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Abstract: In this study, we utilize information theory tools to investigate notable features
of the quantum degree of mixedness (C f ) in a finite model of N interacting fermions.
This model serves as a simplified proxy for an atomic nucleus, capturing its essential
features in a more manageable form compared to a realistic nuclear model, which would
require the diagonalization of matrices with millions of elements, making the extraction
of qualitative features a significant challenge. Specifically, we aim to correlate C f with
particle number fluctuations and temperature, using the paradigmatic Lipkin model. Our
analysis reveals intriguing dependencies of C f on the total fermion number, showcasing
distinct behaviors at different temperatures. Notably, we find that the degree of quantum
mixedness exhibits a strong dependence on the total fermion number, with varying trends
across different temperature regimes. Remarkably, this dependence remains unaffected by
the strength of the fermion–fermion interaction (as long as it is non-zero), underscoring the
robustness of the observed phenomena. Through comprehensive numerical simulations,
we provide illustrative graphs depicting these dependencies, offering valuable insights into
the fundamental characteristics of quantum many-body fermion systems. Our findings
illuminate the intricate dynamics of the degree of mixedness, a crucial quantum property,
with potential implications for diverse fields ranging from condensed matter physics to
quantum information science.

Keywords: Lipkin model; many fermion systems; mixedness-degree; finite temperature;
SU2 symmetry

1. Introduction
One of the key aspects of quantum systems is the concept of quantum mixedness,

which quantifies the degree to which a quantum state is a mixedness of different possible
states, rather than a pure state. This property is crucial in various fields, from condensed
matter physics to quantum information science, as it influences the behavior and character-
istics of quantum systems.

The quantum notion of mixedness [1–5], in the context of many-body quantum sys-
tems [6–9], becomes particularly intriguing. Many-body systems, composed of interacting
particles, exhibit complex behaviors that arise from the interplay of their individual compo-
nents [6]. The degree of quantum mixedness (C f ) in such systems can reveal significant
insights into their underlying physics. However, studying these systems poses substantial
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challenges, especially when dealing with realistic models that require the diagonalization
of extremely large matrices [6–9].

To address these challenges, simplified models that capture the essential features of
more complex systems are often employed. One such model is the Lipkin–Meshkov–Glick
(LMG) model [6–9], which has been extensively used to study various aspects of interacting
fermions. The LMG model provides a manageable yet insightful framework to explore
the qualitative features of quantum many-body systems, making it an ideal choice for
investigating the dependencies of quantum mixedness [6–9].

In this study, we utilize the LMG model to analyze the quantum degree of mixedness in
a finite system of N interacting fermions. By correlating C f with particle number fluctuations
and temperature, we aim to uncover the fundamental dependencies and behaviors of quantum
mixedness in many-body fermion systems. Our investigation reveals intriguing trends in C f

across different temperatures and total fermion numbers, highlighting the robustness of these
phenomena against variations in the fermion–fermion interaction strength.

Through comprehensive numerical simulations, we provide a detailed theoretical
framework and illustrative graphs that depict these dependencies. Our findings not only
enhance the understanding of quantum mixedness in many-body systems but also have
potential implications for various applications, from improving models of atomic nuclei to
advancing quantum computing techniques.

The significance of this study lies in its ability to bridge the gap between simplified
theoretical models and the complex reality of many-body quantum systems. By elucidating
the behavior of quantum mixedness, we contribute to the broader comprehension of
quantum mechanics and its applications, paving the way for future research in both
theoretical and practical domains.

1.1. Our Present Protagonist: The Mixedness Notion

Mixedness plays an essential role in quantum tasks for various reasons. We list some
of them.

• Understanding Quantum Correlations and Entanglement: The degree of mixedness
provides insights into the quantum correlations and entanglement within a system.
By studying the degree of mixedness, researchers can gain a deeper understanding of
how entanglement is distributed and how it can be manipulated within a system.

• Characterizing Quantum States: The degree of mixedness helps characterize the purity
of quantum states. Pure states, which have zero mixedness, are ideal for many quan-
tum processes, while mixed states, which have non-zero mixedness, can result from
decoherence and other environmental interactions. Understanding the mixedness
can help in designing strategies to preserve quantum coherence and improve the
performance of quantum devices.

• Analyzing Thermodynamic Properties: The degree of mixedness is linked to the
thermodynamic properties of quantum systems. It can provide information about
phase transitions, thermalization processes, and the overall behavior of a system at
different temperatures. This is particularly important in understanding quantum
statistical mechanics and the thermodynamics of small systems where quantum effects
are significant.

