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Estimation of band broadening in size-exclusion chromatography.
I. A method based on analyzing narrow standards with
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bstract

A method is proposed for estimating the (asymmetrical and non-uniform) band broadening function (BBF) in size-exclusion chromatography
SEC). The following data are required: the molar mass calibration and the concentration- and molar mass chromatograms of a set of narrow
tandards. In the narrow range of each standard, the BBF is uniform but skewed. Each uniform BBF is estimated through a nonlinear optimization
rocedure that compares one (of the two) measured chromatograms with its theoretical prediction based on the other chromatogram. The method
s validated with numerical examples that simulate the analyses of narrow standards exhibiting log-normal and Poisson weight chain length

istributions. The BBF can be assumed of arbitrary shape, or represented by an exponentially-modified Gaussian (EMG). From the uniform BBF
stimate, the true polydispersity of the standard can be determined. The global non-uniform BBF is obtained by interpolation between a set of
niform BBFs covering a wide range of elution volumes.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Size-exclusion chromatography (SEC) is the main analytical
echnique for measuring the molar mass distribution (MMD)
f a polymer [1]. In ideal SEC, molecules are fractionated
ccording to their hydrodynamic volume. Unfortunately, per-
ect fractionation is impossible, due to secondary fractionation
echanisms and band broadening (BB). Secondary fraction-

tions result from physicochemical interactions between the
nalyzed polymer, the solvent, and the column packing [2], and
ill not be further discussed. BB is mainly due to axial dispersion

n the fractionation columns, while other minor sources include
olumn-end effects, finite injection volumes, finite detection
ell volumes, and laminar flow profiles in the capillaries [3,4].

ue to BB, an instantaneous MMD is present in the detector

ell, even when analyzing chromatographically simple polymers
5,6].

∗ Corresponding author. Fax: +54 342 451 0348.
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Assume that the MMD is directly determined from the con-
entration (or mass) chromatogram and an independent molar
ass calibration. In this case, the effect of BB is to underestimate

he global number-average molar mass (M̄n), overestimate the
lobal weight-average molar mass (M̄w), and therefore overesti-
ate the global polydispersity, M̄w/M̄n. In contrast, with molar
ass sensitive detectors, the global polydispersity can be either

ver- or underestimated. Thus, ideal light-scattering detectors
roduce unbiased M̄w values, but overestimated M̄n’s, and there-
ore the polydispersities are underestimated [7]. Also, ideal spe-
ific viscometers underestimate M̄w/M̄n when the molar masses
re calculated with the exact Mark–Houwink (M–H) constants
f the analyzed polymer, or overestimate M̄w/M̄n when employ-
ng an exact universal calibration [8–10]. An important point of
olar mass sensitive detectors, is to properly correct for the

nter-detector volume (IDV) shift [9–12].
Several mathematical models have been developed that
escribe the complex physicochemical processes that take place
n a SEC analysis. Their aim is to simulate the chromatograms
rom a priori knowledge of the MMD, the polymer-solvent-
atrix interactions, the column characteristics, and the flow

mailto:gmeira@ceride.gov.ar
dx.doi.org/10.1016/j.chroma.2006.06.062
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onditions [13–16]. Unfortunately, these models involve a large
umber of unknown physicochemical parameters, and as far
s the authors are aware, they have not yet been applied for
B corrections. Alternatively, in the phenomenological (or
black box”) approach by Tung [17], the concentration chro-
atogram w(V) is considered a broadened (or filtered) version

f a hypothetically true (or corrected) chromatogram wc(V), as
ollows:

(V ) =
∫ ∞

0
g(V, V̄ )wc(V̄ ) dV̄ (1)

here g(V, V̄ ) is the (in general, non-uniform) BB function
BBF); and V̄ are the average retention volumes. At each V̄ ,
different individual g(V) function is defined. For symmetrical
(V) functions, then V̄ is unambiguously assigned at the max-
mum (or mode). For skewed g(V) functions, then V̄ can be
ssigned at the mode, the mean, or any other measure of cen-
ral tendency. This ambiguity regarding asymmetrical BBFs is
still unresolved problem in SEC data treatment, but it will not
e further discussed. For uniform (or elution volume invariant)
BFs, Eq. (1) reduces to a simple convolution integral.

When neglecting the extra broadenings produced outside the
ractionation columns (in the injector, detector cells, and interde-
ector capillaries), then any generic k-chromatogram is distorted
y the same (common) BBF, as follows [18,19]:

k(V ) =
∫ ∞

0
g(V, V̄ )sc

k(V̄ ) dV̄ , (k = DR, LS, SV, OS) (2)

here sk(V) is any measured chromatogram; sc
k(V ) is its corre-

ponding BB-corrected chromatogram; and DR, LS, SV, and OS
ndicate a differential refractometer, a light-scattering detector, a
pecific viscosity detector, or a (still commercially unavailable)
olligative-property osmometer.

