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Signatures of Hund metal and finite-frequency nesting in Sr2RuO4 revealed
by electronic Raman scattering
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We investigate the electronic Raman scattering of Sr2RuO4 using a material-realistic dynamical mean-field
theory approach. We identify the low-energy Fermi liquid behavior and point out that the enhanced Raman
response at higher energies is a fingerprint of Hund metals. These signatures originate in the two-stage coher-
ence of Hund metals and associated quasiparticle “unrenormalization.” In agreement with recent experimental
observations, we find the B1g and B2g responses differ, but our calculations suggest a novel interpretation of this
dichotomy. The B1g response is dominated by the xy orbital and the B2g response receives contributions from
all orbitals and is strongly affected by previously unnoticed finite-frequency interband nesting. We calculate the
vertex-corrections to Raman response and show that their effect is nonvanishing but small.
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I. INTRODUCTION

Raman inelastic light scattering is a powerful probe of
molecules and materials. Raman shifts and scattering inten-
sities reveal vibrational modes, providing invaluable insights
into molecules and compounds relevant to chemistry, biol-
ogy, and materials science [1]. Electrons in materials scatter
light inelastically too, and the associated electronic Raman
response [2] has been used to characterize the pseudogap and
superconducting phases of cuprates [3–5], the nematicity in
pnictides [6–8] and to document strange-metal behavior and
quantum criticality [9,10], to name only a few. An important
advantage of Raman scattering is that by varying the polariza-
tion of the incident and reflected light one can probe different
symmetry sectors and access the momentum dependence of
the scattering.

Theoretically, Raman scattering has been investigated with
weak coupling approaches [11,12] and, for strongly cor-
related models, with dynamical mean-field theory [2,13–
18] and determinantal quantum Monte Carlo [19]. Whereas
phonon frequencies and associated Raman shifts are rou-
tinely calculated [20,21], electronic Raman scattering is
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rarely considered and has been evaluated for a few cases
only [22,23]. The rarity of material-realistic approaches
represents a significant hindrance to the interpretation of ex-
periments, highlighting the need for further work in this area.
Our paper develops such an approach and applies it to a
case of great current interest, the layered ruthenate compound
Sr2RuO4.

The motivation for our investigation is Ref. [24] that re-
cently reported experimental measurements of the electronic
Raman response in Sr2RuO4. The much discussed Sr2RuO4

compound is a multiorbital layered unconventional supercon-
ductor [25] displaying Fermi liquid behavior below a low
quasiparticle coherence scale (e.g., resistivity ∝T 2 below
∼25 K). On a broader energy and temperature range, Sr2RuO4

has been characterized [26–28] as a Hund metal [29,30]. A
hallmark of Hund metals is that local orbital fluctuations be-
come quenched at a distinctly higher energy scale than local
spin fluctuations [27,31–34]. This two-stage screening leads
to a distinctive non-Fermi liquid feature at a characteristic
intermediate energy scale in the one-particle spectral func-
tion and self-energy [33,35–37]. Another hallmark of Hund
metals is a tendency towards orbital differentiation, mani-
fested by distinct values of quasiparticle renormalizations in
bands spanned by different orbitals. In Sr2RuO4 the broader
quasi-two-dimensional γ -band, predominantly spanned by
the xy-orbital and displaying a van Hove singularity close to
Fermi level, is more renormalized (i.e., it has a higher mass
enhancement ∼5–6 compared to band theory) [25,26] than
the α/β quasi-one-dimensional sheets spanned by the xz/yz
orbitals (mass enhancement ∼3.5).
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In Ref. [24], they measured the Raman spectra in different
channels, found a less coherent response in the B2g channel,
and interpreted the dichotomy between the B1g and the B2g

response in terms of the orbital effects, referring to the effect
as the ‘orbital-dichotomy’. This interpretation may appear
natural since a simple approximation ∼∂2ε(k)/∂kx∂ky to the
Raman vertex in this channel suggests that it is insensitive to
the more coherent quasi-one-dimensional α/β bands, leading
to the interpretation [24] that the B2g response may originate
dominantly from the xy orbital and the B1g channel from
the xz/yz ones. However, the quasiparticle response reported
for the B2g channel is quite faint even at low T [24], which
seems at odds with Fermi liquid behavior and raises questions
about the appropriate interpretation. What are the signatures
associated with the Fermi liquid regime and those associated
with the higher energy non-Fermi liquid Hund metal effects?
How does the orbital differentiation manifest itself in the
Raman response? These questions can only be convincingly
addressed theoretically in a materials-realistic approach.

Here, we answer these questions by calculating and an-
alyzing the electronic Raman response of Sr2RuO4 in a
dynamical mean-field theory (DMFT) framework based on
first-principles density-functional theory (DFT) electronic
structure. The Raman vertices are calculated in a matrix-
valued effective mass approximation. By comparison with
simplified model calculations we disentangle the Fermi liquid
response from the higher-energy non-Fermi liquid response
and show that the latter reveals characteristic spectral features
of Hund metals. We also investigate why the Raman responses
in the B1g and B2g channels differ. We show that, in contrast to
the interpretation of Ref. [24], the B1g channel is dominated by
the xy orbital and find that the B2g response displays a spectral
feature associated with the enhancement of inter-band contri-
butions by an interesting finite-frequency nesting property.

