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We analyze the temperature evolution of the anomalous magnetic spectrum of the spin-1/2 triangular quantum
Heisenberg antiferromagnet, which is proximate to a quantum phase transition leading to a spin-liquid phase.
Recently, its low-energy excitations have been identified with two-spinon bound states, well defined in an ample
region of the Brillouin zone. In this work, we compute the thermal magnetic spectrum within a Schwinger boson
approach, incorporating Gaussian fluctuations around the saddle-point approximation. In order to account for a
finite Néel temperature 7y, we incorporate an exchange interaction between triangular layers. As temperature
rises, the dispersion relation of the two-spinon bound states, representing single-magnon excitations, remains
unchanged but becomes mixed with the thermally activated spinon continuum. Consequently, a crossover occurs
at a temperature 7" =~ 0.757y, defining a terminated Goldstone regime between T* and Ty, where only the
magnons close to the Goldstone modes survive as well-defined excitations, up to the Néel temperature. Our
results support the idea that the fractionalization of magnons near a transition to a disordered phase can be
extended to more realistic quasi-two-dimensional frustrated antiferromagnets.

DOLI: 10.1103/PhysRevB.110.224402

I. INTRODUCTION

The understanding of the organizing principles [1] govern-
ing frustrated antiferromagnets (AFs) remains a debated topic
in condensed-matter physics [2]. The pursuit of quantum spin
liquids—highly entangled quantum states without classical
analogs and characterized by fractional spinon excitations—
has been a central focus since the proposal of the resonant
valence bond state for the triangular antiferromagnet [3-9].
This quest has driven both theoretical and experimental
efforts, fueled by insights from high-temperature supercon-
ductors [10] and concepts from the fractional quantum Hall
effect [11]. Advancements in numerical and analytical tech-
niques, applied to a variety of frustrated models, have played
a relevant role in validating zero-temperature quantum phase
diagrams along with their corresponding low-lying magnetic
excitations [12]. Additionally, the synthesis of new com-
pounds [13] and the refinement of experimental techniques,
such as inelastic neutron scattering (INS) [14], have confirmed
the experimental realization of predicted exotic magnetic
states of matter. In the current era of quantum materials
[15,16], it is crucial to integrate this knowledge to enable the-
oretical predictions of experiments under diverse conditions
in an even more controlled manner.

The paradigmatic model of frustrated quantum AFs is the
triangular Heisenberg Hamiltonian, whose ground state ex-
hibits a 120° Néel order, although its proximity to a quantum
phase transition (QPT), leading to a quantum spin liquid,
has been well established [17-19]. The quantum fluctuations,
inherent in the AF interactions, are enhanced by magnetic
frustration and reduce the local magnetization to m = 0.205
(41% of the classical value) [18]. An indication of its prox-
imity to a QPT is that just a very small second-neighbor
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exchange interaction (6% of first neighbor) is enough to de-
stroy the 120° Néel order [20].

In recent years, the synthesis of triangular antiferromagnets
has notably increased, giving rise to numerous candidates for
spin liquids [21,22]. However, only a few of them are perfectly
equilateral, disorder free, or faithfully realize a Heisenberg-
like Hamiltonian [23]. Instead of directly pursuing highly
exotic magnetic states solely characterized by the absence of
specific features (such as no ordering down to the lowest tem-
perature or absence of magnon excitations), a more productive
strategy has emerged. Specifically, the study of magnetically
ordered or disordered compounds near a QPT has proven to
be fruitful. A notable example is the well-studied compound
Ba3CoSb,0y that realizes an effective spin-1/2 triangular an-
tiferromagnet with XXZ model interactions, exhibiting a 120°
Néel order below Ty = 3.8 K [24-28]. In INS experiments
conducted below Ty, an unusual spectrum was observed, com-
prising low-lying energy collective excitations (magnoniclike)
coexisting with two dispersive continua at higher energies
across the entire Brillouin zone (BZ). The semiclassical theory
(large S) [27,29,30] falls short in explaining this spectrum,
leading to speculation that Ba;CoSb,0Oqg is proximate to a
quantum melting point.

Subsequent theoretical studies, including numerical ten-
sor network calculations [31] and 1/N-Schwinger boson
(SB) calculations [32], support the XXZ model. Further-
more, the SB theory provides a novel interpretation of the
spectrum, suggesting that the low-lying energy magnetic
excitations consist of two-spinon bound states, glued by emer-
gent (Hubbard-Stratonovich) gauge fields. These coexist with
two high-energy dispersing continua made of two quasifree
spinons. Namely, at high energies, the confinement length of
spinons is greater than the unit lattice constant. In light of

©2024 American Physical Society
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these findings, it can be concluded that in the proximity of
a quantum melting point, the spin-1 collective excitation of
the 120° Néel order seems better described by a bound state
of two spin—% spinons—the quasiparticles of the neighboring
spin liquid—than the usual magnonic excitations [33,34].

More recently [37], the delafossite material KYbSe,,
which realizes the J; —J, model on the triangular lattice,
has been shown to be proximate to a quantum phase transi-
tion. In this study, the magnetic spectrum was observed with
INS at 7 =300 mK, slightly above the Néel temperature,
Tv = 290 mK. The spectrum displayed an extended contin-
uum with a sharp lower edge that is gapless at the momentum
K, corresponding to the 120° Néel order expected below Ty.
The dynamical structure factor at the magnetic wave vector
K exhibits a scaling collapse in hw/kgT down to 0.3 K,
indicative of a second-order quantum phase transition. The
agreement with theoretical predictions based on the tensor
network and 1/N SB calculations suggests that KYbSe; is
even closer to a disordered phase than Ba3;CoSb,0y. Based
on the zero-temperature SB prediction, it is expected that the
low-energy edge of the spectrum observed at 0.3 K (greater
than Ty) will separate from the continuum as the temperature
passes down through the Néel temperature, giving rise to col-
lective excitations made of two-spinon bound states. However,
it remains unclear whether this low-lying energy band will be
well defined across the entire Brillouin zone. The consistency
found between theory and experiments in KYbSe,, along with
entanglement witnesses, strongly supports the strategy of in-
vestigating the magnetic spectrum of compounds in proximity
to a continuous quantum phase transition. In this case, the
indications are that KYbSe, could be proximate to a Z, spin-
liquid state.