When linear homopolymers are analyzed with perfect or
deal sensors, then the following expression interrelates the BB-
orrected concentration chromatogram sc

DR(V ) with any BB-
orrected molar mass chromatogram sc

k(V ) (k = LS, SV, OS)
18–20]:

c
k(V ) = Kk[Mc(V )]ak sc

DR(V ),

aDR = 0; aLS = 1; aSV = α; aOS = −1) (3)

here Kk is a detector gain; Mc(V) is the molar mass calibration;
nd aSV = α is the M–H exponent for the given polymer-solvent-
emperature combination. In Mc(V), the superscript ‘c’ is intro-
uced to highlight the assumption that a molar mass calibration
btained from narrow standards is unaffected by BB.

The correction for BB is important when the chromatograms
re narrow, or are broad but multimodal with sharp elbows and/or
arrow peaks. In the most general approach, the correction for
B involves the three following difficulties: (1) estimation of the
BF; (2) calculation of the corrected chromatograms from the

easured chromatograms and the BBF; and (3) estimation of

he corrected MMD. The numerical algorithms associated with
he last two items have been extensively treated in the literature
19–25], and will not be further discussed.
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If strictly monodisperse (or uniform) standards were avail-
ble, then the BBF would be simple to determine, since any
k(V) chromatogram would directly provide the shape of the
ndividual BBFs; and the nonuniform BBF would be obtained
y interpolation between a set of such chromatograms. Unfor-
unately, uniform standards are only available for low molar

ass materials (e.g., a pure solvent), and for some water-soluble
iopolymers. Almost-uniform synthetic standards have been
btained by fractionation of narrow PS standards in temperature-
radient interaction chromatography; and their chromatograms
ave been adequately represented by exponentially-modified
aussian (EMG) functions [26]. Inside the linear calibration

ange, these functions were only moderately non-uniform but
kewed, with the exponential decay or tailing toward the higher
lution volumes. Near to the limit of total exclusion, the BB
unction became narrower and more skewed, and could not
e properly approximated by an EMG [26]. In general, the
B effects are particularly serious near to the limit of total
xclusion.

Arbitrary-shaped BBFs can be estimated through a technique
hat is based on recycling narrow standards [27]. However, this

ethod requires of two ill-conditioned deconvolutions, to com-
ensate for the large BB introduced by the pump and recycle
ubing (not present in a normal fractionation run).

When the shape of a narrow MMD is known a priori (e.g.,
t is represented by a Poisson distribution on a linear molar

ass axis), then a uniform and Gaussian BBF can be estimated
y comparing the DR chromatogram with the theoretical chro-
atogram that would be obtained in the absence of BB [28].
ore recently, the method was extended to BBFs represented

y asymmetrical EMG functions [29]. For samples exhibit-
ng a Poisson or a log-normal weight-chain length distribution
WCLD), theoretical correlations have been developed for deter-
ining the EMG parameters on the basis of the peak width, the

ariance, and the inflection points of the DR chromatogram [29].
hese methods do not require of any ill-conditioned numerical

nversion, but are restricted to imposing a shape to the analyzed
MD.
Several publications have employed molar mass chro-

atograms for estimating uniform and Gaussian BBFs. Thus, a
ethod has been proposed [30,31] for simultaneously estimating

he standard deviation of the Gaussian BBF and the molar mass
alibration coefficients from the DR and LS chromatograms and
linear molar mass calibration. In addition, an iterative proce-
ure has been proposed [18] for simultaneously estimating the
rue MMD and the standard deviation of a uniform Gaussian
BF from the DR and LS chromatograms of a narrow standard
nd a linear calibration. The procedure is as follows: (i) guess a
tandard deviation for the BBF; (ii) estimate sc

DR(V ) and sc
LS(V )

y inversion of Eq. (2); (iii) estimate Mc(V) through Eq. (3); and
iv) iterate until the slope of log Mc(V) coincides with that of the
independently determined) molar mass calibration. The method
as evaluated by adopting a narrow Schulz–Zimm MMD, with
he following average molar masses and polydispersity: M̄n =
0, 000 g/mol, M̄w = 60, 000 g/mol, and M̄w/M̄n = 1.20. In
his case, the original MMD was well recuperated, but large
rrors were observed in the standard deviation estimate [18].
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ŝ

M.M. Yossen et al. / J. Chro

This work presents a new method for estimating the BBF in
EC. The raw data are the (concentration and molar mass) chro-
atograms of narrow standards and the molar mass calibration.
he BBF can be assumed either arbitrary or represented by an
MG. At present, two of the authors participate of the IUPAC
roject entitled: “Data Treatment in the Size-Exclusion Chro-
atography of Polymers”; and one of the project objectives is

he evaluation and standardization of the available BB correc-
ion techniques. Thus, the present article is a contribution toward
uch goal.