II. METHODS

We perform DFT+DMFT calculations for a DFT-derived
Wannier Hamiltonian [38] spanning the t2g bands of Sr2RuO4

as described in Ref. [39], taking into account the correlation-
enhanced spin-orbit coupling ∼0.2 eV [40,41]. We use the
hybridization-expansion quantum Monte Carlo solver from
the TRIQS software library [42–45], using the interaction
parameters U = 2.3 eV and J = 0.4 eV, which were origi-
nally estimated from constrained-RPA calculations [26] and
shown to give results consistent with several experimental
observables [26–28,39,46–49]. The Matsubara self-energies
are continued to real-frequency using Padé interpolation. We
checked that the results do not change significantly if we
use Maximum Entropy analytical continuation. The Raman
response is given by (in units where e2 = 1 and h̄ = 1):

χ ′′
μ(�) = π

∑
k

∫
dω

{
[ f (ω) − f (ω + �)]

× Tr γ
μ

k Ak(ω) γ
μ

k Ak(ω + �)
}
. (1)

In this expression, both the Raman vertex γ
μ

k in channel μ

and spectral functions Ak at momentum k are 6 × 6 matrices
in spin and orbital space; f (ω) is the Fermi function. In Eq. (1)
we retained only the so-called bubble contributions to the

FIG. 1. Raman response in B1g (top panel) and B2g (bottom
panel) channels for different temperatures. The susceptibilities are
expressed in atomic units (i.e., setting the prefactor e2/(h̄a0me) equal
to unity).

response [50]. It is well known that for the case of optical
conductivity the vertex corrections vanish in DMFT due to
the oddness of the velocity matrix elements upon inversion
for centrosymmetric systems [13,51]. This argument does not
hold however for the Raman response, because the Raman
matrix elements transform differently. In Appendix H we
show that (i) when the interband terms are neglected, the ver-
tex corrections in the considered channels vanish by reflection
symmetries, and (ii) numerically test that their contribution
remains small even when the interband terms are included.
Following Ref. [23], we calculate the Raman vertices in a
matrix valued effective mass approximation generalizing the
approach of Ref. [52]:

[
γ

μ

k

]
νν ′ =

∑
αβ

ei
α

∂2H (W )
νν ′

∂kα∂kβ

es
β, ν, ν ′ band indices,

γ
B1g

k = 1

2

(
∂2H (W )

∂k2
x

− ∂2H (W )

∂k2
y

)
, γ

B2g

k = ∂2H (W )

∂kx∂ky
, (2)

expressed in terms of the second derivative of the Wannier
Hamiltonian H (W ) with respect to k (in a direction related
to the polarization of the incoming/scattered light ei and
es). We emphasize that, importantly, this expression includes
intraband and interband contributions. The derivatives were
performed as outlined in Ref. [53] using the Wannier interpo-
lation as implemented in the WannierBerri library [54,55]. We
use a 60 × 60 × 60 Monkhorst-Pack grid to sample the Bril-
louin zone, which we verified to be sufficient for convergence.

III. RESULTS

Figure 1 displays the temperature (T ) and frequency de-
pendence of the calculated Raman responses. The top panel
depicts the results in the B1g channel. For low T , one sees
a low-frequency Drude peak that is followed by a moderate
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FIG. 2. Raman response for the B1g (a) and B2g (b) channel.
In addition to the full DFT+DMFT result at T = 29 K (solid blue
line), we also display a calculation where the DMFT self-energy for
each orbital is replaced by a Fermi liquid expression consistent with
its low-energy behavior (orange dashed). The results are compared
to: a simple Drude fit with an optical scattering rate �∗ = const.
(gray dashed-dotted) and an extended Drude fit with a Fermi liquid
optical scattering rate �∗ ∝ �2 + (2πkBT )2 (pink dashed-dotted).
We also display the experimental results from Refs. [24] and [58]
(shifted away vertically for clarity). On the bottom panel, the same
curves are plotted for B2g, except for the experimental data which
are currently available in a broader frequency range only for the
A1g+B2g channel [24,58]. For direct comparison, we also plot the
DFT+DMFT results for that channel (green). See Appendix G for
the expression of the Raman vertex in the A1g+B2g channel.

increase at a higher frequency, a dependence that is char-
acteristic of the Fermi liquid coherent response [24,56,57].
This dependence persists up to T ∼ 200 K. For higher T the
peak-dip-increase structure is lost and one observes only a
monotonous increase with frequency in the presented fre-
quency range.

In the B2g channel shown in Fig. 1(b), one also sees a Drude
peak but its intensity is smaller compared to an additional
feature that takes the shape of a peak centered around 80 meV
at low T . The intermediate minimum disappears at a some-
what lower T than observed in the B1g. At T ∼ 100–150 K
in B2g, the two-peak structure transforms to that of a plateau
followed by a steeper increase, whereas in B1g this growth
of the response above 40 meV remains mild. Qualitatively
similar features, also with a smaller overall intensity but with
a steeper increase with frequency in the B2g case, was also
observed in experiments [24].