So far, the theoretical studies mentioned above have pri-
marily been performed at zero temperature, while only a
few studies consider finite temperature [38—40]. To provide
a more comprehensive description aligned with experimental
conditions, the next step is to incorporate the combined ef-
fects of both interlayer exchange coupling and temperature.
In compounds such as Ba;CoSb,0y and KYbSe,, although
the interlayer interaction is significantly weaker than the in-
tralayer coupling, it plays a crucial role in establishing a finite
Néel temperature.

Figure 1 schematically depicts the phase diagram of
quasi-2D triangular AFs. The abscissa axis g represents a
generic measure of zero-point quantum fluctuations, with g,
continuously connecting the 120° Néel state to a quantum
spin-liquid state at 7 = 0. The g parameter can be reduced
by including easy-plane exchange anisotropy and increased
by adding second-nearest-neighbor interactions, as occurs in
Ba3;CoSb,09 [27] and KYbSe, [37], respectively. The quasi-
2D triangular Heisenberg model is also shown in the magnetic
phase diagram for small interlayer exchange interaction.

In this work, we investigate the temperature effect on the
magnetic excitation spectra of spin-1/2 quasi-2D triangular
AFs. Unlike spin-wave theory, the Schwinger boson theory
(SBT) relies on magnetic link degrees of freedom that are
believed to take better into account the mixing of transverse
and longitudinal fluctuations, as soon as the Néel temperature
is approached. First, we find that at the saddle-point (SP)
level, the SBT recovers qualitatively well the expected (static)
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FIG. 1. Schematic phase diagram for quasi-two-dimensional
(quasi-2D) triangular antiferromagnets [35,36]. The abscissa axis g
represents a generic measure of zero-point quantum fluctuations (see
text). The solid black line denotes the transition from the ordered
phase to a disordered one, marked by the Néel temperature (7y).
The dashed line indicates the spin excitations’ crossover around 7*:
from the region with well-defined two-spinon bound states across
the Brillouin zone to an intermediate one where bound states begin
to break up. This region, termed the terminated Goldstone regime
(TGR), retains only bound states around the Goldstone modes. The
blue and green vertical bands depict the estimated positions of named
compounds in the phase diagram. The solid red line represents the
location of the model used in our calculations (see Sec. II). For
g > g, the system undergoes a quantum phase transition to a quan-
tum spin-liquid (QSL) phase.

behavior of the 120° magnetically ordered regime below the
Néel temperature. Second, at the 1//N approximation level,
we have found an intriguing temperature dependence of the
spectrum. Specifically, we identify a low-temperature regime,
below a crossover temperature 7*, where the two-spinon
bound state band is well defined across an ample region of the
Brillouin zone. However, as the temperature rises above 7%,
the gauge field fluctuations fail to form the two-spinon bound
states in a significant region of the Brillouin zone. This leads
to a differentiation in the magnetic excitation spectrum. Re-
markably, for temperatures around 7y, only two-spinon bound
states, centered around the Goldstone modes, remain well de-
fined. This behavior is similar to what happens in weakly 3D
interacting antiferromagnetic chains [41]. In these systems,
clear signatures of quantum criticality are observed in the
ordered regime (below but close to the Néel temperature). In
analogy to the superfluid “He case, where phonon excitations
terminate at some momentum and energy by decaying into
two roton excitations, we call this antiferromagnetic region—
between T* and Ty—the terminated Goldstone regime (TGR)
(see Fig. 1), although the decay mechanisms are different [42].
These finite-temperature results strongly support the proposed
behavior of frustrated antiferromagnets near a quantum phase
transition by Chubukov et al. [35], and provide a deeper
insight into the fractionalization process [43].

In Sec. II, we briefly developed the 1/N Schwinger bo-
son formalism. Section III includes the interlayer coupling,
enabling the study of the Néel temperature. In Sec. IV, we
analyze the effect of temperature on the magnetic excitation
spectrum. Section V concludes with final remarks.
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II. SCHWINGER BOSON FORMALISM

In this section we extend the 1/N SB theory to finite
temperatures for quasi-two-dimensional systems. In order to
get a self-contained description, we present the main steps of
the calculation, emphasizing the temperature dependence of
the results. The details of the full calculation can be found in
Refs. [34,44-47].

We study the Heisenberg Hamiltonian in the layered trian-
gular lattice,

A=Y"7;8"8; (1)

<ij>

where < ij > sums over all the nearest-neighbor pairs of
spins of the layered triangular lattice. The in-plane exchange
interaction is J, while there is a no frustrating interlayer
exchange interaction J, . For simplicity, here we study the
isotropic Heisenberg model with only nearest-neighbor cou-
plings. In what follows, we take J = 1 as the unit of energy.
However, the theory can be straightforwardly extended to in-
clude anisotropic [32] and further exchange interactions [37].
In fact, in the next section, we will present some Néel tem-
perature estimations for real compounds with a more evolved
Hamiltonian than the isotropic Heisenberg model.

Within the SB formalism, the Heisenberg Hamiltonian (1)
can be written exactly as

<ij>
where A;; = 2(b1¢b1¢ zw’;m) and B = %([;iTBL +

b; LZ;; T) are the SU(2) invariant link operators of the theory. A}Lj
creates singlets between i sites and Bjj makes them resonate.
Furthermore, up to a constant, : B;lef?,- i (S,- +S j)z and
Ajin 13ad S-S )%, which gives a measure of ferromagnetic
and antiferromagnetic correlations, respectively. Namely,
the particular structure of Hamiltonian (2) is ideal to treat
Heisenberg models in the presence of magnetic frustration
[34,48-50].