. Theoretical considerations

Consider a discrete SEC model that has been previously
escribed in Refs [20] and [24]. The model assumptions are
s follows: (i) the mass and molar mass detectors are ideal in
he sense that they respond to Eqs. (2) and (3), except for the
act that their signals are contaminated with additive zero-mean
andom noises; (ii) the IDV has been accurately corrected for;

iii) the mass and molar mass chromatograms elute in a common
lution volume range [V1–Vm], and are sampled at regular elu-
ion volume intervals �V; and (iv) the molar mass calibration
og Mc(V) is known, and can be in general “nonlinear”.

Rewritten in discrete form, Eqs (2) and (3) yield:

k = Gsc
k; (k = DR, LS, SV, OS) (4a)

c
k = Kk[Mc]ak sc

DR; (k = LS, SV, OS) (4b)

here sk is a (m × 1)-column vector containing the heights of
k(V) in the range [V1–Vm]; sc

k is a (p × 1)-column vector con-
aining the heights of sc

k(V ) in the (narrower) range [V c
1 − V c

p];
c is a (p × p) diagonal matrix containing the ordinates of
c(V) in the range [V c

1 − V c
p]; and G is a (m × p) rectangu-

ar matrix representing g(V, V̄ ), with V in [V1–Vm], and V̄ in

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(V1, V
c
1 )

...

g(Vc+1, V
c
1

...

g(Vc+1+d, V

0
...

0

V c
1 − V c

p]. The sampling interval �V is selected from a compro-
ise between small �Vs that produce highly-resolved corrected

hromatograms, and large�Vs that improve the numerical inver-
ion of G. Typical �V values are in the range 0.01–0.03 mL.

w
p
o
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Consider building the (true and nonuniform) G matrix from
(known and continuous) analytical expression of g(V, V̄ ). At

ach discrete elution volume, the heights of all the individ-
al g(V) functions with average retention volumes in the range
V c

1 − V c
p] must be calculated. Most analytical functions (e.g., a

aussian distribution) never strictly drop to zero, and this would
roduce “full” G matrixes, with most of their elements close to
ero. This increases the correlation between columns of G; and
herefore it increases the ill-conditioned nature of its numerical
nversion. To improve the numerical inversion of G, we propose
o set to zero all the smaller components of G (e.g., lower than
% of the maximum). Furthermore, we fix the total number of
onzero points of any individual g(V) function to n(=c + d + 1),
here c and d are respectively the number of nonzero points
efore and after V̄ .

The ideal G is of minimal dimensions, with p columns
trictly covering the corrected chromatogram range [V c

1 − V c
p],

nd m rows strictly covering the measured chromatogram range
V1–Vm]. For measured chromatograms containing m points, the
orrected chromatograms will contain p = m – c – d points, and
he minimum sized (m × p) matrix G is:

· · · 0 · · · 0

. . . 0
...

g(Vj, V
c
j )

. . .
...

. . . 0

g(Vc+j, V
c
j ) g(Vp, V c

p)

. . .
...

. . .
...

g(Vc+j+d, V
c
j ) g(Vc+p, V c

p)

0
. . .

...

· · · 0 · · · g(Vm, V c
p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (m > p) (5)

n Eq. (5), any generic jth column contains the n nonzero heights
f g(V, V̄ ), at V̄ = V c

j .
In a wide range of elution volumes, the BBF and its cor-

esponding G matrix are both non-uniform. In contrast, in the
arrow range of a calibration standard, the BBF is uniform and
epresented by g = [g1, g2, . . ., gn]T, where the superscript ‘T’
ndicates transpose. Its corresponding G matrix is also uniform,
nd is totally specified by only the n nonzero elements of any
(V) function. Furthermore, any two consecutive columns jth
nd (j + 1)th of G are identical, except for the fact that the (j + 1)th
olumn contains all its nonzero elements shifted one position
ownwards.

