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Abstract

This paper discusses the online optimization and control of a heat-exchanger network (HEN) through a two-level control structure. The low level
is a constrained model predictive control (MPC) and the high level is a supervisory online optimiser. Since MPC is a multivariable control technique
capable of handling control-input constraints, it is neither necessary to define a variable-pairing approach nor to include individual loop-protections
to avoid close-loop saturations. The proposed MPC algorithm uses an approximate linear model of the system to perform the output predictions and
to account for the constraints. On the other hand, the supervisory program, based on a rigorous model, computes desired values to key manipulated
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ariables of MPC, leading to minimum utility consumption. The coordination between the supervisory program and MPC is achieved through the
efinition of an extended cost-function that enables the controller to drive the system to the optimal operating condition. The proposed method was
uccessfully tested by rigorous simulation of a typical HEN of the process industry.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Large chemical processes usually require energy recovery
ystems to maintain a competitive operation. A heat-exchanger
etwork (HEN) usually plays an important role in these process
ystems, where the thermal outlet condition of several process
treams must be controlled without reducing heat integration.
or HEN systems, the condition of maximum heat integration is
chieved through minimum utility consumption, which becomes
complementary goal to the usual requirement of satisfying the

emperature targets.
The eighties have shown a myriad of methods to the analysis

nd design of tailor-made HEN systems for a variety of process
lants. Shortly after the process community started addressing
his problem, the difficulties in finding proper control structures
roused as a demanding research subject, particularly because
ard constraints on manipulated variables emerge as a natural
nd frequent part of the control problem. Several articles focused
n the control of HEN systems, and provided useful procedures

∗

to define the appropriate control structure. Important preliminary
contributions can be found in Marselle et al. [1], Beautyman
and Cornish [2], Calandranis and Stephanopoulos [3], Huang
and Fan [4] and Mathisen et al. [5]. More recently, Aguilera
and Marchetti [6] proposed a method for on-line optimization
and control of HEN systems. They also discussed the degrees of
freedom of the system with regard to the steady-state optimiza-
tion. Glemmestad et al. [7] presented an alternative approach
to the optimal operation of HEN systems based on the on-line
optimization of the steady-state and a fixed control structure,
which is selected offline. Lately, Giovanini and Marchetti [8]
have shown that low-level Distributed Control Systems (DCS)
are also capable of handling HEN control problems when a flex-
ible control-loop structure is provided. However, they indicated
some limitations of the DCS to reach the most convenient oper-
ation point.

In practice, any constraint on a manipulated input, which is
known in advance, leads process operators to take actions to
keep the system away from the uncontrolled condition. These
actions reduce the operation window and typically hold the pro-
cess at less efficient operating conditions. Lately, many of the
process control articles dealing with constraints in manipulated
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optimization structures. Model Predictive Control (MPC), also
known as Moving Horizon Control or Receding Horizon Con-
trol, has been successfully applied in the process industry due
to its ability to handle input and output constraints optimally.
This is a control strategy that was first empirically implemented
in chemical process industries, and is currently recognized as
a consolidated process control technology. It basically uses a
dynamic model of the process and performs a constrained on-
line optimization to determine the optimal sequence of future
control moves. The first control move is implemented and the
calculations are repeated at the next sampling step. Excellent
reviews on MPC applications and comparison of commercial
MPC controllers are available in Maciejowski [9] and Qin and
Badgwell [10]. Despite the large amount of articles dealing with
applications to a variety of process systems, the use of MPC
in HEN systems has not been extensively evaluated yet; to the
authors knowledge, only Gremm et al. [11] have reported the
application of MPC to a laboratory set-up composed of two heat
exchanger units.

As mentioned before, the control of HEN systems presents
several challenging features spanning from multivariable inter-
actions and moderate nonlinearities to well-defined operation
objectives associated to heat integration and utility consump-
tion. Thus, the objective of this work is to develop an efficient
extension of MPC that will be capable of dealing with most of
the control problems presented by HEN systems. In particular,
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cess streams and transferring the energy to cold-process streams.
In this way, important savings in utilities like steam, fuels or cold
water are obtained. However, it is not a less important objective
of the HEN system to achieve the proper thermal conditioning
of process streams going to neighbour process facilities. For this
reason, the control system must be capable of not only permitting
the HEN system to reach the point of minimum utility consump-
tion, but also of driving the final process-stream temperatures to
their setpoints.

Two main categories of heat-exchanger units in a HEN must
be distinguished: those actually producing heat recovery (in this
article referred to as “heat exchangers” or “E units”) and those
that complement the required task of reaching all the temperature
targets (referred as “services” or “S units”). The use of service
units in a HEN system is frequently quantified by the sum of
the heat duties of these units. However, the weighted sum of
utility flow rates provides a better cost function to represent the
network condition at any time González and Marchetti [12].