The partition function for the model is expressed as the
following path integral over the coherent states of the SBs:

Z[lj1= f Db, b]D[,\]e*fo" dt[Y, bl dbis +H(b,b)+Tp 4T
e’fﬁﬂ dr iy ; M, Ef{,b,-(,72S)’ 3)

where H(b, b) is the Hamiltonian evaluated at site i and time
T dependent complex eigenvalues of the coherent states; 7, =
Iy BB ot Y, with b = (E:T’Eirl)’ is the coupling
between the spins and an infinitesimal symmetry-breaking
field h; = h[cos(Q - r;), sin(Q - r;), 0] that selects the 120°

Néel order in the x-y plane [Q = (2 ﬁn , o), Ty =

e b ok bl s the couphng between the spins and
an external magnetic ﬁeld ji" used to compute the dynamical
spin susceptibility; and A} are the Lagrange multipliers intro-
duced to satisfy the local constraints bjT bjy + b:.fl bj, =28.
The standard procedure involves the following: (i) a
Hubbard-Stratonovich (HS) transformation to decouple the
AI-TJAi j and BZ/B,-‘/ terms (quartic in bosons) of H(b, b); (ii) using

a local reference quantization axis for the spinors b} oriented
in the direction of the 120° magnetic order Q; (iii) integrating
out the quadratic bosonic part, giving rise to

Zbos(W, W, )L’ ]) — /D[Z, b]efﬁ-r.gfl(W,W,)»,j)'E

= det[G(W, W, A, j)],

where b is a four-component vector containing the variables
bi, and bifg, G~! is the 4 x 4 dynamical matrix (see next
section), and er (with & = A, B) are the HS auxiliary fields;

and, finally, (iv) exponentiate ZbOS(W, W, A, j), rendering the
total partition function as

Z[j]= / DIW, WID[)]e SenW-W-rhi) “)

with
Sett W, W, A, h, j) = So(W, W, 1) + Seos(W, W, A, h, j),

where

So(W,W,A)=/ dr| Y 5 wiwE —i2sy ar| )
0 -
ij.§ i

and

SbOS(Wa W’ )\'5 J) _% ln ZbOS(Wv Wa A‘? ,])

STrin[G (W W4, )], (6)

with the trace, in the last line, taken over space, time, and
boson flavor indices. Equation (4) means that the interacting
spin problem has been mapped exactly to a problem of free
spin-l bosons interacting with fluctuating (space and time)
auxiliary fields WA‘ Wlf’, and A7, which are the gauge fields
of the theory [34]

Next, a saddle-point expansion is performed and, keeping
up to the Gaussian fluctuations of the auxiliary fields, the
partition function yields

Z(Z)[J] — e*S:n(WSP,W\p,)»,p,j) x /D[d;, ¢] 67A$';-.S(2).Aq;’ (7)

where the first exponential is the partition function within
the SP approximation, and the integral corresponds to the
contribution of the Gaussian fluctuations of the auxiliary fields
AGT =@t — Pt with ¢ = Wiy, W, AT). S@ is the
fluctuation matrix composed of the second derivatives of the
effective action S with respect to the auxiliary fields [34].
It is worthwhile to stress that once the SB theory is extended
to a large-A/ number of flavors, the contribution of Gaussian
fluctuations to the dynamical spin susceptibility is of the order
of 1/N, so that we call the present theory 1/N SB theory,
although we are working within the physical case N =2
[44,45,47].

A. Saddle-point equations

The SP approximation requires that

1 aG~!

Y
0 t| Gop——
S

sp a¢a

0Sefr
9¢a

sp sp
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where ¢, represents a given HS field (including 1) at some
position and time. Taking the ansatz compatible with the
magnetic order in the xy plane, (As) = —(As) = iAs, (Bs) =

(Bs) = Bs (8 represents the vector that connects sites i
J
—1 .
G, (k. iw)
; B —ie0* A
(lw+)\4sp+yk+g)e tw - k+%
A ; B w0+
B s 9 (—lw+)»sp+)/k+q)e’w
4 0
h
0 2
with  functions y,? = s0JsAssin(k - 8) and y,f =
> s.0JsBscos(k - 8). Convergence factors e*0" are

necessary to correctly take into account the temporal ordering
within the functional integral. The inverse of the dynamical
matrix at the SP is the spinon propagator G, that can be
decomposed in term of simple fractions as

goa'(k)

Golke i) =D e
oo’ k

(10)

whose poles are the dispersion relations of the free spinons
eg (h), with o, 0’ = =+, that can be obtained together with the
matrices g°° after performing a paraunitary diagonalization
of the dynamical matrix (see Appendix). Replacing the ex-
pressions of g;pl and Gy, in the SP equation (8) and carrying
out the Matsubara sums, we arrive at the self-consistent set of

equations
As 211\4 (k + %) .8, (11)
By = 211\73 Xk:Bk cos (k + 9) 5, (12)
= 2zlvs > B (13)

where N, is the total number of sites and

A = Z[ 57 (&) + 55 (0] {1 + n[oeg (W]}

By = Zg“ ® nfoed (W] + 853 ao{1 +n[oel (W]}
(14)
The explicit temperature dependence is present in the Bose

occupation numbers 7.