• Exploring Quantum-to-Classical Transition: By studying how the degree of mixed-
ness changes with various parameters, such as temperature and particle number,
researchers can gain insights into the quantum-to-classical transition. This transition
is crucial for understanding how classical behavior emerges from quantum systems, a
fundamental question in quantum mechanics.
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• Implications for Quantum Simulations: In quantum simulations of complex systems,
knowing the degree of mixedness can help validate the accuracy of the simulations. It
ensures that the simulated quantum states accurately reflect the intended physical sys-
tems, particularly when simulating open systems that interact with their environment.

• Overall, scrutinizing the features of the degree of mixedness in a quantum system is es-
sential for advancing our understanding of quantum mechanics, improving quantum
technologies and exploring new frontiers in quantum research. It provides a critical
link between theoretical concepts and practical applications, enabling researchers to
harness the full potential of quantum systems.

1.2. Our Purposes Here

The degree of quantum mixedness is influenced by several factors, including the
total number of fermions and the temperature of the system [10–14]. Understanding how
these factors interact and affect the mixedness-degree C f is crucial for gaining deeper
insights into the quantum dynamics of many-body systems. Through comprehensive
numerical simulations, we investigate these dependencies and present our findings through
illustrative graphs. Our results reveal that the degree of mixedness is strongly dependent
on the total fermion number, with distinct trends emerging across different temperature
regimes. Interestingly, this dependence seems to be unaffected by the strength of the
fermion–fermion interaction, provided it is non-zero. Hopefully, our results will highlight
the fundamental nature of the observed phenomena.

2. The SU2-Angular Momentum Lipkin Quasi-Spin Formalism [6–8]
We deal with N fermions and call Ω = N/2; that is, the Lipkin model consists of

N = 2Ω fermions that occupy two different N-fold degenerate single-particle (sp) energy
levels. The two levels are separated by an energy gap ϵ. This entails 4Ω s.p. micro states.
Two quantum numbers (called µ and p) are linked to a single micro state. The first one, µ,
takes the values µ = −1 (lower level) and µ = +1 (upper level). The remaining quantum
number is denoted the quasi spin p pertaining to the 2N-fold degeneracy. The pair p, µ is
viewed as a ”site”, which can be occupied (by a fermion) or be empty. Lipkin fixes

N = 2J . (1)

Here, J is a sort of angular momentum. Lipkin [7] uses special angular momentum
operators called quasi-spin ones. These are

Jz = ∑
p,µ

µ C+
p,µCp,µ, (2)

J+ = ∑
p

C+
p,+Cp,−, (3)

J− = ∑
p

C+
p,−Cp,+, (4)

together with the Casimir operator

J 2 = J 2
z +

1
2
(J+J− + J−J+). (5)

The eigenvalues of J 2 take form J (J + 1) and the Lipkin Hamiltonian reads (v is a
coupling constant)

H = ϵJz +
v
4
(J 2

+ + J 2
−). (6)
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For the Lipkin Hamiltonian, we have the matrix [7]

⟨n′|HL|n⟩ =

{
N
2
− n + 1 −

(
Nn − N

2
− n2 + 2n − 1

)
ω

}
δn′ ,n −

−v
2

√
(N − n)(N − n + 1)(n + 1)n δn′ ,n+2 (7)

−v
2

√
(N − n′)(N − n′ + 1)(n′ + 1)n′ δn′ ,n−2

with n = 0, 1, . . . , N for J = N/2. Numerical diagonalization yields energy eigenvalues
En(v,J ) for our Hamiltonian. These eigenvalues are needed to build the partition function
Z in the canonical ensemble [13,14].

All thermal quantities of interest are deduced from the partition function Z [13,14]. We
construct Z using probabilities assigned to the models’ microscopic states. Their energies
are Ei [13,14]. Some important macroscopic quantifiers are computed as in [13,14]. These
indicators, together with Z, derive from the canonical probability distributions [13,14].
Pn(v,J , β). β is the inverse temperature. The pertinent expressions are given in [13,14]. If
we call the mean energy U and the free energy F, we have

Pn(v,J , β) =
1

Z(v,J , β)
e−βEn(v,J ) (8)

Z(v,J , β) =
N

∑
n=0

e−βEn(v,J ) (9)

U(v,J , β) = ⟨E⟩ = −∂lnZ(v,J , β)

∂β

=
N

∑
n=0

En(v,J )Pn(v,J , β)

=
1

Z(v,J , β)

N

∑
n=0

En(v,J )e−βEn(v,J ) (10)

S(v,J , β) = −
N

∑
n=0

Pn(v,J , β) ln[Pn(v,J , β)] (11)

F(v,J , β) = U(v,J , β)− T S(v,J , β). (12)

The thermal quantifiers above provide much more information than the one obtained
via just the quantum resources of zero temperature T [13,14]. As stated above, taking a low
enough T, our quantifiers above yield a good representation of the T = 0 scenario [13,14].
Below, we adopt the high enough β = 20 value.