The control variables in a HEN system are of three kinds:
(a) process stream bypasses around heat exchangers, (b) util-
ity stream flow rates in service units and (c) splits of process
streams. For a given HEN system (stream paths and stream
matches), the number of possible control variables or control
inputs is well defined. If the HEN system has more inputs than
outlet temperatures to be controlled, there will be a set of dif-
ferent control positions that satisfy the same outlet set points.
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t is desired to satisfy the final temperature targets of the process
treams while achieving minimum utility expenses. Here, we
how that, taking advantage of the flexibility of the traditional

PC, it is possible to modify the objective function, and achieve
atisfactory control performance with lower utility consumption.
t is also presented a condition that guarantees the convergence
f the undisturbed system to the desired steady-state condition
ithout loss of the stable operation.
This paper is organized as follows: Section 2 describes the

ain ideas supporting the HEN steady-state optimization pre-
ented by Aguilera and Marchetti [6], and shows how to formu-
ate the problem for a centralized multivariable control structure
ike MPC. Section 3 resumes main MPC concepts and equations
sing a linear model of the process. It is also discussed the con-
itions to reach convergence to the optimal operation point. In
ection 4, a description of the network application example and

ts degrees of freedom are first discussed. Then, alternative driv-
ng variables in the hierarchical structure as well as robustness
o errors in the model of the supervisory program are analysed.
ection 5 provides simulation results and shows the robustness
f the proposed approach to plant non-linearity and model mis-
atch at the supervisory level. The concluding remarks are given

n Section 6.

. Minimum operation cost

.1. Basic concepts related to the optimal operating
ondition

The main reason for using a HEN system is the need to
ecover as much energy as possible from high-temperature pro-
hese operation possibilities may exist in different levels of heat
ntegration, and they certainly represent a flexibility to satisfy
ifferent load requirements under control constraints.

The approach taken in this paper assumes a hierarchical
tructure where a real-time optimization (RTO) is performed in
upervisory level. The role of the supervisory layer is to deter-
ine the optimal or desired steady-state inputs that minimize

he total service cost of the system. This layer consists on a non-
inear optimization problem that takes into account, as a set of
onstraints, the non-linear model of the HEN system and the
utput set points that are the desired output temperatures of the
rocess streams. On the other hand, the role of the MPC layer
s to drive the outputs to their set points, and to drive the inputs
o the optimal steady-state values obtained in the supervisory
ayer.

.2. The optimal-operation problem formulation

Once the ranges of outlet process streams and input condi-
ions are fixed, most HEN systems have some degrees of freedom
hat can be used for optimization. The possibilities basically
epend on the number of independent free outlet streams, includ-
ng all the utility streams. According to Aguilera and Marchetti
6], an easy way to determine if the network has enough degrees
f freedom for optimization is to confirm that f = no + s − 1 > 0,
here no is the number of process streams without temperature

argets and s is the number of services available in the network.
hen this condition is satisfied, there are different input com-

inations that can satisfy the same outlet specifications. Hence,
he optimal operation of the HEN system implies the availabil-
ty of a strategy to face the following two problems: (i) how to
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determine which of the input combinations causes the lowest
service cost and (ii) how to dynamically guide the process to the
optimal point. The first problem refers to a steady-state optimal
problem while the second one addresses the dynamic nature of
the system. Initially, we formulate the first problem.

When the desired operating condition corresponds to the min-
imum operation cost, the purpose of the optimization problem is
the minimization of the total utility consumption. Then, assum-
ing the HEN system has ne exchanger units and s service units,
and H and C represent the sets of hot and cold process streams,
respectively, then the optimal operating condition is obtained
from the solution of the following problem:

min
wci

,whj

⎧⎨
⎩∑

i

cciwci +
∑

j

chjwhj

⎫⎬
⎭ i ∈ H, j ∈ C, (1)

subject to

−
∑
z ∈ Ki

qz − qci (wci ) = Qi, i ∈ H, (2)

∑
z ∈ Kj

qz + qhj (whj ) = Qj, j ∈ C, (3)

qz ≤ eo
zL

o
z z ∈ {1, ne + s}, (4)
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tion problem can be written as:

min
�u

{||e0 − A�u||2Q + ||�u||2S}
subject to :

e0 = r − y0

�umin ≤ �u(k + j) ≤ �umax

umin ≤ u(k + j) ≤ umax, j = 0, 1, · · · , m − 1

�u = [�u(k)T �u(k + 1)T · · · �u(k + m − 1)T]
T

�u(k + j) = u(k + j) − u(k + j − 1)

(8)

where r is the output set point, y0 the output trajectory assum-
ing that no future control actions are introduced into system,
�u(k + m + i) = 0, i ≥ 0, A the dynamic matrix of the system,
nu the number of inputs, ny the number of outputs and weight
matrices Q ∈Rp·ny×p·ny and S ∈Rm·nu×m·nu are assumed posi-
tive definite.

The solution to this problem consists of nu sequences (control
trajectories) of m control moves and is designated �u*. The first
component of each control sequence is applied to the system at
time k, and the optimization problem (8) is repeated at the next
sampling time k + 1.