In Fig. 2, we display the calculated low temperature T =
29 K spectra in a broader energy range. To gain insight into
the different features of the spectra, we also display (i) a
simple low-energy Drude fit χ ′′ ∝ ω/(ω2 + �∗2) with con-
stant scattering rate �∗, (ii) an extended Drude fit using a
frequency-dependent Fermi liquid scattering rate �∗(ω) ∝
[ω2 + (2πkBT )2], and (iii) a “DFT+Fermi liquid” approxi-
mation in which the DMFT self-energies have been replaced
by their low-energy Fermi liquid form for each orbital:

m(ω) = (1 − 1/Zm)ω − iAm(ω2 + π2k2

BT 2) in the full ex-
pression (1). The calculated spectra deviate from the simple

Drude fit above ∼3 meV in both channels. A better description
of the data up to ∼20–30 meV is obtained using the general-
ized Drude fit, which on a log-log scale has the shape of two
peaks of similar height separated by a dip. This dip signals
the crossover from the regime in which the scattering rate is
dominated by temperature to that in which it is dominated by
its Fermi liquid frequency dependence [36,57]. It is apparent
in the DFT+DMFT spectra around 25 meV and also (at a
somewhat lower frequency) in the B1g experimental spectra,
as noted in Ref. [24].

In the B1g channel, deviations between the calculated
DFT+DMFT spectra and Fermi liquid behavior are appar-
ent on Fig. 2(a). Weak deviations are first noticeable at
frequencies of ∼20–30 meV, where the real-part of the self-
energy (see Appendix B) deviates from the strict linear-in-ω
Fermi liquid behavior (which also causes “kinks” observed
in angular resolved photoemission experiments at similar
frequencies [39,59,60]). As the frequency increases, the devi-
ations become much more pronounced above h̄ω ∼ 100 meV,
where the DFT+Fermi liquid result starts to drop, while the
full DMFT result continues to increase. The enhancement
of the Raman response in this energy range is linked to a
non-Fermi liquid feature of the DMFT self-energies 
, which
is a hallmark of Hund metal behavior. The real part Re

for both orbitals displays a minimum and an abrupt change
of slope for h̄ω � 100 meV [26] (see Appendix D), leading
to an “unrenormalization” and waterfall in the quasiparticle
dispersion. This feature that also causes a shoulder structure
in the quasiparticle peak [35] has been shown to enhance the
optical conductivity in this frequency range [36]. We note
that in Ref. [36] the relation to Hund physics was missed.
In Appendix D, we compare the results also to a calculation
at increased occupancy N = 5, explicitly showing that the
enhanced Raman response in the 100–500 meV range is due to
the Hund metal inner structure of the quasiparticle peak. This
effect is due to the two-stage coherence which is a hallmark
of Hund metals: distinct coherence scales for spin and orbital
degrees of freedom lead to additional structures in both one-
and two-particle responses [27,33,61–63].

Figure 2 also displays the experimental data from
Refs. [24,58]. Our analysis suggests that the observed in-
crease of the experimental spectra, peaking at ∼400 meV,
is a manifestation of the Hund metal non-Fermi liquid fea-
ture discussed above. Comparison to the DFT+Fermi liquid
approximation demonstrates that this increase cannot be inter-
preted in terms of inter-band effects, which are fully taken into
account in this approximation. Furthermore, in Refs. [24,58]
it was shown that luminescence cannot account entirely for
this increase. The clear signature of Hund metal behavior in
Raman spectroscopy is the first main result of our work.

Figure 2(b) shows the results for the B2g channel, along
with the A1g + B2g channel for which experimental data are
available in a wider frequency range [58]. The results are
similar to those in the B1g channel and notably also display
the non-Fermi liquid increase above 100 meV. In addition, the
spectra display a clear “hump” around 80 meV. This hump
is visible in A1g + B2g and is even more pronounced in B2g

but does not appear in the B1g channel. As the hump also
appears in the DFT+Fermi liquid approximation, it cannot
be attributed to non-Fermi liquid physics. Moreover, if one
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FIG. 3. Momentum-resolved Raman response. The (kx, ky ) map of contributions to total χ ′′
B1g

at � = 1 meV (a) and at � = 80 meV (b).

(c) The interband (β ↔ γ ) contributions at � = 80 meV. (d) The magnitude of the Raman vertex |γ B1g| = ∑
ν |γ B1g

νν |. Panel (e) depicts the
spectral function at two energies. In (f)–(h) the same information as in (a)–(d) is shown but for the B2g channel. The response and vertex values
are all in atomic units.

isolates the response corresponding to either of the two or-
bitals individually, one does not find a hump at that frequency
(see Appendix C). Instead, we find the hump is a consequence
of unexpectedly strong interband transitions.

We demonstrate this on Fig. 4, where we plot the full
DFT+DMFT results next to a calculation that retains only
the interband contributions to the response. We observe that
whereas in B1g the interband terms represent a small part of
the full response, their contribution becomes dominant in B2g

around 80 meV. Additionally, we observe that at low energies,
the data in B1g and B2g behave similarly. This raises the ques-
tion of identifying which orbitals are probed by each channel
and whether a particular channel acts as an orbital filter. The
remainder of the paper discusses this point and explains why
the interband contribution at 80 meV is so strong.