An estimate of any corrected k-chromatogram is obtained by
nversion of its corresponding G matrix through [Eq. (4a)]:

c
k = G[−1]sk; (k = DR, LS, SV, OS) (6)
here the G[−1] is (p × m)-matrix that represents a regularized
seudo-inverse of G; and the symbol “∧” indicates “estimate
f”. Several numerical procedures have been developed for cal-
ulating G[−1]sk [20,22]. In this work, the following singular
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Table 1
Final Expressions for the numerator of the second term of Eq. (12b), when the
k1-chromatogram is estimated from the k2-chromatogram

k1 k2 G[Mc](ak1 −ak2 )G[−1]

LS DR G [Mc] G[−1]

SV DR G [Mc]α G[−1]

LS SV G [Mc](1–α) G[−1]

DR LS G [Mc]−1 G[−1]
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alue decomposition expression [32] is employed:

ˆc
k = G[−1]sk =

r∑
j=1

uT
j sk

σj

vj; (r ≤ p);

σ1 ≥ σ2 ≥ . . . ≥ σr ≥ . . . ≥ σp ≥ 0) (7)

here uj and vj are the eigenvectors of GGT and GTG, respec-
ively; and the σjs are the singular values of G (or square roots
f the eigenvalues of GTG). In the summation of Eq. (7), the
umber of “effective” terms is limited to r, to avoid amplifying
he measurement noise. The parameter r is selected from a trade-
ff between a highly oscillatory and an excessively smoothened
olution.

.1. Estimation algorithms

The uniform g(V) function can be assumed either arbitrary or
epresented by an EMG. Consider first an arbitrary g(V) given
y g = [g1, g2, . . ., gn]T. The raw data are the measured mass
hromatogram sDR, the measured molar mass chromatogram sk
with k either LS or SV), and the molar mass calibration Mc.

Call ŝk,DR (k = LS or SV) an estimate of the molar mass chro-
atogram, calculated from the measured DR chromatogram.
uch estimate is obtained by replacing Eq. (6) into Eqs. (4a) and
4b), yielding:

ˆk,DR = KkG[Mc]ak G[−1]sDR; (k = LS, SV) (8)

We define the following estimation error vector:

˜sk,DR = sk − ŝk,DR = sk − KkG[Mc]ak G[−1]sDR;

(k = LS, SV) (9)

deally, ẽsk,DR
∼= [0, . . . , 0]T. Eq. (9) represents m algebraic

quations in n (<m) unknowns, g1, g2, . . ., gn. We avoid for
ossible errors in the detector gain, Kk, by normalizing Eq. (9)
s follows:

sk,DR = sk

||sk||1 − G[Mc]ak G[−1] sDR

||G[Mc]ak G[−1] sDR||1
; (k = LS, SV)

(10)

here esk,DR is the normalized estimation error vector; and ||•||1
s the 1-norm of a vector, i.e.: ||x||1 = �i|xi|.

Finally, g is obtained from the following minimization pro-
ess:

in
g

(esk,DR) = min
g

(eT
sk,DR

esk,DR + φ2
g); (k = LS, SV) (11a)

ith

2
g = β

n∑
i=1

[2gi − gi+1 − gi−1]2, and g0 = gn+1 = 0

(11b)

here esk,DR is the scalar functional or mean square error of
sk,DR; and β (≥0) is a weighting factor. In Eq. (11b), φ2
g is a scalar

ltering function that is introduced to impose some correlation
etween any three consecutive points of g. The square bracket
f Eq. (11b) is an estimate of the second derivative of g(V),

g

R SV G [Mc]−α G[−1]

V LS G [Mc](α–1) G[−1]

nd therefore the effect of φ2
g is to reduce the high frequency

scillations in the estimates of g(V).
In essence, the proposed procedure is based on estimating one

f the chromatograms from the knowledge of the other. Eqs. (11)
an be generalized to any pair of generic detectors {k1, k2}, as
ollows:

in
g

(esk1,k2
) = min

g
(eT

sk1,k2
esk1,k2

+ φ2
g) (12a)

ith

sk1,k2
= sk1

||sk1 ||1
− G[Mc](ak1−ak2 )G[−1]sk2

||G[Mc](ak1−ak2 )G[−1]sk2 ||1
;

k1, k2 = DR, LS, SV) (12b)

ith φ2
g as in Eq. (11b). For all the possible combinations of DR,

S, and SV sensors, Table 1 presents the resulting expressions
f G[Mc](ak1−ak2 )G[−1] in Eq. (12b). Note that for SV sensors,
he M–H slope α is also required (see Table 1). Also, note that
he product G[−1]sk2 in Eq. (12b) is an estimate of sc

k2
.