In order to use the MPC strategy to control HEN systems, it
is proposed to include an extra term in the cost function of prob-
lem (8) to account for the utility cost. As mentioned before, the
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qz ≤ 0 z ∈ {1, ne + s}, (5)

ci (wci ) = eci (wci )Lci (wci ), i ∈ H, (6)

hj (whj ) = ehj (whj )Lhj , j ∈ C. (7)

In these equations, wci stands for the flow rate of the cold
tility in the service unit located on the hot stream i, whj is
he flow rate of the hot utility in the service unit located on
he cold stream j, cci and chj are the cold and hot utility cost
er unit weight, respectively. Eqs. (2) and (3) define the tasks
i = wici(T out

i − T in
i ) and Qj = wjcj(T out

j − T in
j ) to be per-

ormed on the hot process stream i and on the cold process stream
, respectively. Ki and Kj stand for sets of heat duties qz. Vari-
bles qci and qhj are the final service heat duties that accomplish
he required tasks. Eq. (4) uses the efficiency ez and variable Lz

o establish the maximum amount of heat to be exchanged at the
eneric unit z. Furthermore, Eqs. (6) and (7) are non-linear equa-
ions (where z = ci and z = hj, respectively) that are included in
he optimization problem to allow for the computation of wci and
hj , which are needed by the performance cost, and because they

requently define the commanding variables to MPC. Here, the
roblem defined by Eqs. (1)–(7) is supposed to be solved within
he same sampling period as the model predictive controller.

. Model based control

.1. The control problem formulation

The basic MPC formulation consists of the on-line compu-
ation of the future control moves that minimize the predicted
uture error along the prediction horizon p, subject to constraints
n both, inputs and outputs variables [13]. The MPC optimiza-
ontroller purpose is to reach the output set points, but also to
uide the process to an optimal condition from the point of view
f utilities consumption. The approach presented in this paper
roposes a two level structure, in which the optimal operating
oint is calculated at the supervisory level, and the result trans-
ated into desired values for selected manipulated inputs of the

PC level. These desired input values are included in the cost
unction of the control problem as a new term that penalizes the
istance that the system is from the desired condition. Hence,
he MPC optimization problem is reformulated as follows:

min
�u

Vk = {||e0 − A�u||2Q + ||u(k + m − 1) − uopt||2R
+||�u||2S}

subject to :

e0 = r − y0

�umin ≤ �u(k + j) ≤ �umax

umin ≤ u(k + j) ≤ umax, j = 0, 1, · · · , m − 1

(9)

here uopt ∈Rnu refers to the optimal input values obtained
t the supervisory level. Matrix R ∈Rnu×nu weights the devia-
ion of the control input value at the end of the control horizon
rom the desired optimum. Penalizing only the future final value
ttempts to separate the effect of the optimising action of the
upervisor from the more immediate MPC closed-loop cor-
ections. In this way, the original MPC objective function is
odified the least possible and the activity of each control level

ends to be decoupled. In other words, the NLP supervisory layer
ooks for steady-state input values in agreement with minimum
tility consumption, while the MPC accounts for transient per-
ormance and offset free controlled outputs.
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The analysis in Section 3.2 and the simulation results in
Section 5 provide some additional insight into this particular
problem.

3.2. Convergence to the optimal steady state

HEN systems are usually open loop stable. Thus, increasing
the prediction horizon tends to guarantee the convergence of the
closed-loop optimization problem defined in (8) [9]. Since an
extra cost term is added to the cost function of problem (8) to
achieve the minimum utility goal, a specific analysis concern-
ing the necessary conditions to drive the system to the desired
operation point is required. To clarify this point, suppose that the
output horizon p is large enough, such that the output reaches
the steady state at the end of this horizon. As the gap between the
input steady state and its optimal value, would remain constant
at sampling step k + 1 if the following control sequence is used:

(�u∗)T
k+1 = [�u(k + 1)∗ �u(k + 2)∗ . . . �u(k + m − 1)∗ 0]T

then, the optimal cost, at time k + 1 will satisfy

V ∗
k+1 ≤ V ∗

k + ‖e(k + 1/k)‖2
Q + ‖�u(k/k)‖2

S (10)

Because there are enough degrees of freedom in the HEN
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Proof. Suppose that for a large enough time k̄, the controlled
system tends to an equilibrium point defined by:

y = r

u �= uopt
. (11)

In other words, assume that the system goes to an operating point
where there is a permanent offset δu

k̄
between the actual input

and the optimal input value. Since at this steady state �uk̄ = 0,
and assuming that there is no offset in the controlled outputs,
the cost function in the optimization problem (9) becomes

Vk̄ = ∥∥δu
k̄

∥∥2
R

(12)

where

δu
k̄

=

⎡
⎢⎢⎣

u1(k̄) − u1,opt

...

ud(k̄) − ud,opt

⎤
⎥⎥⎦ , nu − ny ≤ d ≤ nu.