The State’s ρ Degree of Mixedness C f

The concepts of purity and degree of mixedness are fundamental in quantum me-
chanics and play a crucial role in describing the behavior of quantum systems. They are
particularly relevant in the study of quantum information, quantum computation, quantum
entanglement, and quantum measurements. The distinction between pure states and mixed
states allows for a comprehensive understanding of the coherence, superposition, and
statistical behavior of quantum systems.

As is well known in quantum mechanics, the degree of mixedness C f of a given state
represented by ρ is given by

C f = 1 − Trρ2 = 1 − ∑
n

P2
n , (13)
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where, Trρ2 is the so called ”Purity” Py. Note that we have C f = 0 and Py = 1 for pure
states. C f is a very important quantity for us here.

In probability terms, we have Py = ∑N
n=0(Pn(v,J , β))2 and C f = S2 = 1 − P2

y .

3. First Results
3.1. C f Versus Temperature T

The quantity C f will be the protagonist of Figures 1–7. Strong changes in the system’s
dynamics emerge as N grows. We plot below the mixing C f versus T and versus the inverse
temperature β. There seems to be a critical temperature TS at which C f stabilizes itself and
ceases growing with T. It is clear that when N reaches the value six, the system’s behavior
strongly changes as multiple artifacts arise, whereas for N < 6, the mixing grows smoothly
with T. In somewhat more detail, we can make the following assertion.

The analysis of the degree of quantum mixedness (C f ) as a function of temperature
(T) reveals significant insights into the system’s thermodynamic behavior. As the number
of particles (N) increases, pronounced changes in the system’s dynamics become evident.
In the provided plots of C f versus T and versus the inverse temperature (β) [Figures 1–5], a
critical temperature, TS, emerges where C f stabilizes and ceases to grow with increasing T.
This indicates a phase transition-like behavior, where the system transitions from one state
to another, exhibiting stability in the degree of mixedness beyond TS. This critical tempera-
ture suggests a threshold above which the system reaches a state of equilibrium regarding
its mixedness. For N ≥ 6, the system’s behavior changes markedly, introducing multiple
artifacts and complexities. This indicates a possible shift in the underlying dynamics or
interactions within the system as it scales. In contrast, for N < 6, C f exhibits a smoother and
more predictable growth with T, suggesting a more straightforward relationship between
temperature and quantum mixedness in smaller systems. The observed artifacts for larger
N could be attributed to increased interaction complexities and emergent phenomena
that are not present in smaller systems. These artifacts might reflect underlying phase
transitions, resonance effects, or other collective behaviors that only manifest at higher
particle numbers. Overall, the behavior of C f with temperature highlights the intricate
dynamics of many-body quantum systems and underscores the importance of considering
particle number effects when analyzing thermodynamic properties. These findings provide
valuable insights into the quantum mechanical properties of the system and have potential
implications for understanding more complex, realistic models in quantum physics.
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Figure 1. (Left) C f versus T/TS where TS is that temperature for which the values of C f stabilize.
(Right) C f versus β. For both graphs, N is fixed at N = 2, and each curve corresponds to a different
v-value.
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Figure 2. (Left) C f versus T/TS, where TS is the temperature for which the values of C f stabilize.
(Right) C f versus β. For both graphs, N is fixed at N = 4, and each curve corresponds to a different
v-value.
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Figure 3. (Left) C f versus T/TS, where TS is the temperature for which the values of C f stabilize.
(Right) C f versus β. For both graphs, N is fixed at N = 6, and each curve corresponds to a different
v-value.
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Figure 4. (Left) C f versus T/TS, where TS is the temperature for which the values of C f stabilize.
(Right) C f versus β. For both graphs, N is fixed at N = 8, and each curve corresponds to a different
v-value.
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Figure 5. (Left) C f versus T/TS, where TS is the temperature for which the values of C f stabilize.
(Right) C f versus β. For both graphs, N is fixed at N = 10, and each curve corresponds to a different
v-value.