In Figs. 3(a) and 3(f), we present a map of the contribution
of different momenta to χ ′′, i.e., of the momentum-resolved
Raman response corresponding to the integrand in Eq. (1),
at a low frequency (1 meV) for the B1g and B2g cases, re-
spectively. This map exhibits the expected symmetry with
maxima along the zone verticals/horizontals for B1g and along
the zone diagonals for B2g. This is caused by the momen-
tum dependence of the corresponding vertices—see Figs. 3(d)
and 3(i) depicting their magnitude. On Figs. 3(a) and 3(f),
one can distinguish the individual Fermi surface sheets and
see that dominantly γ and β sheets contribute to both re-

FIG. 4. Normalized Raman response for B1g (blue) and B2g (or-
ange) at 29 K. The dashed lines indicate the interband contributions
(see Appendix F).

sponses and that the B1g response is primarily associated
with the γ sheet, which is composed primarily of the xy
orbital along the directions [39], where the B1g vertex is large
(see also Appendix E for discussion of orbital character of
different channels). More precisely, the weights of the B1g

signal on sheets α, β, γ are, respectively, 0%, 16%, and
84%, while they are are 5%, 44%, and 51%, respectively,
for the B2g signal. The α sheet contributes minimally to both
responses due to the low magnitude of the vertices in the
corresponding part of the Brillouin zone. From this analysis,
it is clear that the B1g response is dominated by the xy or-
bital (with some smaller contribution from xz/yz), while in
contrast the B2g channel does not filter out a specific orbital
contribution.

Figures 3(b) and 3(g) depict the Raman response at
80 meV. In the B1g channel, the momentum map is essen-
tially a broadened version of the low-frequency case and
one can still resolve the individual sheets. Conversely, in the
B2g channel, the momentum structure changes, revealing a
strong broad feature appearing between the β and γ sheets.
Figures 3(c) and 3(h) again present a map of the response
at 80 meV but retaining only the contributions that involve
interband β-γ transitions. This clearly shows that the B2g

signal in Fig. 3(g) is dominated by those transitions, whereas
for B1g in Fig. 3(c) their contribution is weak.

Why do the interband transitions become important only
around 80 meV? Figure 3(e) shows an overlay of the mo-
mentum resolved spectral function evaluated at ω = 0 (black,
corresponding to the Fermi surface) and at ω = −80 meV
(red, corresponding to the renormalized equal-energy surface
for quasiparticles at that binding energy). It is evident that
the two spectral functions nearly completely nest, leading to
strong interband effects whenever the vertex allows for such
transitions. This motivates us to return to revisit the B1g case
in Fig. 3(c). We find that actually the interband contributions
are of comparable magnitude in the two-channels (notice the
different scales), but in the B1g the magnitude of the intraband
transitions is higher, resulting in less prominent interband
contributions in the B1g response (see also Appendix F).
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The interband transitions also affect interpretation of the
extended Drude modeling of the data. In Appendix A we
demonstrate that consistently with Ref. [24] we find larger
mass enhancements in B2g channel, but we stress their large
magnitude is due to the interband-transitions.

IV. CONCLUSIONS

In summary, we used a material-realistic DMFT approach
with Raman vertices evaluated in a matrix-valued effec-
tive mass approximation to calculate the Raman response in
Sr2RuO4. We documented the Fermi liquid regime at low
energy and argued that the enhanced response at higher en-
ergies is a consequence of the inner structure of quasiparticle
peak, a characteristic fingerprint of Hund metals. We found
that the B2g response is strongly influenced by interband
contributions that are enhanced by a finite-frequency nesting
effect. Whether this effect leads to a possible feedback of the
corresponding fluctuations into other physical properties and
is visible in other spectroscopies [64] are interesting questions
for future investigations. Our results emphasize that this rarely
discussed effect [65] is to be considered in other materials as
well. On the methodology side, our investigation highlights
the importance of material-realistic calculations of the Raman
response and the approach developed in this work opens up
possibilities for investigations of other materials with strong
electronic correlations.
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APPENDIX A: GENERALIZED DRUDE DESCRIPTION

1. Raman susceptibility

Raman susceptibility can be discussed in terms of the
generalized Drude model, analogously to the more familiar
optical conductivity. One can define the Raman conductivity
σ (�) = σ ′(�) + iσ ′′(�) with σ ′, σ ′′ denoting real and imag-
inary parts. The Raman conductivity is related to the Raman
susceptibility by the relation σ ′(�) = χ ′′(�)/� [66]. As for
the optical conductivity, one can express the Raman conduc-
tivity in a form similar to the Drude expression (“generalized
Drude model”; see, e.g., Ref. [57])

σ (�) = χ0
D(�)

−i� + D(�)�∗(�)
, (A1)

where

χ0 = 2

π

∫ �c

0
σ1(�)d�, (A2)

FIG. 5. Raman susceptibility in the extended Drude model with
Fermi liquid �∗ ∝ (ω2 + (2πkBT )2) and low energy Drude behavior
�∗ =const (blue).