B. Dynamical spin susceptibility

The dynamical spin susceptibility is obtained as [34,45]

0%1In Z[j
X (g, iw) = lim lim n 2Ll

TE Ao s
h—0 Ny—00 aquwa J g —iw | j=0

15)

and j), and A, = i), the dynamical matrix in the frequency
and momentum representation, using the spinor basis ka =
(ka, b_ﬁ)y bf(’w b:‘lfT), is written as

i
% 0
0
(za)+)w,,+ y k+Q) eie0" —VAk+Q ’
0+
— fk+% (—iw+ Ay + " k+Q) e

©))

(

where the order of the limits is a key point of the calcu-
lation since we are interested in the excitation spectrum of
magnetically ordered states proximate to a quantum melting
point. In particular, to compute the dynamical spin suscepti-
bility up to Gaussian order—above the SP solution—Z?)[j]
of Eq. (7) is plugged in Eq. (15), giving rise to three terms of
the order of 1/ . In Refs. [34,47], we have shown that by only
keeping the bubblelike diagram, the dynamical susceptibility
can be written as

Xun(Q, iw) = x0 (q, iw) + qu(q* iw), (16)
being
1 ag™! 3G™!
Xﬂﬂ(q’ l(,()) Tr g\P8 ‘U gﬂpa on (17)
qlcu sp —q —iw sp
and
X0 i0) = Y Al (@, i0)Dase, (@, i) A (—q, —ie),
[031¢%]
(13)
where
A (qio) = “Tr| g g1 G, aG™! (19)
Jiw) = =Tr| Ggy——| G i
' 2| T 0, | ),
sp sp
and Dy,q4, is the inverse of the fluctuation matrix Sfflzxz =
328 .
%3;1]%35012 |sp 2{3¢f]§(;§a Oflaz}7 with
1 aG™! ag!
Halaz = -Tr gsp_ gsp— (20)
2 0y, © 3¢q, .

After carrying out the Matsubara’s frequency sums in (17),
(19), and (20) for the out-of-plane zz entry of the susceptibil-
ity, we arrive at
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2(q.i0) = o Z >

o oo 8k+q —sk +oiw

Tr[g‘“’ (k+q)u g‘”’ (k)uz][ (s" )
7' —

Tr g"“ (k+q)u~g‘“’ v,

_ Tr[g% krquig’® tou] [n(
kiq T &k TOl®

8]((7) + n(sl‘(’;q) +1]

@

k, k+q]

(q, iw) =

=N

k oo'o

Tr[g7" acrqufg® wpv

8k+q —8k '+ oiw

n(esq)]

[n(ek) -

k,k+q]

b 22)

7 G ;
£§+q +ep toiw

Tr g"" (k+q >v¢ g

[n(eg") + n(sﬁ;q) + 1]},

g0, (q, iw) =

N

k oo'o

2N;

Tr[g”®

8k+q —sk + oiw

k k.k
aeravy, g7 o]

8k+q + sk "+ oiw

where u, = diag(1l, —1, —1, 1) come from the external ver-
gg and v(';;k/ come from the internal vertices 33%:.
Simllarqexpressions can be obtained for the in-plane (xx and
yy) entries of the susceptibility.

Finally, by means of the fluctuation-dissipation theorem,
we can obtain the dynamical spin structure factor by perform-
ing the analytic continuation iw —  + in in the dynamical
spin susceptibility,

—1 1
o -
S (q’w)_(n>1—eﬂ“’

where 7 is the artificial broadening.

tices

Im[x"*(q, 0 +im)],  (24)

III. MAGNETICALLY ORDERED REGIME

In this section, we focus on the ability of the SBT to
describe the finite-temperature behavior as a function of J, . In
particular, in the ordered regime, we find that the SP solution
recovers qualitatively well the expected (static) behavior of
quasi-2D triangular AFs.

In accordance with the Mermin-Wagner theorem [44,45],
the onset of long-range magnetic order in a triangular
Heisenberg antiferromagnet—with continuous symmetry and
short-range exchange interactions—can only occur at zero
temperature. Correspondingly, by mapping the 2D Heisen-
berg antiferromagnet to the effective nonlinear o model
(NLSM), it is shown that there is a crossover from a
high-temperature paramagnetic regime to a low-temperature
classical renormalized regime where the finite-temperature
spin-correlation functions increase exponentially as the tem-
perature goes down to zero [51]. The SBT reproduces quite
well this low-temperature behavior of the spin correlations
at the saddle-point level [35,52]. In particular, it recovers the
low-temperature 120° Néel correlation functions predicted by
NLSM, while at zero temperature, the condensation of the SBs
signals the occurrence of a finite magnetization. At higher
temperatures, however, the SP approximation overestimates
the entropy—due to violation of the local constraint—so
neighboring spins become perfectly uncorrelated at certain

(23)

n(et") + nle) + 1] }

(

temperature [53]. This unphysical result has been studied in
the context of large-A\ theory along with the possibility of
being corrected for finite A/ [54].

On the other hand, any finite interlayer exchange J, gives
rise to long-range magnetic order below a finite Néel tem-
perature. The very definition of a quasi-2D antiferromagnet
implies that J, is much smaller than the in-plane exchange
interaction J—two or more orders of magnitude smaller—
making it difficult to model the compounds in order to extract
J values from the measured Néel temperatures.

Formally, the magnetic phase transition is derived by
studying the behavior of the SB self-consistent Eqgs. (11)—(13)
in the thermodynamic limit, namely, first taking Ny — oo
and then 4 — 0 [45]. In particular, there is a regime where
s('{ — 0 and ¢, # 0, which corresponds to the condensation
of the SB 0 =+ at q = 0. This condensation is directly
related to the presence of a local magnetization that lies in
the xy plane and points in the x direction of a local refer-
ence frame that rotates 120° from site to site. In practice,
this calculation is carried out on finite-size systems of N; =
N, x Nj sites, where N, is the number of layers taken and N,
is the number of sites in each triangular lattice layer. Then,
a symmetry-breaking field » = 1/Nj is applied. Since &f ~
1/Ny and g, ~ (1 /N”)%, the condensate is identified with the
q = 0 and + term of the constraint equation (13). Figure 2
shows the dependence of this condensate with temperature
for a quasi-2D triangular system composed of eight layers—
with periodic boundary conditions—and J; /J = 0.01. In this
work, we have taken N = 144 x 144. This figure also shows
the spinon relation dispersion values 88_ and g,, where it
can be seen that sar ~ 0 (gapless) and &, # 0 (gapped) for
T < Ty (consistent with o = 4+, ¢ = 0 condensate), while for
T > Ty, a gap is opened in both flavors ef = &, # 0 which
signals no condensation, that is, the absence of magnetic or-
der. In the next section, we will see that this behavior of the
condensate has a crucial effect on the magnetic spectrum as
one approaches the Néel temperature.