Let us now search for a virtual control move that would take
the system to its optimal operating point. Assuming for simplic-
ity that the first d = nu − ny control inputs are arbitrarily selected
to receive targets, and that the control horizon is reduced to m = 1,
the control increment must satisfy⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤

︸

B
r
s

�

w

C

ystem, the fact that the outputs will reach their set points at the
nd of the output horizon does not assure that the inputs will
each their optimal values. In this way, only the convergence
f the outputs to the set points is guaranteed, and a permanent
rror/offset between control inputs and their optimal values may
ppear. In order to avoid this offset and the consequent excess of
tility consumption, it is desirable to adopt a weight R such that
he MPC efficiently drives the control inputs to their optimal val-
es without spoiling the dynamic response. Note, at this point,
hat the non-linear model used in the supervisory layer is differ-
nt from the HEN simulator used in the simulation. Following
dloak [14], the theorem below provides a sufficient condition

or the convergence of the inputs to the desired steady state.

heorem 1. Assume a stable HEN system with more inputs
nu) than outputs (ny), and let F be a set that includes all pos-
ible steady-state gain matrices G of the system. Furthermore,
ssume that the controller obtained in (9) is stable, and define

he augmented matrix G̃ =
[

G

Id

]
where Id defines the inputs

hat receive targets from the supervisory program.

or instance, Id =

⎡
⎢⎢⎢⎢⎣

1 · · · 0
...

. . .
...

0 · · · 1︸ ︷︷ ︸
nu−ny

· · · 0

. . .
...

· · · 0

⎤
⎥⎥⎥⎥⎦

orresponds to the inclusion of targets for the first nu − ny inputs.
f matrix G̃ is full rank for all G ∈F, then, there is a matrix R
uch that the control law produced by the solution of problem
9) drives the selected inputs to their desired optimal values.
G

1 · · · 0
... · · · ...

0 · · · 1︸ ︷︷ ︸
d

· · · 0

· · · ...

· · · 0

⎥⎥⎥⎥⎥⎥⎥⎦
︷︷ ︸
G̃

u(k̄) =

⎡
⎢⎢⎢⎢⎣

�r

u1,opt

...

ud,opt

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
r̃

⇒ G̃u(k̄ − 1) + G̃�u(k̄) = r̃, (13)

ecause by hypothesis the square matrix G̃ ∈Rnu×nu is of full
ank for all G ∈F, it is possible to compute its inverse and to
olve Eq. (13) determining the following input increment

u(k̄) = G̃−1[r̃ − G̃u(k̄ − 1)] = G̃−1

⎡
⎢⎢⎢⎢⎣

0
...

0

δu
k̄

⎤
⎥⎥⎥⎥⎦ = G̃−1Cδu

k̄

(14)

here

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
...

. . .
...

0 · · · 0

1 · · · 0
...

. . .
...

0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈Rnu×d
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Now, substituting (14) into the cost function at time k̄, we
have

V̄k̄ =
∥∥∥∥∥∥ e0︸︷︷︸

=0

− AG̃−1Cδu
k̄

∥∥∥∥∥∥
2

Q

+ ||uk̄ − uopt||2R︸ ︷︷ ︸
=0

+ ||G̃−1Cδu
k̄
||2S

= (AG̃−1Cδu
k̄
)
T

Q(AG̃−1Cδu
k̄
) + (G̃−1Cδu

k̄
)
T

S(G̃−1Cδu
k̄
)

= δuT

k̄
(CTG̃−1T

ATQAG̃−1C + CTG̃−1T
SG̃−1C)︸ ︷︷ ︸

Rmin

δu
k̄

= ||δu
k̄
||2Rmin

(15)

where e0 is equal to zero because the system is assumed at
steady-state and with null offset. If the supervisory program
is able to computes the optimal input values, which is always
possible if G̃ is of full rank, then the proposed objective function
of problem (9) will tend to zero, because V̄k̄ < Vk̄, if the weight
matrix R satisfies

Rmin < R (16)

For those system inputs that were selected to have optimal
targets, inequality (16) becomes a sufficient condition for the
convergence of these inputs to their optimal values, and the the-
orem is proved. If the condition specified in (16) is satisfied, then
t
p
t
w
o

t
i
o
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i
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t
t
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Fig. 1. Heat-exchanger network example.

temperature targets, the lowest value (nu − ny) for dimension d
corresponds to the degrees of freedom proposed by Marselle et
al. [1]. Though they do not necessarily imply degrees of free-
dom for energy integration, they certainly tell about network
flexibility to reach the temperature targets. In most of the cases,
using values of d larger than nu − ny results in over specifica-
tion of the desired operating point condition, but this argument
seems insufficient to remove this alternative from consideration.
This raises some questions about the right number d of control
inputs that should be included in the cost function, and asks for
a rational procedure for selecting these variables from the nu
available in the system. Preliminary answers to these questions
are presented in the following sections.

4. Application example

4.1. The heat-exchanger network used in this work

The problem to be solved concerns the control and optimiza-
tion of the heat-exchanger network shown in Fig. 1, which is
composed of three recovery exchangers and three service units.
There are four process streams that have to receive a proper ther-
mal conditioning and three utility streams that help to reach the
desired temperatures. Thus, the complete system has six input
or manipulated variables (three bypasses and three utility flow
r
p
q
t
t

c
f

G

he QP related to the control optimization problem will have a
ositive definite Hessian matrix. Consequently, this optimiza-
ion problem will be convex and will have a unique solution that
ill be equal to zero only when the predicted error on the system
utputs and selected inputs becomes equal to zero. �

This result produces a simple tuning sequence that defines
he parameters in the MPC cost function. Once the command-
ng manipulated variables are selected (matrix C), the values
f Q and S are searched to produce good closed-loop dynamic
erformance. Finally, R is chosen such that (16) is satisfied.