The cutoff �c can be taken to be infinite, but later we will use
a finite value. In this expression the renormalization factor

D(�) = 1

1 + λ(�)
= m

m∗(ω)
(A3)

is the inverse of the Raman mass enhancement and �∗(�) the
Raman scattering rate. At low energies, D tends to a constant
and one can write

σ (�) ≈ χ∗
0

−i� + �∗(�)
, (A4)

where χ∗
0 and �∗ denote the renormalized Raman “plasma

frequency” and the renormalized scattering rate.
Hence, the imaginary part of Raman susceptibility can be

described with

χ ′′
EDM(�) = �χ∗

0
�∗(�)

�2 + [�∗(�)]2 . (A5)

The Raman susceptibility corresponding to a Drude be-
havior �∗ → const and to the Fermi liquid behavior �∗ →
α[�2 + (2πkBT )2] is shown in Fig. 5. Notice the occurrence
of the intermediate Fermi liquid minimum in the Fermi liquid
case [24,56], and the associated two-hump shape, apparent on
the log-log plot.

2. Low-energy behavior of Raman response in Sr2RuO4—the
effective masses and scattering rates

In Ref. [24], such a generalized Drude analysis was applied
to the experimental Raman spectra and the reported effective
mass enhancement was found to be larger in the B2g channel
as compared to the B1g one. We show here that the same con-
clusion applies to our theoretical results and explain why this
is nonetheless consistent with our finding that the B1g channel
is dominated by the xy orbital/γ -sheet which is known to have
the largest quasiparticle mass.

The mass-enhancement factor corresponding to the Raman
response can be calculated from

1 + λ(�) = χ0
χ ′(�)

|χ (�)|2 . (A6)

Figure 6(a) presents the behavior of χ0 as a function of T .
Similarly to what is found in measurements of Ref. [24]
χ0 in the B1g drops strongly with temperature, whereas the
B2g depends on T less (our results show a weak increase
with T ). Figure 6(b) shows the behavior of the mass en-
hancements. Weaker mass enhancement is found in the B1g

023124-5

https://www.hpc-rivr.si
https://eurohpc-ju.europa.eu
https://www.izum.si


GERMÁN BLESIO et al. PHYSICAL REVIEW RESEARCH 6, 023124 (2024)

FIG. 6. (a) Temperature dependence of χ0 in atomic units.
(b) The mass-enhancement factor (1 + λ). In dotted line the mass-
enhancement factor if only intraband contributions are considered.
We used �c = 500 meV.

channel. Additionally, we show the result of a calculation
in which we neglect the interband terms. This demonstrates
that the stronger mass enhancements in B2g are caused by
the interband terms. In particular, the large interband con-
tribution leads to an underestimation of relative weight of
the low-energy response when applying a generalized Drude
analysis, hence leading to an overestimation of the effective
mass enhancement.

On Fig. 7 we plot the Raman scattering rate

�(�) = χ0�
χ ′′(�)

|χ (�)|2 , (A7)

versus �2 + (pπkBT )2, to demonstrate the Fermi liquid be-
havior at low temperatures and energies. One sees the data
obeys the Fermi liquid expectations with the Ghurzi factor
p = 2 for the B1g channel, but a smaller value p = 1.5 must
be used for the B2g channel.

FIG. 7. Raman relaxation rate in B1g and B2g channels (circles
and triangle, respectively) vs (�2 + (pπkBT )2. In main panel we
use p = 2 and canonic Fermi liquid behavior is indicated by linear
behavior. In B2g the scattering rate is not linear in [�2 + (pπkBT )2]
for p = 2. Inset demonstrates the data collapse to a linear function
when p = 1.5 is used instead.

FIG. 8. Real (a) and imaginary (b) part of the self-energy for the
orbital xy (blue) and xz/yz (orange) at 29 K. Fermi liquid low energy
fits are indicated (dashed).

APPENDIX B: SELF-ENERGIES

The self-energies used in the calculations for temperature
T = 29 K are shown in Fig. 8. The Fermi liquid (FL) linear-
in-ω dependence in Re
 and quadratic dependence in Im


∝ (ω2 + π2k2
BT 2), are also indicated. Notice abrupt change

of slope in Re
 at ω = 0.1 eV. This abrupt “unrenormaliza-
tion” linked to Hund metal nature (Appendix D) leads to an
enhancement of Raman response above this frequency.

APPENDIX C: INDIVIDUAL ORBITAL RESPONSE:
ALLEN FORMULA

It is of interest to know the Raman response corresponding
to individual orbitals. In an idealized case where there is no
orbital-mixing and the band structure effects are weak (i.e.,
the energy dependence of the band transport function �(ε) =∑

k γ 2
k δ(ε − εk ) is weak [57]) the Raman response is given by

the Allen formula [67]

χ ′′(�) ∝ Im
∫ ∞

−∞
dω

f (ω) − f (ω + �)

� + 
∗(ω) − 
(ω + �)
. (C1)

The Allen formula is expressed in terms of one component of
self-energy alone and corresponds to an “ideal Raman filter.”

In Fig. 9, we show the Allen formula results [normalized
by σ (0) = χ ′′(�)/�)|�→0 so that the data match for small �]
calculated with the DMFT self-energies for the two orbitals

FIG. 9. Normalized Raman response using Allen formula
Eq. (C1) for xy (red) and xz/yz orbital (blue). The results using
corresponding Fermi liquid fits are also shown (dashed-dotted line).
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FIG. 10. Allen formula response for orbital xy (top) and xz/yz
(bottom) for different temperatures. The Fermi liquid self-energy
is 
FL(ω) = (1 − 1/Zm )ω − iAm(ω2 + π 2k2

BT 2), where Zxy = 0.19
and Axy = 66, and Zxz/yz = 0.29, Axz/yz = 18.5. Same values were
used in Fig. 2 of the main text.