One way to measure the spin correlation between nearest-
neighbor spins along the interlayer direction is by computing
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FIG. 2. A, (blue circles), condensate (purple triangles), o = +
(red diamonds), and o = — (black squares) spinon dispersion rela-
tion gaps as a function of the temperature for N; = 144 x 144 x 8
sites and J; = 0.01J. Inset: Temperature dependence of the in-plane
saddle-point parameters A and B.

the saddle-point value of the Hubbard-Stratonovich field A,
through the relation

(S:i - Sive) = BT — A7, (25)

As the interlayer exchange interactions are not frustrated, B
vanishes, signaling the antiparallel spin alignment along the
perpendicular direction. The behavior of A, versus temper-
ature is shown in Fig. 2. There we observe that A; behaves
similarly to the condensate, particularly vanishing at the Néel
temperature, so that the fact that A; # 0 is evidence of
the 3D character of the magnetic order. Namely, if A; #
0, the system exhibits long-range magnetic order, whereas
above Ty, the triangular layers are magnetically decoupled
(AL = 0) and the local magnetization goes to zero, in ac-
cordance with Mermin-Wagner physics. In other words, the
transition between the magnetically ordered and paramagnetic
phase occurs due to the effective bidimensionalization of the
magnetic state as the temperature increases. So, the vanishing
of A, is another good signal of the Néel temperature. Notice
that as the temperature increases, the spin correlations in all
directions are weakened. One would expect, naively, that A |
is of the order of J, ; however, any finite value of the interlayer
coupling is enough to generate strong correlations between
triangular layers (A} >~ 0.3 at T = 0).

The inset of Fig. 2 shows the dependence of the in-plane
parameters A and B with temperature. Even if the SP solu-
tion predicts the above-mentioned unphysical transition to a
perfectly uncorrelated paramagnet around 7" ~ 0.43J/, when
T < 0.2J the SP solution predicts reasonable results for the
magnetically ordered regime of quasi-2D triangular AFs.

Figure 3 shows the Néel temperature as a function of J;
and the number of triangular layers with periodic boundary
conditions. For very low J, it is observed that Ty remains
practically independent of the number of layers for N; > 4,
notoriously simplifying the calculation of 7y for quasi-2D
systems. It should be pointed out that linear spin-wave theory

0.40
—— 4 layers

0.35{ —— 8 layers
—— 16 layers

=
~ 0.30 :
: —— NL Fit
(O]
—
S
D 0.25 0.4
o 8l
] 0.20 - . ayers
[eXRe 0.3 -
£ .
D 015+ R oo
[}
U 0.10 -
= 0.1 A
0.05 - 10> 10 1073 1072 10~
n
0.00

0.00 0.65 0.'10 0.'15 0.'20 0.'25 0.'30 0.'35
Interlayer coupling J |

FIG. 3. Néel temperature as a function of the interlayer coupling
Ji for Ny = 144 x 144 and different number of layers, N, (with
periodic boundary conditions). Inset: The solid red line corresponds
to the nonlinear fit (26) for the eight layers in the SB result.

(LSWT) applied to the quasi-2D triangular AF predicts larger
values of the Néel temperatures than the SBT ones [55]. For
instance, for J, /J = 0.25, TESWT/J ~ 0.8 while ;8T /J ~
0.32. This clearly indicates that LSWT strongly overestimates
the finite-temperature magnetization with respect to SBT.
These values are consistent with the expected behavior near
T, where the transverse and longitudinal fluctuations become
of the same order. This feature is surely better captured by the
link fields A;; and B;; of the SBT than the local description
of LSWT. In addition, the SB results are compared with a
nonlinear fit corresponding to the empirical formula

47 py

Iv(Jy) = b))

(26)
based on the random phase approximation combined with
quantum Monte Carlo simulations performed in unfrustrated
Heisenberg AFs [56]. Here, the best fit is given by p; =
0.126 75, b = 3.332 57. Notably, the SB results follow quite
well the empirical formula down to J; ~ 1073 (see inset of
Fig. 3). For smaller J,, the empirical fit is not good due
to finite-size effects in our calculations. Taking into account
the complication of performing quantum Monte Carlo (QMC)
calculations at very low temperatures on triangular lattices—
due to the sign problem—the fact that the best fit gives a value
for the spin stiffness that is close to the SP result already
computed at zero temperature, p; = 0.11 [57], lends support
to our procedure to estimate J; values from Ty. We remark
that within the SBT, a slightly different formula for Ty as a
function of J, has been obtained [58], but is valid for very
small J; (in the region where our calculations suffer from size
effects).

The above results for the Heisenberg model can be easily
extended to the XXZ and J; — J, models. In both cases, we
have observed that Ty behaves in the expected manner; that
is, for a fixed value of J,, Ty increases as anisotropy A
increases, whereas Ty decreases as frustration J,/J; increases.
In Ba3CoSb, 0y, described by the X XZ model with estimated
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values J*/J = 0.937 and J, /J = 0.061, the Néel temperature
gives T¥*%/J = 0.274, which should be compared with the
experimental value 7' /J*P ~ 0.2 [29,30,32]. In KYbSe,,
described by the J; — J, model with estimated value J,/J; =
0.05 and the Néel temperature T,,'" /J;*" ~ 0.045 [37], we
obtain a magnitude for J, that is smaller than 0.01% of J. This
result is in line with the experimental certainty that KYbSe, is
one of the best examples of a two-dimensional triangular AF.

