, and R, of one of the most
important skill estimation models, accompanied by an in-depth scientific explanation, will
provide the conditions to generate a continuous collective improvement process. For example,
our implementation does not yet have the extension made by Guo et al. (2012), in which the
observable data are no longer the ordinal values of the results (lose/tie/win) but the number
of points in favor and against each team. One of the current model challenges is distinguishing
the individuals’ ability in the same team using the team’s outcome as the only observable.
This could be solved by incorporating other observables, specific to individuals. This is the
strategy used by the TrueSkill 2 by Minka, Cleven, and Zaykov (2018), which incorporates
additional information readily available in online shooters, such as the number of individual
achievements, their tendency to quit, and their skill in other gaming modes. TrueSkill 2 has
been developed as an extension of the TrueSkill Through Time model, significantly improving
its predictive performance. Now that we offer the first implementation of TrueSkill Through
Time in Julia, Python, and R, the challenge is to incorporate all the extensions available in
the literature and develop an application with as much flexibility as possible, allowing us to
address the broadest possible variety of situations.

Computational details

This section reports the execution times of the examples presented in Section 2. We use a
low-end workstation with 4 GB of RAM and an AMD processor (A4-6210, 1.00 GHz, cache
2048 kB). We analyze the execution times using the command @timed in Julia, the command
timeit in Python, and the package microbenchmark (Mersmann, Beleites, Hurling, Friedman,
and Ulrich 2011) in R.

Single event: Section 2.1 presents two examples: a game with two teams in Code 3 and
a three-teams game in Code 6. Here we evaluate the efficiency during the initialization of
the Game class and the application of method posteriors(). The original trueskill 0.4.5
package solves these two steps using the rate() function. Table 2(a) shows the runtime
values. Our Python and Julia packages are 10 and 20 times faster than the original trueskill
package, while the R package is three times slower. Table 2(b) presents the execution times
for the three-team game example. Whenever there are more than two teams in the game,
it is necessary to run an iterative algorithm that increases the time required to compute the
posteriors. Again, our Python and Julia packages are faster than the original trueskill package,
while the R package is slower.
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Version Runtime Speedup
trueskill 0.4.5 1.45 ms 1.0X

R 3.4.4 4.35 ms 0.33X
Python 3.6.9 0.14 ms 10.4X
Julia 1.5.0 0.064 ms 22.7X

(a) : Two-teams game

Version Runtime Speedup
trueskill 0.4.5 2.45 ms 1.0X

R 3.4.4 31.3 ms 0.078X
Python 3.6.9 0.93 ms 2.63X
Julia 1.5.0 0.096 ms 25.5X

(b) : Three-teams game

Table 2: Execution time of the Game class initialization and call to the posteriors() method.
The reference is the original trueskill 0.4.5 package running with Python 3.6.9.

A sequence of events: Section 2.2 presents the initialization of the class History and the
call to the method convergence() in codes 7 and 9, respectively. Although the initializa-
tion of the History class computes the original trueskill 0.4.5 package estimates, we do not
compare them because this package does not have a function to handle sequences of events
automatically. Table 3 presents the execution times for the initialization of the History
class and call of a single convergence() iteration. The initialization of the History class

Version History convergence()
R 3.4.4 74.4 ms 46.8 ms

Python 3.6.9 1.09 ms 1.88 ms
Julia 1.5.0 0.31 ms 0.58 ms

Table 3: Three events of two teams: execution time for the initialization of the History class
and a single iteration of the method convergence().

includes the creation of the Bayesian network and one sweep through all the events, while
the convergence performs two passes through the sequence of events, one backward and one
forward. The initialization in the Python package is even faster than the computation of a
single isolated event using the original trueskill package. The Julia package increases the
time difference from our Python package. And the R package, while maintaining the time
difference from Python during convergence, has an additional delay during initialization due
to the creation of classes by reference.

Skill evolution: Section 2.3 analyzes the skill evolution of a player playing against 1000
different opponents. Table 4 presents the execution times to initialize the class History and
perform a single convergence iteration. In this case, the Julia package is ten times faster than

Language History convergence()
R 3.4.4 31 000 ms 26 000 ms

Python 3.6.9 380.2 ms 876.3 ms
Julia 1.5.0 38.1 ms 75.7 ms

Table 4: Initialization of the History class and a single iteration of the convergence()
method in a sequence of 1000 games of a player against different opponents.

the Python package in the initialization and singe iteration. This suggests that having more
workload improves the relative performance of the Julia package. In contrast to the behavior



Gustavo Landfried, Esteban Mocskos 31

of the Julia package and Python packages, the R version does not increase its execution time
during convergence, highlighting the relative impact of class initialization in this language.