(full) and compare the results also to what one obtains using
a Fermi liquid fit to the two self-energies (dashed-dotted).
In xz orbital one sees a narrower Drude-peak followed by a
more pronounced Fermi liquid intermediate minimum than
what one sees for xy. This is consistent with a more coherent
response in the xz orbital known from earlier work [26,36].
Except for the small deviations at 30 meV, FL describes
the behavior pretty well all the way up to 100 meV for the
xy and 200 meV for the xz orbital. Because these results
correspond to an “ideal Raman filter” that would selectively
probe each of the two orbitals, and because the 80 meV hump
feature discussed in the main text is not observed in either of
the two, its occurrence cannot be explained in terms of the
orbital-physics/correlations. At higher frequencies the actual
response strongly exceeds the Fermi liquid response, which is
a signature of Hund metals as discussed next.

In Fig. 10 we present the Allen formula results for several
temperatures for xy (top) and xz (bottom) orbitals. With the
exception of a broader Drude peak found for the xy case, the
two sets of data behave similarly.

APPENDIX D: HUND METAL SIGNATURE

In this section, we relate the enhancement seen in the
Raman response at frequencies above 0.1 eV to the shape of
single particle density of states that we argue is characteris-
tic of Hund metals. To demonstrate this we also performed
calculations using Sr2RuO4 band structure but at increased
occupancy of N = 5 electrons in t2g orbitals, which provides
a reference where no Hund metal effects are present. In those

FIG. 11. Calculation with the self-energies obtained from DMFT
for xy orbital and β = 400 for Sr2RuO4 in red (N = 4), and using the
same band-structure but considering increased occupancy N = 5 in
pink. The real and imaginary part of the self-energy are compared
in panels (a) and (b), respectively. In panel (c) the corresponding
proxy-spectral functions Ã are compared. In panel (d) the corre-
sponding Raman response χ ′′(�) obtained from Allen formula (full)
are shown and the results are additionally compared to the response
of the corresponding Fermi liquid (dashed lines).

calculations we increased the Hubbard interaction parameter
to U = 4.2 eV so that the resulting mass enhancement is the
same as that of the N = 4 calculation.

On Fig. 11(a) we show Re
(ω) for xy orbital at 29 K. In
Hund metal case (red) the strong deviation from low-energy
linear behavior in Re
 occurs at a low energy 0.1 eV. Con-
versely in the N = 5 result (pink) deviations occur at larger
energies only.

To see how these differences affect the spectral function it
is convenient to consider a proxy quantity Ã(ω)

Ã(ω) = −(1/π )Im
∫

dε ρ̃(ε)[ω − ε − 
(ω)]−1 (D1)

that gives the density of states of an auxiliary reference single-
orbital problem. For this auxiliary problem we take a flat
noninteracting DOS with ρ̃(ε) being a nonzero constant in
the range [−1 eV, 1 eV] and vanishing elsewhere. Using such
featureless DOS is convenient to assure that all features in
Ã are caused by correlation effects. The results are shown in
Fig. 11(c). The N = 5 calculation has a shape that is character-
istic of standard correlated metals with a narrow quasiparticle
peak with a shape resembling narrowed bare DOS whereas
N = 4 calculation displays a richer structure characteristic
of Hund metals with slow decrease of the spectral func-
tion at negative energies and a side-hump feature at positive
energies.

We use the Allen formula [Eq. (C1)] and calculate also
the corresponding response χ ′′. In Fig. 11(d) we compare
the results also against the Fermi liquid fits [distinct for the
N = 4 and N = 5 calculation because the curvatures of the
fitted imaginary parts of self-energies are distinct as seen in
Fig. 11(b)]. The Fermi liquid behavior is followed to much
larger frequencies for the N = 5 calculation and the deviations
from the Fermi liquid are much smaller than that seen in the
N = 4 calculation, which demonstrates that strong increase of
Raman response in the 0.1–0.5 eV range discussed in the main
text is a signature of the Hund metal.
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FIG. 12. Raman response for B1g (top) and B2g (bottom) chan-
nels for 29 K. The calculation using the self-energy of the Sr2RuO4

(blue line) is compared to the case where the self-energy for all
orbitals is given by that corresponding to the orbital xy (orange) or
the orbital xz/yz (green).

APPENDIX E: RAMAN RESPONSE FOR TRIAL
SELF-ENERGIES

To disentangle different physical effects that contribute to
the calculated Raman response it is convenient to perform
calculations evaluating the Raman response with Eq. (1) from
the main text, but substituting the self-energies with different
trial values 
 → 
trial. In Fig. 12 we compare the full Raman
response (blue line) with that of a trial calculation where all
orbital components of the self-energy were set to that of the
xy orbital (orange line) and to the xz/yz orbital (green line).
For the B1g (top panel) we observe matching between orange
and blue lines, indicating that B1g is mainly contributed by
the states involving the xy orbital. Conversely, in B2g the full
result is in the middle of the two-trial calculations, suggesting
both xz/yz and xy orbitals contribute similarly to the response.