Finally, it is important to remark that although we do not
expect to obtain a precise prediction for the values of J; or
Ty from a saddle-point (mean-field) approximation, the fact
that the SP solution gives the expected qualitative description
of finite-temperature properties is crucial to compute reliable
spectra (to the order of 1/A) in order to get a consistent
thermal picture of the magnetic excitations.

IV. SPECTRA

A. Temperature evolution

It is well known that the Schwinger boson mean-field the-
ory (equivalent to the SP approximation) provides a reliable
description of the static properties of quantum antiferromag-
nets [45,48]. However, the approximation fails to qualitatively
account for the dynamical properties. Particularly, the true
magnon excitations for an ordered state are not captured by
the saddle-point approximation [34,47,59,60]. It is then neces-
sary to go beyond the SP level, including Gaussian corrections
to properly account for the magnons. Given the proximity of
the quasi-2D triangular antiferromagnet to a quantum phase
transition, its dynamical properties exhibit mixed features
from the close spin-liquid phase (fractionalized excitations,
associated with a continuum spectra) and the long-range mag-
netic order (magnons). This coexistence is properly accounted
for by our 1/A-Schwinger boson approach, where the mag-
netic excitations of the quasi-2D triangular antiferromagnet
are better described in terms of fractionalized excitations
(spinons) and magnons that are recovered as two-spinon
bound states. This hypothesis has been corroborated in pre-
vious works [32,37].

In this section, we focus on the temperature evolution of the
magnetic spectra of the quasi-2D triangular antiferromagnet.
Namely, we move along the red vertical line of Fig. 1. For
this purpose, we compute the dynamical spin structure factor
(DSSF) [see Eq. (24)], taking J, /J = 1072. The saddle-point
DSSFs are displayed in the left column of Fig. 4, along
the Brillouin-zone path shown in the same figure, while the
Gaussian-corrected DSSFs are in the right column.

We begin discussing in detail the zero-temperature case,
shown in the top panels of Fig. 4. At the saddle-point level,
the system is described as a gas of independent spinons [50]
with dispersion relation g7 . It is worthwhile to stress that
ey should not be identified as the magnon excitation of the
spin-wave theory [61]. Actually, within the SBT, any physical
spin-1 excitation is composed of two spinons, and they must
be extracted from the DSSF. As the spinons are independent at
the SP level, the DSSF shows a two-spinon continuum (branch
cut), in contrast to the predictions of linear spin-wave theory,
where magnons are well defined as § peaks. The top-left
panel of Fig. 4 shows that the saddle-point continuum has

an intense lower edge, which for momentum q corresponds
to mink{s,‘:jrq + &7 } [see denominator in Eq. (21)]. This mini-
mum is obtained when one spinon excitation is created in the
normal phase and another in the condensate with momenta
k*(= :i:%). Because of that, the lower edge coincides with
the uncondensed mode &7 g OF Efigr This high intensity of
the lower edge has often led to the wrong identification of the
single spinon excitation with the physical magnon. Further-
more, due to the local constraint violation, the saddle-point
magnetic spectrum also exhibits spurious modes arising from
unphysical density fluctuations [62], indicated by arrows in
the top-left panel of Fig. 4.

The Gaussian corrections of the dynamical susceptibility
[32,34], given by Eq. (18), drastically change the SP spectrum,
as shown in the top-right panel of Fig. 4: (i) it cancels out
both the lower edge of the SP two-spinon continuum and the
spurious modes, and (ii) it introduces new collective modes
(the poles of the random phase approximation propagator D)
consisting of low-energy two-spinon bound states, along with
a quasi-free two-spinon continuum at higher energy. These
poles are marked in the figure with open circles and squares to
aid in their identification. The circles signal the poles mainly
corresponding to S¥(q, w) (out-of-plane transverse fluctua-
tions), while the squares signal the poles mainly of $™(q.») +
S$¥(q, w) (in-plane mixed longitudinal and transverse fluctu-
ations). Furthermore, the Gaussian-corrected spectra contain
a rather intense structured continua, which extend up to >~ 2J
(three times the magnon bandwidth) [32,34].

The two-spinon bound states are collective modes, orig-
inated by spinon interactions incorporated by the Gaussian
fluctuations of the Hubbard-Stratonovich fields. These bound
states are indeed the single-magnon excitations since, in the
large-S limit, we have numerically found that the 1/A SBT
spectrum coincides with the LSWT prediction [47]. Namely,
in the large-S limit, the two-spinon continuum vanishes and
the two-spinon bound state bands coincide exactly with both
the magnon dispersion relation and the spectral weight pre-
dicted by LSWT. Then, for the physical case S = 1/2, itis fair
to identify the two-spinon bound state with the single-magnon
excitations. It can be seen that there are poles that are well
separated from the continua—for example, the poles corre-
sponding mainly to S%(q, w) (white circles)—while others
are located within the continua. The former are long-lived
magnon excitations, while the latter can be thought of as
quantum resonances of two-spinons, magnons with a finite
lifetime. Based on previous works, one can conclude that
at zero temperature, the DSSF features for the quasi-2D
triangular AFs are similar to those described for the pure
two-dimensional model [34,47,50].