Note that, in case of penalizing the complete control horizon
nstead of only the final input value, the cost relation (10) would
nclude a potentially conflicting third term

∗
k+1 ≤ V ∗

k + ‖e(k + 1/k)‖2
�
Q

+ ‖�u(k/k)‖2
�
S

+ ∥∥u(k/k) − uopt
∥∥2

R
.

In this case, the MPC behaviour might be somehow dis-
orted since both, the supervisory program and MPC will attempt
o drive common control inputs aiming at different objectives.
hen, the resulting system performance may be deteriorated. A
reliminary analysis indicates that the loss of performance may
ecome important in the presence of load disturbances that are
ot accounted for in the NLP supervisory program. When this
appens, the NLP optimization, which works as an open-loop
ontroller, might tend to maintain the manipulated variables at
he same position, while MPC needs to take control actions to
eject the disturbance.

Finally, it is worth remembering that if every exchanger unit
rovides a manipulated variable and all the process streams have
ates, u) and four outputs to be controlled (process stream tem-
eratures, y). The objective is to reach a satisfactory control
uality, which includes reasonable disturbance rejections, rapid
racking for set-point changes, and minimum utility consump-
ion at any operating point.

For the particular network in Fig. 1, the connection structure
an be translated into a stationary gain matrix G that has the
orm

=

⎡
⎢⎢⎢⎣

G11 G12 G13 0 0 0

G21 0 0 G24 G25 0

G31 0 0 G34 0 G36

G41 G42 0 0 0 0

⎤
⎥⎥⎥⎦ .
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Fig. 2. General structure of the proposed control system.

In this matrix, the element Gij stands for the stationary gain
between the output yi and the input uj.

4.2. Coordination between supervisory level and MPC

The general control structure assumed here is depicted in
Fig. 2, where the steady-state optimization and the MPC layers
are represented, along with the variables used to connect them.
Following the ideas presented before, it is necessary to define
the inputs through which the supervisory level passes the com-
mands to the MPC with extended cost function. The smallest
number of commanding inputs that can be selected is given by
the degrees of freedom of the HEN system that are available for
steady-state optimization. However, adopting a small number
of inputs gives a large number of possible combinations. As
any valid set of commanding inputs must generate a full rank G̃

matrix for all G ∈F, many of these combinations can be elimi-
nated, as they do not satisfy the condition for convergence of the
inputs to the desired target. For instance, in the network of Fig. 1,
the estimated system-gain matrix at the nominal operation
point is:

G =

⎡
⎢⎢⎢⎣

14.09 11.90 −8.38 0 0 0

−18.03 0 0 14.65 −70.71 0

−25.20 0 0 −7.59 0 23.69

⎤
⎥⎥⎥⎦

a
r
b
s
t
v
d
a

s
c
m
p
a
a
n
t
t

Table 1
Rank of the augmented G̃ matrix for different combinations of two control inputs

Control inputs included in G̃ Rank (G̃)

u1u2 5
u1u3 5
u1u4 6
u1u5 6
u1u6 6
u2u3 5
Any other pair 6

Table 2
Stream conditions for the nominal operation point

Stream Tin (◦C) Tout (◦C) wmaxc (kW/◦C)

H1 90 40 50
H2 130 100 20
C1 30 80 40
C2 20 40 40
S1 15 – 35
S2 30 – 30
S3 200 – 10

The definition of which inputs are to be used as commanding
variables in the MPC is obtained through the selection of the
non-zero entries in matrix R. However, the selected structure
must be validated by the full rank of the corresponding matrix
G̃. If this condition is satisfied, the corresponding Rmin, defined
in (15) does exist, and any R large enough should be sufficient to
guarantee the convergence of all the inputs to the optimal values.
However, as several sets of inputs are theoretically capable of
driving the system to the optimal point, additional guidelines
describing the effect of R on the system behaviour would be
beneficial. The next section is devoted to test the effect of R on
the performance of the proposed MPC controller.

5. Simulation results

5.1. Main features of the HEN simulations

An interactive dynamic simulator of HEN systems developed
at INTEC has been used for testing the proposed control struc-
ture. Correa [15] presented the main features of this simulator,
which is based on a non-linear model of shell-and-tubes heat
exchangers previously reported by Correa and Marchetti [16].
Table 2 shows the nominal conditions for the inlet and outlet
streams, while Table 3 gives the effective heat-exchanger areas
used to simulate the network in Fig. 1. Table 4 shows the adopted
m

T
E

E

8

13.53 −17.77 0 0 0 0

nd, if the first and the second control inputs are selected, the
esulting matrix G̃ is of rank 5. This means that G̃−1 cannot
e computed and the implication is that when these inputs are
elected, it is not possible to guide all the manipulated variables
o their optimal values. In other words, sending the manipulated
ariables u1 and u2 to the desired positions is not sufficient to
efine the complete set of inputs, even though the outputs are
t their set points.