The history of the ATP: Section 2.4 analyzes a historical database with 447 000 events.
In this real-life scenario, we perform the analysis using an additional workstation to show the
impact of different hardware on the execution time. We include the same workstation as before
(called A in this section) and a new workstation (called B) with 16 GB of RAM and an Intel
processor (i5-3330, 3.00 GHz, total cache 6144 kB). Table 5 presents the total runtime for the
History class initialization and the call to the convergence() method. The initialization

Workstation Version Runtime
A Python 3.6.9 4498.8 s
B Python 3.6.8 1368.6 s
A Julia 1.5.0 387.5 s
B Julia 1.5.3 138.5 s

Table 5: Initialization of the class History and ten iterations of the method convergence()
of the ATP database.

and the ten convergence iterations evaluate approximately 447000 × 21 events: one sweep
over all events corresponding to computing TrueSkill estimates during initialization, and two
passes over all items per iteration (backward and forward). Given the execution times of a
single event included in Table 2(a), the minimum execution time it would take to compute the
TrueSkill Through Time estimates using the original trueskill 0.4.5 package could not be less
than 13 611 s on computer A, three times longer than it takes our Python package to perform
the entire computation. Our Julia package takes less time than expected if we compare it to
the values reported in Table 2(a). This improvement is based on the optimizations performed
automatically by the Julia runtime support.

Supplemental material
The source codes for the TrueSkill Through Time packages can be found at:

• github.com/glandfried/TrueSkillThroughTime.jl (Julia)

• github.com/glandfried/TrueSkillThroughTime.py (Python)

• github.com/glandfried/TrueSkillThroughTime.R (R)
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5. Appendix

5.1. Skill evolution

We attach the Julia and R codes that solve the example presented in the Section 2.3 about
estimation the skill evolution of a new player.

using Random; Random.seed!(999); N = 1000
function skill(experience, middle, maximum, slope)

return maximum/(1+exp(slope*(-experience+middle)))
end
target = skill.(1:N, 500, 2, 0.0075)
opponents = Random.randn.(1000)*0.5 .+ target

composition = [[["a"], [string(i)]] for i in 1:N]
results = [r? [1.,0.]:[0.,1.] for r in (Random.randn(N).+target.>Random.randn(N).+opponents)]
times = [i for i in 1:N]
priors = Dict{String,Player}()
for i in 1:N priors[string(i)] = Player(Gaussian(opponents[i], 0.2)) end

h = History(composition, results, times, priors, gamma=0.015)
convergence(h)
mu = [tp[2].mu for tp in learning_curves(h)["a"]]

Code 31: Skill evolution example using Julia.

N = 1000
skill <- function(experience, middle, maximum, slope){

return(maximum/(1+exp(slope*(-experience+middle)))) }
target = skill(seq(N), 500, 2, 0.0075)
opponents = rnorm(N,target,0.5)

composition = list(); results = list(); times = c(); priors = hash()
for(i in seq(N)){composition[[i]] = list(c("a"), c(toString(i)))}
for(i in

seq(N)){results[[i]]=if(rnorm(1,target[i])>rnorm(1,opponents[i])){c(1,0)}else{c(0,1)}}
for(i in seq(N)){times = c(times,i)}
for(i in seq(N)){priors[[toString(i)]] = Player(Gaussian(opponents[i],0.2))}

h = History(composition, results, times, priors, gamma=0.015)
h$convergence(); lc_a = h$learning_curves()$a; mu = c()
for(tp in lc_a){mu = c(mu,tp[[2]]@mu)}

Code 32: Skill evolution example using R.

5.2. The history of the Association of Tennis Professionals (ATP)

import pandas as pd; from datetime import datetime
df = pd.read_csv('input/history.csv')

columns = zip(df.w1_id, df.w2_id, df.l1_id, df.l2_id, df.double)
composition = [[[w1,w2],[l1,l2]] if d=='t' else [[w1],[l1]] for w1, w2, l1, l2, d in columns]
days = [ datetime.strptime(t, "%Y-%m-%d").timestamp()/(60*60*24) for t in df.time_start]

h = History(composition = composition, times = days, sigma = 1.6, gamma = 0.036)
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h.convergence(epsilon=0.01, iterations=10)

Code 33: The history of the Association of Tennis Professionals using Python.

data = read.csv("input/history.csv", header=T)

get_composition = function(x){
res = list()
if (x["double"]=="t"){

res[[1]] = c(x["w1_name"],x["w2_name"])
res[[2]] = c(x["l1_name"],x["l2_name"])

}else{
res[[1]] = c(x["w1_name"])
res[[2]] = c(x["l1_name"])

}
return(res)

}
composition = apply(data, 1, get_composition )
days = as.numeric(as.Date(data[,"time_start"], format = "%Y-%m-%d"))

h = History(composition = composition, times = days, sigma = 1.6, gamma = 0.036)
h$convergence(epsilon=0.01, iterations=10)

Code 34: The history of the Association of Tennis Professionals using R.
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Figure 14: ATP skill estimates using the TrueSkill model.