The temperature evolution of the magnetic spectra is dis-
played in Fig. 4. In the left column, it can be seen that
there is almost no change in the structure and intensity of
the saddle-point spectra, except very close to the Néel tem-
perature (bottom-left panel). In contrast, the 1/A -corrected
results, shown in the right column, exhibit a nontrivial behav-
ior with temperature. As temperature increases, a continuum
signal starts filling the gap between the lower single-magnon
dispersions and the 7 =0 continuum, due to both ther-
mal processes: the simultaneous creation and absorption of
spinons [see denominators e;:jrq — ¢y in Eq. (23)] and the
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FIG. 4. Total dynamical spin structure factor (DSSF) for the quasi-2D triangular antiferromagnet (/; = 0.01J) obtained with the Schwinger
boson theory at different temperatures, along the Brillouin-zone path indicated in the top left panel. Left column: saddle point Ssp(q, @). Right
column: saddle point plus Gaussian fluctuation Ssp.rr.(¢, ). At the Néel temperature 7 = 0.2/, Gaussian fluctuation contributions vanish and
the remaining signal comes from the saddle point. Notice that there is a small gap at I" as the spectra are computed for k, = 7. The open
symbols at the top right panel aid to identify the two-spinon bound state bands (poles of the fluctuation matrix): the white circles and the
magenta squares signal the poles corresponding mainly to out-of-plane S% and in-plane S** + S$*, respectively. The white arrows in the top
left panel signal the SP spurious modes (see main text). The artificial broadening is taken as n = 0.02.
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5% +nld, w)

r M K r

FIG. 5. Thermal evolution of the transverse dynamical structure
factor $%(q, w) for the quasi-2D triangular antiferromagnet (J, =
0.01J) obtained with the Schwinger boson theory. Inside the dashed
rectangle, it is shown how the emergent thermal continuum mixes
with the magnon band at 7 = 0.15J, producing its decay.

creation of two spinons (see denominators 8;(7_;_‘1 + &7). Pro-
cesses of the first kind take place at the same energy of the
lower magnon bands, destroying the coherence of the two-
spinon bound states. So, the magnons decay into two quasi-
free spinons, restoring part of the signal of the saddle-point
lower edge. Consequently, the single-magnon excitations be-
low the T = 0 continua acquire a finite lifetime, signaled by
the broadening of the magnon quasiparticle (see Sec. IV C).
In a semiclassical picture, at T = 0, due to the noncollinear
magnetic order, the transverse and longitudinal magnetic
fluctuations are tightly coupled. Then, the effect of finite tem-
perature is to incoherently decouple both kinds of fluctuations,
weakening the magnon excitations. The 1/N corrections
correctly capture this behavior.

In what follows, we concentrate on the zz component of
the dynamical spin structure factor because it better displays
long-lived magnon excitations. Figure 5 shows the Gaussian-
corrected S%(¢q, w) along the same path of the Brillouin zone
as Fig. 4. As the long-range magnetic order lies in the x — y
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FIG. 6. Thermal evolution of the transverse dynamical structure
factor $%(q, ) for (a) q; = (&, 47—;3 7)and (b) q = (F, 2%, ).
The two momenta are shown in a plot of the BZ path at the top-right
corner of (b). The magnon peak signal holds to higher temperatures
for the closest momentum to the Goldstone mode, q;. At the Néel
temperature 7 = 0.2J, the fluctuations vanish completely and the

excitations are only due to free spinons.

plane, $%(g, w) only takes into account transverse magnetic
fluctuations, whereas the total spectra also contain the lon-
gitudinal fluctuations, that for noncollinear orders are tightly
coupled with the in-plane transverse ones. It can be noticed
that the relative spectral weight of the continuum signal with
respect to the single-magnon signal is smaller for the zz com-
ponent than for the total one (see right column in Fig. 4). In
other words, the anomalous extended continua, characteris-
tic of the triangular quantum antiferromagnet, has its origin
mainly in the in-plane spin fluctuations. The white dashed
rectangle is a visual aid to help follow the thermal evolution
of a sector of the single-magnon dispersion, between the K
and M points. For low temperatures, the magnon excitations
in this sector are well defined as there is almost no change with
respect to T = 0. However, around 7 >~ 0.15J, the thermally
activated spinons produce the decay of the two-spinon bound
states (magnons). Beyond this temperature, the whole spectra
become diffusive, except in the neighborhood of the Gold-
stone modes. This behavior is also illustrated in Fig. 6, which
displays S¥(q, w) as a function of energy for two different
momenta (see Sec. IV B).

Concerning the magnon decay, the spectra suggest the ex-
istence of a crossover temperature, above which the magnon
excitations lose their coherence across a significant region of
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27”, 27’% ) — M = (m, rr/«/§, 7). On the x axis, the component
common to all points, k, = 7, is omitted.

the first Brillouin zone due to the mentioned decay into the
emergent continuum. Only in the vicinity of the Goldstone
modes, magnons survive as well-defined quasiparticles. Ulti-
mately, above the Néel temperature, the spectra become fully
diffusive and the 1/A corrections to the magnetic dynamical
susceptibility vanish. Notice that the saddle-point and 1/N -
corrected results are practically the same (see 7 = 0.20J
panel in Fig. 4). This is equivalent to saying that when the
temperature is high enough, the SU(2) symmetry is restored.

B. Relative spectral weight of magnons and the crossover
to the terminated Goldstone regime

To support our picture about the thermal evolution of the
magnons and to identify a crossover temperature 7* (along
the red vertical line of Fig. 1), we analyze the spectral weight
contribution of the two-spinon bound states and fix a criterion
to quantify 7*. Figure 6 displays S%(q, w) for two different
momenta, ¢, and ¢q,. It can be seen that for q,, close to
Goldstone point K, although the magnon loses spectral weight
as the temperature increases, it is always well defined, up to
the Néel temperature (7y = 0.2J). On the other hand, for g, in
the middle between the K and M points, the quasiparticle co-
herence is lost for 7 2 0.15/, being its spectral weight mostly
transferred to the continuum background. This behavior is
observed in an ample region of the Brillouin zone. In order
to see this, in Fig. 7 we compare the magnon spectral weight
with the total signal of the dynamical structure factor along
the K — M path, for several temperatures. The points are
computed by taking the quotient between the spectral weight
of the magnon resonance, obtained from the 1/A -corrected
S%(q, w), and the total (saddle-point plus 1/N -corrections)
spectral weight. We identify the crossover temperature 7" =~
0.75Ty (T* ~0.15J for J,/J = 107?), defined as the one
above which, for all momenta except in the vicinity of the
Goldstone modes, the magnon spectral weight goes down to
10% of the total spectral weight. The vicinity of the Goldstone
modes is taken as a region around them with a radius that
is >~ 25% of the K — M distance. This criterion is consis-
tent with the results shown in Fig. 6. A similar behavior is
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FIG. 8. Temperature dependence of the quasiparticle peak width
for momentum k = (2.225, 3.4, ) which is close the Goldstone
mode. Inset: Low-temperature fit of the form f(T')=aTl”+ b,
where a = 1.1555 and b = 0.0408. b is twice the artificial broad-
ening 7.