In order to explore the possible control structures, let us con-
ider the results in Table 1. This table shows all the different
ombinations of two control inputs in this HEN system that
ight be selected as commanding inputs to MPC. Note that any

air combining the first three control inputs (u1, u2, u3) yields
singular matrix G̃. Furthermore, even using these three vari-

bles together, we fail to produce a fully determined system,
amely the corresponding matrix G̃ has also rank 5. This fea-
ure is clearly related to the network structure, which implies in
he existence of several zero entries in matrix G̃.
ain parameters of the MPC.

able 3
ffective heat transfer areas UA (kW/◦C) for the heat exchangers in Fig. 1

1 E2 E3 S1 S2 S3

0 50 20 30 20 10
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Table 4
MPC parameters

Control
horizon (m)

Prediction
horizon (p)

�u Weight
(diagonal
matrix Q)

Output weight
(diagonal
matrix Q)

Sampling
time (T)

2 15 20 5 3

For the HEN system, the service cost that quantifies the oper-
ating expense may be defined as:

Jservice cost =
∑
i ∈ H

cciwci +
∑
j ∈ C

chjwhj . (17)

For the network represented in Fig. 1, the above cost becomes

Jservice cost = c3w
max
3 u3 + c5w

max
5 u5 + c6w

max
6 u6 (18)

where u stands for fraction of valve opening.
Figs. 3–6, show the dynamic responses of the HEN system

when the following sequence of changes is introduced into the
system: starting from the nominal conditions, the set point of
T out

C1
is changed from 80 to 70 ◦C, next, the set point of T out

C2
is

changed from 40 to 45 ◦C and finally, the set point of T out
H2

is
changed from 100 to 90 ◦C. The optimal steady states, for these
operating conditions, are indicated in Sequence 1 of Table 5 as

F
p

Fig. 4. Service costs with different weight matrices R.

fractions of maximum utility flow rates in service units (S), or
as bypass fractions in exchanger units (E).

Finally, an additional test is designed to evaluate the perfor-
mance achieved by the proposed MPC for disturbance rejection
when the following sequence of load changes is introduced into
the system: first, the inlet temperature T in

H1
is changed from 90

to 80 ◦C, next, the temperature T in
H2

of stream H2 is changed

from 130 to 140 ◦C and, finally, T in
H2

is changed from 140 to
ig. 3. Output temperature and service cost responses with and without input
enalization.

F
a

ig. 5. System responses with targets to u3, u5 and u6 and penalizing the inputs
t all time instants in the control horizon.
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Table 5
Fractions of valve opening obtained by the NLP optimization

Case u1 (opt) u2 (opt) u3 (opt) u4 (opt) u5 (opt) u6 (opt) Utility expenses ($/h)

Nominal 0 0.1463 0.0590 0.6739 0.1001 0 4.950

Sequence 1
T out

C1
= 70 ◦C 0.0687 0.2010 0.1060 1 0.2260 0 10.278

T out
C2

= 45 ◦C 0.3741 0 0.2041 0.7737 0.1200 0 10.335
T out

H2
= 90 ◦C 0.3741 0 0.2041 0.7737 0.2200 0 13.335

Sequence 2
T in

H1
= 80 ◦C 0.2550 0.0705 0 0.4354 0 0.1608 1.608

T in
H2

= 140 ◦C 0.2550 0.0705 0 0.2067 0 0 0
T in

H2
= 150 ◦C 0.2550 0.0705 0 0.3935 0.0834 0 2.502

150 ◦C. The optimal steady-state flow rate fractions related to
these inlet conditions are indicated in Sequence 2 of Table 5.
The simulation results corresponding to this case are shown in
Figs. 7 and 8.

5.2. Adopting all the service inputs as commanding
variables

In order to highlight the effect of including or not the supervi-
sory level, we simulate the HEN system with the standard MPC

F
d

and with the MPC with the additional term that considers the
utility expenses. With regard to the selection of the command-
ing inputs, an attractive preliminary choice is to use targets for
all the service inputs u3, u5 and u6 (d = 3), as all of them are
included in the service cost that is optimised in the supervi-
sory program and they yield a matrix G̃ of full rank 6. Notice
that when working with this set of inputs, matrix R takes the
form:

R = WRdiag(0 0 1 0 1 1), WR ∈R
ig. 6. System responses when the global heat-transfer coefficient of E1 is
ecreased.
 Fig. 7. System responses for a load change with targets to u1 and u4.
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Fig. 8. System responses for a load change with targets to u3, u5 and u6.

The responses shown in Fig. 3 start from an operating point
that satisfies all the process temperature targets, and at time
t = 100, the control is switched to the MPC with the new utility
term in the cost function. Fig. 3 shows that MPC with extended
cost drives the operating cost down towards the minimum, and
finally achieves a significantly lower value of the cost defined
in (18) when compared with the standard MPC. Furthermore,
we can see that the dynamic responses of the system output are
nearly unmodified when the utility term is included in the cost
function. This means that, at the optimal steady state, the services
flow rates are substantially different from the services flow rates
at the starting steady state. These results confirm that there are
many steady-state control values that satisfy the temperature
targets, and demonstrate the ability of the combined supervisor-
MPC controller to guide the system to the optimal steady state.