What do we learn from these graphs? That the mixing strongly depends not only on the
temperature but also, and in a very strong fashion, on the fermion number and the coupling
constant. In summary, the degree of quantum mixing in the Lipkin model is a multifaceted
phenomenon influenced by temperature, fermion number, and the coupling constant. Each
of these factors contributes to the overall behavior of the system, determining how the
quantum states are occupied and mixed. Understanding these dependencies is crucial for
analyzing the dynamics and properties of many-fermion systems within the framework of
the Lipkin model. Further analysis on these issues follows below. See Figures 6–9.

3.2. C f Changes as Plotted Versus v or Versus N

The behavior of C f in these circumstances is depicted in Figure 6. We again detect a
critical v at which stability is reached. Same for N. Here, however, we see quite abrupt jumps
in the mixedness-degree as the coupling constant grows for N large enough or for v finite.

β=10

N=2

N=6
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N=24

0.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3

0.4

0.5

v

C
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v=0

v=0.25
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v=2.00

0 10 20 30 40

0.0

0.1

0.2

0.3

0.4

0.5

N

C
f

Figure 6. (Left) C f versus v for different N-values. There seems to be a kind of phase transition for
N large enough. (Right) C f versus N for different v-values. Even for small N the mixing abruptly
grows. For both graphs β = 10.

Let us reflect upon the two above graphs. The interaction between fermions acts as
a perturbation that drives the system through a quantum phase transition. Before the
interaction is introduced, the system may be in a non-mixed, ordered phase with a degree
of mixing at zero.
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• As soon as the interaction is turned on, it reaches a critical threshold where the system
can no longer maintain this ordered phase, leading to an abrupt jump to a mixed
phase with a degree of mixing at 0.5. This critical interaction threshold marks a point
where the system’s energy landscape changes significantly.

• At this critical point, the system’s ground state undergoes a reconfiguration. The
abrupt jump in the degree of mixing suggests that the system transitions from a non-
mixed state to a highly mixed state in which the particles are now in a superposition
of states.

• This reconfiguration minimizes the system’s free energy under the new interaction
regime, as we see below, leading to a more stable state with increased quantum
coherence and entanglement among the fermions.

- The jump to a mixing of 0.5 indicates a sudden onset of quantum coherence. The sys-
tem achieves a new equilibrium where the quantum states are coherently mixed, resulting
in an optimal balance of energy.

- The high degree of mixing implies that the system has transitioned to a state where
fermions are delocalized and strongly correlated, maximizing the entropy, as we confirm
below, Thus, introducing fermion interactions induces strong correlation effects that are not
present in the non-interacting system. These correlations enhance the mixing of quantum
states, leading to a robust mixed phase.

- The interactions cause the particles to collectively behave in a way that drastically
alters the macroscopic properties of the system, reflected in the sudden change in the
degree of mixing. The abrupt change in the degree of mixing highlights the robustness of
the quantum phase transition. It demonstrates that even a small interaction can lead to
significant changes in the system’s macroscopic properties when the number of particles is
large enough.

- This robustness indicates that the system’s behavior is dominated by collective effects
rather than individual particle properties, a hallmark of many-body quantum systems. We
can make here more elaborate reflections by analyzing and expanding on these points:

1. Interaction-Induced Phase Transition: The interaction between fermions acts as a
perturbation that drives the system through a quantum phase transition. Initially, in
the absence of interactions, the system is in a non-mixed, ordered phase with zero
degree of mixing. When the interaction is introduced, it reaches a critical threshold
where the system transitions abruptly to a mixed phase with a degree of mixing
around 0.5. This critical interaction threshold signifies a significant change in the
system’s energy landscape.

2. Ground State Reconfiguration: At the critical point, the system’s ground state under-
goes a reconfiguration. The sudden jump in the degree of mixing from 0 to 0.5 suggests
a rapid transition from a non-mixed to a highly mixed state, indicating that particles
are now in a superposition of states. This reconfiguration minimizes the system’s free
energy under the new interaction regime, leading to a more stable state characterized
by increased quantum coherence and entanglement among the fermions.

3. Quantum Coherence and Entanglement: The abrupt onset of a high degree of mixing
(0.5) indicates the emergence of significant quantum coherence. The system achieves
a new equilibrium where quantum states are coherently mixed, optimizing energy
balance. This high degree of mixing implies that fermions are delocalized and strongly
correlated, leading to maximized entropy. The introduction of fermion interactions
induces strong correlation effects that enhance the mixing of quantum states, resulting
in a robust mixed phase.