APPENDIX F: INTERBAND CONTRIBUTIONS

In Eq. (1) in the main text, the response has intra-band,
inter-band, and mixed contributions. Namely, both spectral
functions and Raman vertices have interband components.
The spectral density in the band basis is Ak = (ω + μ − εk +

band )−1 where 
band = P
orb(ω)P†. 
band and 
orb are the
self-energy in the band basis and orbital basis respectively and
P is the transformation matrix between the two basis. It is
convenient to ne Ak is diagonal in band basis (this is strictly
correct in the case of 
orb ∝ I). Under this assumption, the
Raman response separates into terms that come from the di-
agonal terms of the vertex γ

μ

k (the intraband terms) and from
the off-diagonal terms (the interband contributions). Namely,

Tr γ
μ

k Ak(ω) γ
μ

k Ak(ω + �)

→
{

intraband :
∑

ν γ μ
νν Aνν (ω + �) γ μ

νν Aνν (ω)

interband :
∑

ν 
=τ γ μ
ντ Aττ (ω + �) γ μ

τν Aνν (ω)
.

(F1)

FIG. 13. Contributions to the Raman response for the B1g chan-
nel (top) and B2g channel (bottom) at 29 K presented in terms of
additive contributions (shading) in atomic units.

Such decomposition is used to analyze the intraband and
interband contributions to Raman susceptibility presented in
the form of stacked area chart on Fig. 13. Different intraband
contributions (blue, orange, and green shading for, respec-
tively, α, β, γ bands) and interband contributions (red, brown,
violet) are indicated. One sees that for B1g channel, the ma-
jority of the response comes from intraband terms and in
particular the γ band. Conversely, for B2g above 30 meV
the interband β ↔ γ transitions start dominating. Notice that
the interband transitions are maximal close to 75 meV in
both channels and that their absolute magnitude is actually
comparable in the two channels. The qualitative distinction
in the behavior between the two channels comes from the
fact that the intraband terms are much smaller in B2g, which
in turn is due to the fact that the nearest neighbor hoppings
do not contribute in that channel. Note also that the sum of
the contributions exceeds somewhat the total Raman response
(blue dashed line), which is due to the neglected off-diagonal
parts of the spectral functions in the band basis in this analysis.
Namely, if one retains those, then there are additional mixed
contributions to the response which are of the form

mixed 1 :
∑
ν 
=τ

γ μ
νν Aντ (ω + �) γ μ

ττ Aτν (ω)

mixed 2 :
∑
ν 
=τ

γ μ
ντ Aττ (ω + �) γ μ

ττ Aτν (ω)

mixed 3 :
∑

ν 
=ν ′ 
=τ 
=τ ′
γ

μ

νν ′ Aν ′τ (ω + �) γ
μ

ττ ′ Aτ ′ν (ω) (F2)

and give a negative contribution to the response.
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FIG. 14. Diagrammatic representation of the many-body vertex
corrections to the Raman response. (a) Vertex corrections to the lat-
tice particle-hole susceptibility χ . (b) Reducible vertex F expressed
in terms of the irreducible vertex �. (c) Full Raman responses (or
optical conductivity, if the Raman vertex is substituted by that of ve-
locity γ → v). We denote M = Gγ G. Summation over momentum
k and Fermionic frequencies ω are implied.

FIG. 15. Value of the Raman vertex in a plane kz = 0. Each
orbital index combination m, m′ (for the six spin-orbitals) is shown in
a separate panel. The scale is kept the same within the same channel
for better comparison. The panels in the upper triangle correspond to
the B1g channel, and the one in the lower triangle to the B2g channel.
The values are in atomic units.

FIG. 16. Value of
∑

m,m′ γkmm′ Akm′m′′ (ω = 0)Akm′′′m(ω = 0) in a
plane kz = 0. Each orbital index combination m′′, m′′′ (for the six
spin-orbitals) is shown in a separate panel. The scale is kept the
same within the same channel for better comparison. The panels in
the upper triangle correspond to the B1g channel, and the one in the
lower triangle to the B2g channel. The values are in atomic units.

APPENDIX G: EXPRESSION FOR A1g+B2g VERTEX

A1g+B2g is probed by both incident and reflected light
being polarized inplane at 45 degrees to the nearest neighbor
Ru-O bond, i.e., in 110 direction (using conventional unit cell
notation). The corresponding vertex reads

γ
A1g+B2g

k = ∂2H (W )

∂kx∂ky
+ 1

2

(
∂2H (W )

∂k2
x

+ ∂2H (W )

∂k2
y

)
. (G1)

APPENDIX H: VERTEX CORRECTIONS

It is well known that for inversion-symmetric systems the
vertex corrections (VCs) to optical conductivity in DMFT
vanish [13,51]. This is because in DMFT, the many-body ver-
tex (i.e., the object F depicted in diagrams shown in Fig. 14,
not to be confused with the Raman vertex γ ) is local and VCs
are then given by terms of the form

∑
k vkGkGk which vanish

by symmetry (namely, velocity vk is odd under k → −k,
whereas the Green’s function Gk is even). The situation in
multiband problems is more subtle, but one can argue that
under some limitations the vertex correction vanish there,
too [68]. We checked that in Sr2RuO4, the Green’s function
matrix (in orbital basis) has even parity and velocity matrix is
odd under inversion, so the argument applies and the VCs to
optical conductivity in DMFT vanish.
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FIG. 17. Value of the Raman vertex in a plane kz = 0. Each band
index combination ν ′, ν ′ (for the six spin-orbital bands) is shown in
a separate panel. The scale is kept the same within the same channel
for better comparison. The panels in the upper triangle correspond to
the B1g channel, and the one in the lower triangle to the B2g channel.
The values are in atomic units.