Assume now that g(V) is represented by a first-order EMG. A
onvolution product between a Gaussian and an exponentially
ecaying function defines the EMG [29,33–35]:

(V ) = 1√
2πσBBτBB

exp

(
− (V − V̄G)2

2σ2
BB

)
∗ exp

(
− V

τBB

)
(13)

here ‘*’ indicates “convolution product”; i.e. [f1(V ) ∗
2(V ) = ∫∞

0 f1(V − V̄ )f2(V̄ ) dV̄ ]; V̄G and σBB are respectively
he mean and standard deviation of the Gaussian function; and
BB is the “time” constant of the exponential decay. Note that an
MG defined as in Eq. (13): (i) involves three parameters: V̄G,
BB, and τBB; and (ii) is a smooth function, because it results

rom the convolution of two smooth functions.
In Eq. (13), g(V) is normalized in the sense that

∞
0 g(V ) dV = 1. Also, the mean volume of g(V) results: V̄ =
∞

0 Vg(V ) dV = V̄G + τBB. If V̄ = 0 is imposed onto all indi-
idual g(V) functions, then the mean retention volume of the
orrected chromatograms will coincide with the mean retention
olume of the measured chromatogram. This condition is auto-
atically ensured by adopting V̄G = −τBB; and in this case, Eq.

13) reduces to the following two-parameter expression:
(V ) = 1√
2πσBBτBB

exp

(
− (V + τBB)2

2σ2
BB

)
∗ exp

(
− V

τBB

)
(14)
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ince the EMG of Eq. (14) is a smooth function, then the filtering
actor of Eq. (11b) is no longer required. Thus, the minimization
roblem of Eq. (12a) reduces to the following two-parameters
earch:

min
σBB,τBB}

(esk1,k2
) = min

{σBB,τBB}
(eT

sk1,k2
esk1,k2

) (15)

ith esk1,k2
as in Eq. (12b).

Initial guesses are required on the sought uniform BBF (or
quivalently on vector g and on the uniform matrix G), to solve
qs. (12) and (15). For arbitrary BBFs, we propose to obtain an

nitial guess of g by simply “contracting” the DR chromatogram
nto a reduced number of n points. For BBFs represented by an
MG, we propose to select an initial pair of parameters σBB and
BB that grossly approximates the DR chromatogram.

Finally, consider a criterion for the initial selection of dimen-
ions n and p of G. The measured chromatograms contain m
onzero points in [V1–Vm]. Since m = p + n − 1, many combi-
ations of n and p satisfy such expression. We propose the fol-
owing two-steps procedure. In Step I, we adopt n̂I = p̂I ≈ m;
nd to this effect we must extend the original chromatograms
ith leading and lagging zeroes, such their original m points

re transformed into m̂I = 2m − 1 points. Then, the optimiza-
ion algorithm is applied, and the intermediate estimates of g(V)
nd sc

k2
(V ) are obtained, that we shall call ĝI (V ) and ŝc

k2,I
(V ),

espectively. The overestimated range of ŝc
k2,I

(V ) generates spu-
ious oscillations in the corrected chromatogram tails. In Step
I, such spurious oscillations are eliminated by simply reducing
he system dimensions into n̂ < n̂I and p̂ < p̂I . Then, the opti-

ization algorithm is applied for the second time, to produce
he final estimates ĝ(V ) and ŝc

k2
(V ).

To evaluate the quality of alternative BBF estimates ĝ, the
ollowing (scalar) mean square error is defined:

g = (ĝ − g)T(ĝ − g)

gTg
(16)

here g is the true a priori known solution. Clearly, Eq. (16) is
napplicable in a real experiment.

. Simulation examples

.1. Raw data

“Synthetic” or simulated examples are useful for evaluating
umerical procedures, because the sought solutions are known
priori. Except for the MMDs, we simulated the experimental

onditions and BBF that were determined by Busnel et al. [26].
he simulations involved ambient temperature, tetrahydrofurane

THF) as carrier solvent, and a mixed-gel column from Polymer
aboratories (5 �m, 60 cm length) [26]. The molar mass cali-
ration was assumed linear (Fig. 1a), and given by [26]:

c
og M (V ) = 10.562 − 0.4223 V (17)

The continuous BBF is represented by a non-uniform EMG
see Fig. 1a). Its theoretical expression is in Eq. (14), and its
arameters are slightly reduced along the elution volume accord-

M

o

c

on-uniform BBF, g(V, V̄ ), and corrected DR chromatograms, sc
DR(V )|LN and

c
DR(V )|P. (b) Proposed MMDs: log-normal distribution, wLN(log Mc), and Pois-
on distribution, wp(log Mc).

ng to [26]:

BB(V ) = 0.165 − 0.002 V (18a)

BB(V ) = 0.160 − 0.0015 V (18b)

We simulated the analyses of two narrow PS standards of
nown WCLDs. Their analytical expressions are in Table 2,
here i is the number of repetitive units. They correspond

o a lower molar mass Poisson distribution wP(i) with
¯

w/M̄n = 1.010; and to a higher molar mass log-normal
istribution wLN(i) with M̄w/M̄n = 1.107. These distributions
re shown in Fig. 1b with a common logarithmic molar mass
xis. A Poisson WCLD is the narrowest possible distribution
hat is obtainable through a synthetic polymerization process.
ote that the molar masses of the Poisson distribution are in

he limit of low sensitivity of a LS or SV detector. However,
his problem is not considered here, since we are assuming
erfect ideal sensors. The log-normal WCLD was chosen to
mulate the typical polydispersities of standards with molar
asses around 200,000 g/mol. (If a Poisson WCLD with
¯
w

∼= 200, 000 g/mol had been chosen, then its polydispersity
f around 1.0005 would be unrealistic in practice.)