4. Collective Behavior and Macroscopic Property Changes: The interactions cause parti-
cles to behave collectively, dramatically altering the system’s macroscopic properties.
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The sudden change in the degree of mixing reflects the robustness of the quantum
phase transition. It demonstrates that even small interactions can lead to substantial
changes in macroscopic properties when the particle number is sufficiently large.
This robustness highlights that the system’s behavior is governed by collective effects
rather than individual particle properties, a hallmark of many-body quantum systems.

5. Implications for Many-Body Quantum Systems: The findings underscore the impor-
tance of collective behaviors in many-body quantum systems. The interaction-driven
transition to a mixed phase with high quantum coherence and entanglement illustrates
how many-body effects can dominate system dynamics. These results are crucial
for understanding quantum phase transitions and the emergence of macroscopic
quantum properties in interacting fermion systems.

6. In summary, the analysis presented in the remarks provides a comprehensive ex-
planation of the effects of fermion interactions on the system’s thermodynamic and
quantum mechanical properties. The critical threshold, abrupt jumps in mixing,
and the resulting coherent states offer valuable insights into the behavior of many-
body quantum systems and their phase transitions. These findings have significant
implications for theoretical models and practical applications in quantum physics.

4. Connection Between the Degree of Mixedness and the Differences
Between Energy Levels

We discuss now results plotted in Figures 7–9 below. It is shown in reference [15],
Figure 1, that the energy difference ∆E between those for the ground state energy and
the first excited state diminishes as v grows, facilitating mixing. Diminishing the energy
difference between the first excited state and the ground state facilitates mixing in the
system due to increased thermal population and enhanced quantum mechanical coupling.
In a system at thermal equilibrium, the population of states is governed by the Gibbs
canonical distribution Pi ∝ exp Ei/kBT , where Ei is the energy of state i, kB is the Boltzmann
constant, and T is the temperature.

When the energy difference ∆E between the ground state and the first excited state
decreases, the exponential factor exp(∆E/kBT) increases. This means that at a given tem-
perature, more particles are thermally excited to the first excited state. Furthermore, there
is increased occupancy, as a higher thermal population in the first excited state leads
to a greater number of particles available to transition between these states, facilitating
interactions and mixing. Additionally, the probability of quantum transitions between
states depends on the overlap of their wavefunctions and the energy separation. A smaller
energy gap can enhance the coupling between the ground state and the first excited state,
increasing the transition rate between these states.

Let us see what happens for N = 2, involving diagonalization of a 3 × 3 matrix. We
look for an analytical expression for ∆E as a function of v and the plot C f versus ∆E for
several values of v. In diagonalizing the Hamiltonian HL for N = 2, the energies are

E0 = −
√

1 + v2 (14)

E1 = 0 (15)

E2 =
√

1 + v2 (16)
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Accordingly ∆E(v) =
√

1 + v2 and ∆E(v = 0) = 1. The states’ probabilities are

P0 =
1
Z

eβ
√

1+v2
=

1
Z

eβ∆E (17)

P1 =
1
Z

e0 =
1
Z

(18)

P2 =
1
Z

e−β
√

1+v2
=

1
Z

e−β∆E, (19)

with Z = 1 + eβ
√

1+v2
+ e−β

√
1+v2

= 1 + 2 cosh (β
√

1 + v2) = 1 + 2 cosh (β∆E). As a
consequence, we have for C f

C f = 1 − ∑
n

P2
n = 1 − 1 + 2 cosh (2β∆E)

[1 + 2 cosh (β∆E)]2
, (20)

which is plotted in Figure 7 (C f versus β∆E) for several numbers of fermions. N = 2 is a
special instance. Other varieties of N exhibit collapse into a single curve. As expected, the
degree of mixing increases as β∆E diminishes.

N=2

N>2

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

β ΔE

C
f

Figure 7. C f versus β∆E for N = 2 (red curve) and several other fermion numbers (4, 6, 8, 10) in the
other curve, on which they coalesce.

We can easily think on reasons why, in an interacting many-fermion system, the degree
of quantum mixing, or mixedness, tends to increase as the separation between energy levels
diminishes. This phenomenon can be understood through several interrelated concepts in
quantum mechanics and statistical mechanics.

1. Energy Level Density and Quantum States: As the separation between energy levels
decreases, the density of available quantum states increases. When energy levels are closely
spaced, fermions have a larger number of states to occupy within a small energy range.
This increased state density enhances the probability of transitions between states, leading
to greater mixing of quantum states.