What about Raman response? In cluster extensions of
DMFT the VCs were shown to be relevant [18,69,70], but the
situation in pure DMFT was to our knowledge not discussed
before.

In the Raman response, the role of velocity is taken by
Raman vertex γk, which is not odd under inversion. However,
other symmetries could also cause vanishing of

∑
k vkGkGk.

Consider a tight-binding model in 2D with the band energy
ε(kx, ky) = t[cos(kx ) + cos(ky)] + t ′ cos(kx ) cos(ky), with t, t ′
respectively the nearest neighbor hopping (next nearest neigh-
bor hopping). For such a band, the Raman vertex in B1g

is γ B1g = 1/2(∂2ε/∂k2
x − ∂2ε/∂k2

y ) = t ′[cos(ky) − cos(kx )]/2
which is odd under reflections across zone diagonals kx =
±ky, whereas the Green’s functions are even under those

reflections. Hence
∑

k γ
B1g

k GkGk vanishes. A similar argu-
ment applies to the B2g channel, where γ B2g = ∂2ε/∂kx∂ky =
t ′ sin(kx ) sin(ky) and is odd under reflection across kx = 0 and
ky = 0 planes.

What about the multiorbital Sr2RuO4 case? The momen-
tum dependencies of the Raman vertex for different spin-
orbital index combinations are shown in Fig. 15. Whereas
these matrix elements do reflect symmetries, the momentum
sum of AkγkAk (shown in Fig. 16) does not vanish for all spin-
orbital channels, so one cannot argue about the vanishing of
VCs from those considerations alone. The momentum depen-

FIG. 18. Value of
∑

ν,ν′ γkνν′ Akν′ν′′ (ω = 0)Akν′′′ν (ω = 0) in a
plane kz = 0. Each band index combination ν ′′, ν ′′′ (for the six spin-
orbital bands) is shown in a separate panel. The scale is kept the
same within the same channel for better comparison. The panels in
the upper triangle correspond to the B1g channel, and the one in the
lower triangle to the B2g channel. The values are in atomic units.

dencies of the Raman vertex for each band index combination
and the momentum sum of AkγkAk are shown in Figs. 17 and
18, respectively.

Therefore, we evaluated the many-body vertex and cal-
culated the corresponding VCs to the Raman response. The
particle-hole reducible vertex F affects the propagation of
particles and holes in the system following the Bethe-Salpeter
equation for the particle-hole susceptibility χ = χ0 + χ0Fχ0

where the summations over internal spin, orbital and Mat-
subara indices are implicit, diagrammatically depicted in
Fig. 14(a). The fully reducible many-body vertex can itself
be expressed in terms of the irreducible vertex � as F =
� + �χ�, depicted in Fig. 14(b). The full Raman response
can then be separated as the sum of the bubble contributions
�bubble and the VCs �vertex, depicted in Fig. 14.

We computed the many-body vertex � → �(iω1, iω2, i�)
from the impurity Bethe-Salpeter equation (where we
obtained the full matrix two-particle Green’s function
using w2Dynamics [71]). χ → ∑

k,q χ (k, q; iω1, iω2, i�)
was obtained from the solution of lattice Bethe-Salpeter
equation χ = χ0 + χ0�χ as implemented in TPRF package
of TRIQS [47,72,73]. We perform the sum over momentum
points directly on the susceptibility because the many-body
vertex is local in DMFT. Note that we neglected spin-orbit
coupling in the construction of these objects.
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We evaluated F on Matsubara axis at β = 1/(kBT ) =
40/eV, retaining 30 internal Matsubara frequencies and up to
16 × 16 × 16 momentum points. We checked that F correctly
describes the suppression of the uniform charge susceptibil-
ity from the results obtained by considering only the bubble
diagram (2.4/eV) to that obtained considering the full sus-
ceptibility (1.4/eV), which we extracted from self-consistent
calculations in a uniform field.

The VCs to the Raman response for the μ channel are then
given by connected part of the Raman correlation function

�
μ
vertex(i�n) ≡ Mμ(i�n)F (i�n)Mμ(i�n), (H1)

where the sums over the Fermionic Matsubara frequencies are
implicit and

Mμ(iω1, iω2, i�) ≡ β
∑

k

Gk (iω1)γ μ

k Gk (iω2 + i�)δω1ω2 ,

(H2)

with γ
μ

k the Raman vertex in the μ channel. We find the
connected part to be significantly smaller than the bubble con-
tribution. The ratio rμ = �

μ
vertex(i�n = 0)/�μ

bubble(i�n = 0)
is below 1% for μ =B1g, and below 0.01% for μ =B2g.
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