For each simulated WCLD, the true (or corrected) mass
hromatograms were obtained from the MMDs and the linear
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Table 2
Simulated examples: raw dataa

Log-normal WCLD Poisson WCLD

Analytical expressions and averages

wLN(i) = 1√
2πσLNi

exp
[
− [ln(i/ī)]2

2σ2
LN

]
(with ī = 2100 and σ2

LN = 0.32) wP(i) = i
λ+1

e−λλi−1

(i−1)! (with λ = 100)

M̄n (g/mol)b 207780 10519
M̄w (g/mol)b 230100 10623
M̄w/M̄n 1.107 1.010

Corrected chromatograms: number of points and elution volume range
p 122 41
[V c

1 − V c
p ] (mL) [11.22–13.64] [15.10–15.90]

BBF: number of points and limiting parameter values
n(=c + d + 1) 63(=26 + 36 + 1) 63 (=26 + 36 + 1)
σBB (mL) [0.1377–0.1426] [0.1332–0.1348]
τBB (mL) [0.1395–0.1432] [0.1361–0.1374]

Measured chromatograms: number of points and elution volume range
m = p + n − 1 184 103

[14.58–16.62]

c
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[V1–Vm] (mL) [10.70–14.36]

a For the discretizations, the elution volume interval was �V = 0.02 mL.
b Styrene molar mass: MSt = 104.15 g/mol.

alibration, yielding the dashed curves sc
DR(V )|LN and sc

DR(V )|p
f Fig. 1a. All the chromatograms are discrete, with values at
egular elution volume intervals �V = 0.02 mL. The true (or
orrected) LS chromatograms, sc

LS(V )|LN and sc
LS(V )|p, were

btained from the DR chromatograms through Eq. (3), and
dopting KLS = 0.02. Table 2 presents the total number of points
p) and elution volume ranges [V c

1 − V c
p] of the corrected chro-

atograms. Fig. 2 presents the corrected DR and LS chro-
atograms (in dashed trace). Also, Fig. 2 shows the first and

ast “effective” BBFs, placed at the first and last nonzero points
f the corrected chromatograms. Each individual g(V) function
xhibits n = 63 nonzero points, with c = 26 leading points, and
= 36 lagging points (Table 2). Note that the average volumes
f the individual g(V) functions are not placed at their maxima.

For each analyzed WCLD, two (true and non-uniform) G
atrixes were built with Eqs. (5), (14) and (18), for strictly

overing their elution volume ranges. At any elution volume
j, the jth column of G contains the ordinates of the particular
(V) function with V̄ = Vj . The columns of the non-uniform G
atrixes were obtained as follows: (i) at each Vj, calculate the

rue σBB and τBB parameters, with Eqs. (18a) and (18b); (ii) with
¯ = Vj , calculate the n heights of the individual g(V) function

ith Eq. (14); (iii) set to zero all the column elements smaller
han 1% of the maximum value; and (iv) normalize the column
lements, such that their sum is equal to 1. For the log-normal
istribution, a (184 × 122)-matrix G was defined, that covered
he elution volume range 10.70–14.36 mL. For the Poisson dis-
ribution, a (103 × 41)-matrix G was defined, that covered the
lution volume range 14.58–16.62 mL (Table 2).

The noise-free “measured” chromatograms were calculated
ith Eqs. (4a) and (4b). Then, zero-mean Gaussian sequences
ere added onto the noise-free chromatograms to produce the

nal measured chromatograms sDR(V) and sLS(V) of Fig. 2. In all
ases, the variances of the additive noises were equal to 0.25% of
he chromatogram maxima. For the measured chromatograms,
able 2 presents the total number points (m) and the volume

Fig. 2. Simulated examples: raw data. (a) Log-normal distribution. (b) Pois-
son distribution. Limiting BBFs [gLN(V, V c

1 ), gLN(V, V c
p), gP(V, V c

1 ), gP(V, V c
p)],

“measured” chromatograms [sDR(V), sLS(V)], and corrected chromatograms
[sc

DR(V ), sc
LS(V )].
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Table 3
Simulated examples: intermediate adjustments and Final global results

Log-normal WCLDa Poisson WCLDb

Estimated dimensions and ranges of the BBF and the measured
chromatograms
Step I:

n̂I = p̂I = m 184 103
m̂I = 2m − 1 367 205

[V1–Vm]I (mL) [8.88–16.20] [13.56–17.64]