5.3. Gaussian product

The problem we must solve is:

∫
N (x|µ1, σ

2
1)N (x|µ2, σ

2
2)dx (29)
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By definition,

N (x|y, β2)N (x|µ, σ2) = 1√
2πσ1

e
− (x−µ1)2

2σ2
1

1√
2πσ2

e
− (x−µ2)2

2σ2
2

= 1
2πσ1σ2

exp
(
−
(

(x− µ1)2

2σ2
1

+ (x− µ2)2

2σ2
2

)
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θ

) (30)

Then,

θ = σ2
2(x2 + µ2

1 − 2xµ1) + σ2
1(x2 + µ2

2 − 2xµ2)
2σ2

1σ
2
2

(31)

We expand and reorder the factors by powers of x

(σ2
1 + σ2

2)x2 − (2µ1σ
2
2 + 2µ2σ

2
1)x+ (µ2

1σ
2
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2σ
2
1)

2σ2
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2
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We divide the numerator and denominator by the factor of x2

x2 − 2 (µ1σ2
2+µ2σ2

1)
(σ2

1+σ2
2) x+ (µ2
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2
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2
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(33)

This equation is quadratic in x, and is therefore proportional to a Gaussian density function
with standard deviation

σ× =
√

σ2
1σ

2
2

σ2
1 + σ2

2
(34)

and mean

µ× = (µ1σ
2
2 + µ2σ

2
1)

(σ2
1 + σ2

2) (35)

Since a term ε = 0 can be added to complete the square in θ, this proof is sufficient when no
normalization is needed.

ε = µ2
× − µ2

×
2σ2
×

= 0 (36)

By adding this term to θ we obtain

θ = x2 − 2µ×x+ µ2
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2σ2
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2
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Reorganizing ϕ
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Then,

θ = (x− µ×)2
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Putting θ in place
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Going back to the integral

I =
∫
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5.4. Sum of Gaussians
Proof by induction,
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Base case

P (1) :=
∫
δ(t1 = x1)N (x1|µ1, σ
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The proposition P (1) is true given the properties of the delta Dirac function.
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where 45.1= is valid for the properties of the dirac delta function, 45.2= is valid for the symmetry
of the Gaussians, and ∗= is valid by de proof at Section 5.3. Therefore, P (2) is valid.

Inductive step P (n)⇒ P (n+ 1)
Given,
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We want to see that P (n+ 1) is valid.
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By de proof of Section 5.3
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Therefore, P (n+ 1) is valid
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5.5. A Gaussian multiplied by an cumulative Gaussian.

We want to solve the integral

f(x) =
∫
N (y;µ1, σ

2
1)Φ(y + x;µ2, σ

2
2)dy (51)

To do so, we take the derivative of the function ∂
∂xf(x) = θ(x),
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The derivative of Φ is indeed a Gaussian,
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By the proof at Section 5.3 we know
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Returning to f(x)
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5.6. Gaussian division
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Reorganizing θ
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We expand and sort terms based on x,
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This is quadratic in x. Since a term ε = 0 independent of x can be added to complete the
square in θ, this test is sufficient to determine the mean and variance when it is not necessary
to normalize.
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Reorganizing ϕ
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2
g − (���σ4

gµ
2
f +ZZZσ4

fµ
2
g − 2σ2

fσ
2
gµfµg)

) 1
2σ2

fσ
2
g(σ2

g − σ2
f )
(65)

Canceling σ2
fσ

2
g

ϕ =
−µ2

g − µ2
f + 2µfµg

2(σ2
g − σ2

f ) = −(µg − µf )2

2(σ2
g − σ2

f ) (66)
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Then θ
θ = (x− µ÷)2

2σ2
÷

− (µg − µf )2)
2(σ2

g − σ2
f ) (67)

Returning to the original expression

κ = σg
σf

exp
(
−(x− µ÷)2

2σ2
÷

+ (µg − µf )2)
2(σ2

g − σ2
f )

)

= σg
σf

exp
(
−(x− µ÷)2

2σ2
÷

)
exp

(
(µg − µf )2)
2(σ2

g − σ2
f )

) (68)

Multiplying by
√

2π√
2π

σ÷
σ÷

√
σ2
g−σ2

f√
σ2
g−σ2

f

= 1,

κ = 1√
2πσ÷

e
− (x−µ÷)2

2σ2
÷

 1√
2π(σ2

g − σ2
f )
e
−

(µg−µf )2)

2(σ2
g−σ

2
f

)


−1

σ÷√
σ2
g − σ2

f

σg
σf

= N (x|µ÷, σ÷)
N
(
µg|µf , σ2

g − σ2
f

) σ2
g

σ2
g − σ2

f

(69)
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