The simulation results in Fig. 4 compare the responses of
the utilities cost for different values of weight WR in matrix
R with a fixed structure. The simulations are performed with
WR = 15 and WR = 500. It is not shown, but the output temper-
ature responses are basically undistinguishable for the two cases,
Fig. 4 shows a tendency of the cost defined in (18) to settle down
far from the desired values, when WR = 15, because the utilities
flow rates do not reach their optimal values. This behavior may
be attributed to the non-convexity of the cost Vk when R is not
large enough. On the other hand, with WR = 500, a much bet-
t
f
c
b
i
t
i
a
t
o

m
p
o

that would be equivalent to solve the supervisory optimization
problem with additional constraints. In other words, we would
be eliminating the offset by moving uop instead of u(t), and there
is no guarantee that the eventual operating cost will be better than
with the proposed approach.

Another argument in favor of the two-level approach is that
the inclusion of the rigorous model of the system into the con-
troller turns the controller optimization problem much more
complicated and possibly non-convex. This makes, the solu-
tion of the MPC problem more time consuming and may cause
convergence problems. If a feasible solution is not found within
the sampling period of the MPC, the process unit will remain
in open loop and the control strategy becomes inefficient and
unsafe. In the two-level approach, the same convergence prob-
lem may occur, but in this case it is concentrated only in the
optimization level. The MPC that lies in the lower level will
remain in closed loop, although the targets may not be the opti-
mal ones. Thus, with the two-level approach the operators may
feel more confident than with the integrated approach.

5.3. Steady-state model mismatch and control horizon
penalization

When reaching temperature targets takes priority over achiev-
ing minimum utility expenses, it is desirable that inaccuracies in
the desired input values do not originate offset in the controlled
o
c
m
s
T
o
c
t
d
s
l
t
m
s
a
fl
t
c
s
i
r
i
s
v
c

5

m
v

er approach to the optimised conditions can be observed in the
ull-line response. The remaining offset in the input responses
an be attributed to the differences between the model used
y the supervisor program and the non-linear simulator. This
nterpretation is supported by further observations, which show
hat increasing even further the value of WR would cause no
mprovement on the manipulated variable end positions. It is
lso important to emphasize that it is mainly the weight matrix S
hat determines the controller speed of reaction to disturbances
r set point changes.

Notice that the alternative strategy of embedding the opti-
ization of the steady state cost into the MPC optimization

roblem would eliminate the mismatch between the predicted
ptimal cost and the cost value that is really obtained. However,
utputs. At this point, we should note that the optimal input
onditions are calculated based on an approximated non-linear
odel (Eqs. (2)–(7)) while the behavior of the true plant is repre-

ented in the simulator by a rigorous and more complex model.
he closer the non-linear model utilized in the steady-state
ptimization is from the rigorous simulation model, the more
onsistent will be the targets and set points sent to the control sys-
em. Furthermore, the fact that a very high value of WR does not
eteriorate the closed-loop output responses, in spite of steady-
tate model mismatch, is a consequence of penalizing only the
ast control action in the control horizon. This leaves MPC free
o use the remaining control actions to satisfy dynamic require-

ents and set point targets. This sort of decoupling between
teady-state optimization and MPC becomes more accentuated
s the length of the control horizon m increases, and turns into
exibility to adjust the weighting matrices. On the contrary, if

he utilities penalization includes all the control actions in the
ontrol horizon, the output performance may deteriorate. Fig. 5
hows some temperature responses obtained when this strategy
s implemented. Even though the utilities cost is guided quite
apidly to the minimal value, a poor dynamic output response
s obtained in comparison with those in Fig. 3. These results
trengthen the proposed approach that penalizes only the final
alue of the input in the control horizon to define the extended
ost.

.4. Adopting all the inputs as commanding variables

Another simple and appealing possibility is to adopt the opti-
al final positions of all the control inputs as commanding

ariables to the MPC. If the desired steady-state values are con-
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sistent with the actual plant, the resulting over specification of
the desired steady state should not affect the performance of
the control system. However, when model mismatch is present,
a conflict may arise between the desired output values and the
input targets. It is important to verify the extension of this con-
flict for the most common source of model mismatch in HEN
systems.

To simulate the model mismatch problem, the global heat-
transfer coefficient of heat exchanger E1 was decreased by 25%.
This intends to represent the effect of fouling, which is not taken
into account by the model adopted in the supervisory layer. Sur-
prisingly, this model uncertainty does not cause a major impact
on the control system. Fig. 6 shows one of the best performances
in terms of output responses, with all the controlled temperatures
following their set points very closely. These responses corre-
spond to the two cases: (a) when only the utility flows u3, u5
and u6 have commanding targets, (b) when all the inputs have
commanding targets. Three main aspects can be pointed out: (i)
the dynamic performances of the system outputs in the two cases
(full commanding and partial commanding) are similar, (ii) the
strategy in which the supervisory program sets steady state tar-
gets to all the inputs results in a better approach to the optimal
operation cost, (iii) model mismatch introduced by the presence
of fouling tends to increase the gap between the desired and the
actual utilities cost.

5
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in Fig. 8. These responses were obtained for the same sequence
of input changes as in Fig. 7, but this time the service inputs u3,
u5 and u6 are again used with commanding targets.