observed in the excitation spectrum of the superfluid *He,
where phonon excitations terminate at some momentum by
decaying into two roton excitations [42,63]. Though the decay
mechanism differs, we term this antiferromagnetic ordered
region, between 7* and Ty, the terminated Goldstone regime
(see Fig. 1). This observation contrasts with the expectation
that the magnon would persist throughout the entire Brillouin
zone for nonfrustrated antiferromagnets. Finally, at the Néel
temperature, the whole spectra become incoherent, even at the
Goldstone modes.

C. Lifetime of the magnon excitations

In order to further quantify the effect of the thermal ac-
tivated spinons on the two-spinon bound states, Fig. 8 shows
the temperature evolution of its width for a momentum k close
to the Goldstone mode. While at 7 = 0, the finite width is
given by twice the artificial broadening n = 0.02, necessary
to perform the analytical continuation [see Eq. (24)], as the
temperature rises, the width has a 72 behavior (see inset).
At low temperature (T < T¥), the lifetime hardly changes
with respect to its ground-state value, whereas for 7 > T*,
there is a pronounced increase. This is consistent with the
terminated Goldstone regime picture. It is important to men-
tion that the thermal evolution of the magnon lifetime has
been little explored in the literature [64]. We recall that the
present result is limited to two-spinon scattering processes,
and if we would like to include magnon-magnon interactions,
four-spinon processes should be considered [34].

V. CONCLUDING REMARKS

Our results on the quasi-2D triangular antiferromagnet
can be related with recent numerical predictions for the
specific heat and entropy of the 2D triangular Heisenberg
antiferromagnet [38—40]. In these studies, two characteristic
temperatures are found: a high-temperature scale 7;, ~ 0.5J
signaling the development of nearest-neighbor spin correla-
tion and a low-temperature scale 7; ~ 0.2J related to the
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thermal activation of the roton excitations. We conjecture
that the crossover temperature 7* >~ (0.75Ty can be asso-
ciated with 7;: around T ~ T*, the antiferromagnet enters
the terminated Goldstone regime, where the high density of
thermally activated spinons around M gives rise to the de-
cay of the magnons away from the Goldstone points. This
suggests that the change of the nature of the magnetic ex-
citations around T* notoriously affects the thermodynamics
of the triangular quantum antiferromagnet. On the other
hand, the high-temperature scale 7j, can be associated with
the “pathological” temperature T ~ 0.43J of the Schwinger
boson theory [53,54], above which the mean-field solution
corresponds to an infinite-temperature perfect paramagnet, in
which the spin correlations vanish exactly.

In summary, in order to make contact with the experimen-
tal conditions, we have studied the thermal evolution of the
magnetic excitations of a quasi-2D triangular antiferromagnet,
by means of a parton theory solved as a 1/N expansion of
Schwinger boson theory. Recently, this approach has been
successfully applied—at zero temperature—to frustrated an-
tiferromagnets close to a quantum phase transition [32,37].
We have found that the magnon excitations, described in our
theory as two-spinon bound states, decay due to the pro-
liferation of thermally activated spinons. The decay is very
pronounced in the temperature range 7* < T < Ty, which we
have named the ferminated Goldstone regime because—above
T*—the two-spinon bound states survive only in the vicinity
of the Goldstone modes. In the quantum critical regime, above
the Néel temperature, the excitations would correspond to
quasi-free spinon states.

The coexistence of quantum critical features and magnon
excitations, below the Néel temperature, has been observed in
weakly 3D interacting chains [41] and also in the triangular
antiferromagnet CuCrO, [65]. These results gives support
to the idea that the fractionalization of magnons—proposed
for 2D frustrated AFs—near a quantum phase transition
[4,8,35,43] can be safely extended to more realistic quasi-2D
triangular antiferromagnets.
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APPENDIX: NUMERICAL INVERSE
OF THE DYNAMICAL MATRIX

The dynamical matrix (9) can be written as

G, (k. iw) = inS + My, (A1)
where we have separated the k-dependent terms from the
w-dependent ones, and S = diag(+1, —1,+1, —1) is the
paraunitary matrix. Then we perform a paraunitary diago-
nalization of the momentum-dependent part, My = I/{E DUk,
where D is the diagonal matrix that contains the eigenvalues
and U is the paraunitary transformation matrix [66]. Given

that S is invariant under paraunitary transformations (S =
L[ESL{k), we can write

G, (K, iw) = Ul (iwS + D). (A2)
and the dynamical matrix inverse is obtained as
Gop(k, i) = Uy 'Sliw + SD) ' U) ™, (A3)
where
1
P 0 0 0
(iw+SDy) ™! = 0 0 (A4)
R B U= U |
k
0 0 o !

ot
lw Ek

The eigenvalues’ g structure is consistent with the k — —k
invariance. Finally, the simple fraction decomposition of the
SP Green function matrix is

Gop(k, iw) = (AS5)

Z gw (k)
io+oel’
where o, 0’ = + and

gz;;r = uojll (UT);ﬁl’

gy = Uz U,

8ap = —Upn U,
8op = —U U,

In the last expressions, we have omitted the k dependence to
simplify the notation.
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