Step II:
m̂(= n̂ + p̂ − 1) 244 (= 95 + 150 − 1) 163 (= 95 + 69 − 1)
[V1–Vm] (mL) [10.10–14.96] [13.98–17.22]

BBF estimates and performance indexes
Arbitrary BBF: ĝLN(V ) of Fig. 3a ĝP(V ) of Fig. 3d

eg (×103) 0.43 0.57
BBF as EMG: ĝLN(V ) of Fig. 4a ĝP(V ) of Fig. 4b

σ̂BB (mL) 0.143 0.137
τ̂BB (mL) 0.136 0.133
eg (×103) 0.19 0.13

MMD average estimates
Arbitrary BBF:

ˆ̄Mn (g/mol) 210120 10540
ˆ̄Mw (g/mol) 230050 10610
ˆ̄Mw/ ˆ̄Mn 1.095 1.007

BBF as EMG:
ˆ̄Mn (g/mol) 209020 10510
ˆ̄Mw (g/mol) 230990 10620
ˆ̄ ˆ̄
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3

Mw/Mn 1.105 1.010

a See Fig. 3a–c.
b See Fig. 3d–f.

anges [V1–Vm]. Note that the measured chromatograms are only
lightly wider than any individual BBF.

.2. BBF estimates

For each of the two simulated examples, consider esti-
ating their uniform BBFs. The raw data are the measured

hromatograms and the molar mass calibration. First, consider
pplying the proposed algorithm of Eqs. (11a) and (11), for the
ase of arbitrary shaped BBF estimates. For both WCLDs, the
ollowing common parameters were adopted: (a) r = 10 for the
econvolution operations; and (b) β = 500 for the smoothing
erm of Eq. (11b). These values were obtained from a compro-
ise between smooth BBF estimates with high objective func-

ionals esLS,DR, and oscillatory BBF estimates with low values of
sLS,DR.

The final solutions are in Table 3 and in Fig. 3. Table 3 shows
he intermediate and final vector dimensions and elution vol-
me intervals. For the log-normal WCLD, the intermediate and
nal BBF estimates (ĝI,LN(V ) and ĝLN(V ), respectively) are in
ig. 3a. For the Poisson WCLD, the intermediate and final BBF
stimates ĝI,P(V ) and ĝP(V ) are in Fig. 3d. Their correspond-
ng corrected chromatograms are in Fig. 3b,e. In both examples,

purious oscillations are observed in the intermediate estimates.
uch oscillations were eliminated in Step II, when reducing the
imensions of n̂I and p̂I (see Table 3). In both examples, the
nal BBF estimates are slightly oscillatory and exhibit n̂ = 95

d
i
c

r. A 1128 (2006) 171–180 177

on-zero points (i.e., they are somewhat broader than the real
= 63). However, the final estimates are quite acceptable, with

he (broader) log-normal distribution presenting slightly better
esults. The true BBF is only slightly non-uniform in the nar-
ow ranges of the chromatograms. For this reason, ĝLN(V ) is
lose to the true initial and last individual broadening functions
LN(V, V c

1 ) and gLN(V, V c
p) (Fig. 3a); and similarly, ĝP(V ) is

lose to gP(V, V c
1 ) and gP(V, V c

p) (Fig. 3d).
Finally, consider recuperating the original MMDs from the

stimated uniform arbitrary BBFs, the concentration chro-
atograms, and the molar mass calibration. The procedure
as as follows: (i) calculate the corrected mass chromatograms

hrough Eqs. (6) and (7), by deconvolution of the measured
ass chromatograms; and (ii) combine the corrected mass chro-
atograms and the molar mass calibration to obtain the MMD

stimates ŵLN(log Mc) and ŵP(log Mc). The results are in
ig. 3c,f. For the broader log-normal MMD, the estimate is quite
cceptable. For the narrower Poisson distribution, the MMD esti-
ate is more oscillatory, due to the worse posed nature of its

econvolution operation. Table 3 presents the estimated average
olar masses and polydispersities.
Now, let us apply the proposed algorithm of Eq. (15), for the

ase of uniform BBFs represented by EMGs. Better results are to
e expected in this case because: (a) the true BBF was originally
efined as a (slightly non-uniform) EMG; and (b) in each numer-
cal example, the algorithm needs to estimate only two constant
arameters: σBB and τBB (rather than n = 95 unknowns). For the
ntermediate and final estimates of the elution volume intervals,
he n̂, p̂, and m̂ dimensions, and the r parameter, the same values
reviously described for the arbitrary BBF cases were readopted
upper section of Table 3).