2. Thermal Excitations: At low temperatures, fermions typically occupy the lowest
available energy states due to the Pauli exclusion principle. However, as the energy level
separation decreases, even small thermal excitations can cause fermions to transition
between states. This results in a higher degree of occupation of excited states, contributing
to quantum mixing.

3. Interaction-Induced Mixing: Interactions between fermions can lead to the hy-
bridization of states, where the eigenstates of the system become superpositions of non-
interacting states. When energy levels are closely spaced, interactions more readily cause
mixing because the energy required to couple states is lower. This leads to an increased
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degree of quantum mixedness as interactions redistribute the fermions among the avail-
able states.

4. Quantum Fluctuations: In systems with closely spaced energy levels, quantum
fluctuations become more significant. These fluctuations can induce transitions between
states, further enhancing quantum mixing. The reduced energy gap means that even small
perturbations (thermal or quantum) can cause changes in the occupation of states.

Now, let us take a look at the behavior of ∆E versus v for different N-values in Figure 8.

N=2

N=4

N=6

N=8

N=10

0 2 4 6 8 10

0.0

0.5

1.0

1.5

v

Δ
E

Figure 8. ∆E versus v for different Ns.

∆E grows monotonously only for N = 2. We detect a local minimum for N > 2. The
minima features for ∆E are clearly N-dependent.

5. Free Energy F Versus C f

We pass to analyze the free energy behavior in relation to the mixedness degree. We
plot F versus C f considering either β, N, or v as the varying parameter.

Accordingly, we plot in Figure 9, for the Lipkin model (sub-index L), two things:
(1) left: (β) versus C f (β) with N = 12 and v = 1; (2) center: F(N) versus C f (N) with
β = 10 and v = 1; (3) right: F(v) versus C f (v) with N = 12 and β = 10.
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Figure 9. Lipkin free energy FL versus C f in various conditions described in the text.

The observation that the free energy becomes more negative with a larger degree of
quantum mixedness in the Lipkin model can be attributed to increased entropy, lower
effective energy, enhanced cooperative effects, and potential phase transitions. These factors
collectively lead to a more energetically favorable state as the degree of quantum mixedness
increases, thus lowering the free energy. See the plot of Figure 9. The increase in quantum
mixedness can enhance correlations between particles. When these correlations reach a
critical level, the system can reorganize into a more energetically favorable configuration.
This reorganization would manifest itself as an abrupt decrease in the Lipkin mean energy
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UL. This is what our < U >L-plot in Figure 10 indeed shows. At a mixing of 0.5, the system
seems to achieve a state of enhanced quantum coherence, where the superposition of states
leads to a lower energy configuration. This coherence can stabilize the system, resulting in
a sharp decrease in energy. The abrupt change could signify that the system is reaching
an optimal balance between the different quantum states, minimizing energy through
constructive interference and optimal state mixing. We next present a plot in Figure 10 for
the man energy, which confirms some assertions made above.
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Figure 10. Lipkin’s mean energy < U >L plotted against the mixedness indicator C f for β = 10.

6. Conclusions
This study elucidates the intricate dynamics of quantum mixing, particle number fluctu-

ations, and temperature variations within the Lipkin model, revealing profound insights into
the behavior of many-fermion systems. Our findings underscore several key points:

• The degree of quantum mixedness displays a strong dependency on the total number
of fermions, highlighting distinct behaviors across different temperature regimes. This
emphasizes the importance of considering fermion number in analyzing quantum
systems, as it directly influences the system’s mixedness and overall state.

• Remarkably, the observed dependencies of quantum mixedness on fermion number
and temperature are robust against variations in the fermion–fermion interaction
strength, provided the interaction is non-zero. This robustness suggests that the
fundamental properties of quantum mixedness are intrinsic to the system’s structure
rather than being heavily influenced by interaction specifics.

• The insights gained from this study have potential implications for various fields, in-
cluding condensed matter physics and quantum information science. Understanding
the dependencies and behaviors of quantum degree of mixedness in fermionic systems
can inform the development of quantum technologies and enhance the theoretical
models used to describe complex quantum systems.

Through a comprehensive numerical exploration of key features of the system, we
have provided a detailed analysis of the Lipkin model, offering valuable perspectives on the
fundamental characteristics of many-fermion systems. Our results contribute to a deeper
understanding of quantum phenomena in fermionic systems, paving the way for future
research and practical applications in related fields.
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