Hence, two alternative sets of commanding variables are
appropriate to produce an acceptable gap between the actual
service expense and the minimum obtained by the NLP solution
of the supervisory layer: (1) a set containing all the available
control inputs; (2) a set containing only the variables directly
involved in the steady-state cost function; i.e., the inputs asso-
ciated with service units. Even though these alternatives do not
show any deterioration of output tracking responses, they may
exhibit some utility cost offset due to steady-state model inac-
curacies. In this regard, the first alternative seems to be more
reliable; if the supervisory program yields slightly biased results,
the final input positions would tend to satisfy the minimum
squared error criterion. This provides with certain robustness
to the connection with MPC, since any failure will be shared
among all the control inputs.

6. Conclusions

A standard linear predictive control with constraints in the
manipulated variables has been successfully applied to a realistic
non-linear simulator of a heat-exchanger network (HEN). In
order to drive the HEN steady-state operation to minimum utility
c
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o
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R

.5. Disturbance rejection with the minimum number of
nput targets

The selection of which control inputs of the HEN system will
ave explicit targets, aims in this case at reducing the undesirable
nteraction between the supervisory program and MPC. For this
urpose, we select the manipulated variables u1 and u4 that affect
ey heat exchangers of the simulated HEN system, and are capa-
le of distributing heat duties to different parts of the network.
hus, the desired steady state operating condition of the network

s now defined in terms of the preconditioning units E1 and E3
hat are not located at the end of any process stream like the other
nits. Since the control variables u3, u5 and u6 are now free to be
sed exclusively for output tracking, it might be expected that
PC would provide a slightly better output response. In other
ords, the expected consequence of this configuration is a lower

nteraction between the regulation task and the steady-state opti-
ization. This is confirmed by the satisfactory responses shown

n Fig. 7, which was obtained for the regulator operation case,
y weighting the final value in the control-horizon of u1 and u4,
ith WR = 500. As the control system guides these two essen-

ial inputs directly to the values indicated by the supervisory
rogram, the whole process goes to the desired operating condi-
ion quite rapidly, following very closely the output set points.
owever, a persistent offset in the service cost is observed in
ig. 7, even though the commanding inputs u1 and u4 reach

he desired values. This is certainly related to the uncertainty in
he model of the supervisor program, because no direct infor-

ation about the desired service-variable positions is passed to
he MPC optimization problem. The observed performance in
ig. 7 is partially explained by the complementary results shown
ost condition, an extra cost term has been included into the MPC
ormulation without deteriorating the dynamic performance.

The complete control system structure includes two different
evels: a supervisor-optimizer program (NLP) and a low-level

ultivariable predictive controller (MPC). The upper level is
xclusively devoted to determine an optimal steady state such
hat the minimum service cost is achieved. The lower level takes
are of temperature targets and drives the system towards the
ptimal steady state while focusing on the dynamic performance.
he results obtained in this work show that penalizing only the

ast control action in the control horizon provides a perceptible
ecoupling between steady-state optimization and MPC, with a
ignificant improvement in the dynamic performance.

The supervisory level optimizes the operation expenses and
et desired input targets to a new cost term in the MPC objec-
ive function. This work demonstrates that if this cost term is
eighted adequately, convergence to the desired input values

s obtained. However, model inaccuracies may cause displace-
ent of the operating point from the optimal condition. In this

egard, the simulation results show the convenience of setting
argets to all the available control inputs. Setting a large number
f inputs provides robustness to track the HEN optimal condi-
ion since the model mismatch is shared among all the inputs
ielding an average operating condition, which is usually close
o the desired one.
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A.H. González et al. / Chemical Engineering and Processing 45 (2006) 661–671 671

[2] A.C. Beautyman, A.R.H. Cornish, The design of flexible heat exchanger
networks, Proc. First U.K. National Heat Transfer Conf. 1 (1984)
547–564.

[3] J. Calandranis, G. Stephanopoulos, A structural approach to the design
of control systems in heat exchanger networks, Comput. Chem. Eng. 12
(7) (1988) 651–669.

[4] Y.L. Huang, L.T. Fan, Distributed strategy for integration of pro-
cess design and control, Comput. Chem. Eng. 16 (5) (1992) 497–
522.

[5] K.W. Mathisen, S. Skogestad, E.A. Wolf, Bypass selection for control
of heat exchanger networks, Comput. Chem. Eng. (1992) s263–s272.

[6] N. Aguilera, J.L. Marchetti, Optimizing controlling the operation of
heat-exchanger networks, AIChE J. 44 (5) (1998) 1090–1104.

[7] B. Glemmestad, S. Skogestad, T. Gundersen, Optimal operation of heat
exchanger networks, Comput. Chem. Eng. 23 (1999) 509–522.

[8] L.L. Giovanini, J.L. Marchetti, Low-level flexible-structure control
applied to heat exchanger networks, Comput. Chem. Eng. 27 (2003)
1129–1142.

[9] J.M. Maciejowski, Predictive Control with Constraints, Prentice Hall,
New Jersey, 2002.

[10] S.J. Qin, T.A. Badgwell, A survey of industrial model predictive control
technology, Control Eng. Pract. 11 (7) (2003) 733–764.

[11] W.M. Grimm, P.L. Lee, P.J. Callaghan, Practical robust predictive control
of a heat exchanger network, Chem. Eng. Comm. 81 (1989) 25–53.
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