The BBF estimates are in Fig. 4, and the global results are
n the second section of Table 3. As expected, the results are
etter than before, for which reason the average errors eg are
omewhat lower than for the arbitrary BBF cases. Even though
ot shown, the intermediate chromatogram estimates of Steps I
nd II were also improved versions of the arbitrary BBF case.
ompared with the true EMG parameters of Table 2, the esti-
ated EMG parameters are in the upper or lower limits of their

rue values. Also, the estimated parameters σBB and τBB are
lightly reduced when changing from higher molar masses of
he log-normal distribution to the lower molar masses of the
oisson distribution. The lower section of Table 3 presents the
stimated average molar masses and polydispersities. In gen-
ral, all estimates are in good agreement with their true values
resented in Table 2. Again, the averages were slightly better
stimated when the BBFs were assumed EMG functions. This
s reasonable, since the MMDs were estimated from the BBF
stimates, and the best BBF estimates corresponded to the EMG
unctions.

.3. Checks of robustness
The presented examples were simulated with varying con-
itions and detector combinations. The results are summarized
n Table 4. In Case I, the variances of the additive noise that
ontaminate the measured chromatograms were increased from
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ig. 3. Simulated examples: estimates when assuming arbitrary BBFs: (a–c) Lo
urves), and after Step II (thick dashed curves). The limiting “true” BBFs are s
teps I and II; (c, f) True and estimated MMDs.
.25% to 2.5% of the chromatogram maxima. In spite of this
hange, the BBF estimates were only slightly deteriorated, as it
an be seen from the resulting eg values and from the estimated
MG parameters.

s
w
r

ig. 4. Simulated examples: estimates when assuming the BBFs represented by EM
in thin dashed curves), and after Step II (in thick dashed curves). The limiting “true”
mal MMD; (d–f) Poisson MMD; (a, d) BBF estimates after Step I (thin dashed
in continuous trace: (b, e) True and estimated corrected chromatograms after
In Case II of Table 4, ±5% errors were introduced into the
lope of the calibration log Mc(V). Again, negligible deviations
ere observed in the BBF estimates. But while clockwise

otations of log Mc(V) produce broader-than-real estimates on

Gs. (a) Log-normal MMD. (b) Poisson MMD. The BBF estimates after Step I
BBFs are in continuous trace.
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Table 4
Simulated examples: checks of robustness

Case no. Log-normal WCLD Poisson WCLD

Arbitrary BBF EMG Arbitrary BBF EMG

I) Measurement noise variances: 2.5% of the chromatograms maxima
eg (×103) 6.2 0.87 2.8 1.1
σ̂BB (mL) – 0.140 – 0.143
τ̂BB (mL) – 0.132 – 0.127

II) Changes of ±5% in the molar mass calibration slope
eg (×103)a 6.5/5.6 4.2/7.5 1.5/0.68 0.32/0.15
σ̂BB (mL)a – 0.156/0.128 – 0.139/0.136
τ̂BB (mL)a – 0.143/0.128 – 0.132/0.132

III) SV sensor with changes of ±5% in the M–H slope α

eg (×103)a 3.9/3.9 4.2/7.8 3.5/8.0 0.47/0.53
σ̂BB (mL)a – 0.156/0.133 – 0.140/0.138
τ̂BB (mL)a – 0.143/0.121 – 0.131/0.128

IV) Changes of ±0.02 mL in the IDV
eg (×103)a 117/62 190/43 365/71 422/49
σ̂BB (mL)a – 0.091/0.191 – 0.041/0.195
τ̂BB (mL)a – 0.089/0.163 – 0.118/0.140
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The first value corresponds to positive changes, and the second value to
egative changes.

oth the BBF and the MMD, the opposite occurs for counter
lockwise rotations.

In Case III of Table 4, the LS detector was changed to an
deal SV detector with the M–H slope α = 0.712 (corresponding
o PS in THF at 25 ◦C) [36]. In this case, ±5% variations in the
alue of α produced negligible deviations in the BBF estimates.
hile positive variations produced broader than real BBF

stimates, the opposite occurred for negative variations. Thus,
rrors in α are qualitatively equivalent to errors in the linear
alibration slope.

In Case IV of Table 4, errors in the IDVs were simulated. In
his case, a very high parameter sensitivity was observed. Thus,
hen shifting the LS chromatograms towards lower elution
olumes by only 0.02 mL (i.e., the adopted discretization inter-
al), then unacceptably large errors were produced (Table 4).
lso, the BBF estimates were narrower than real when the LS

hromatograms were shifted towards lower elution volumes;
nd wider than real when the shift was in the opposite direction.

Finally, both wider and narrower WCLDs were simulated. A
rather wide) Schulz–Flory WCLD with M̄n = 42, 800 g/mol
nd M̄w/M̄n

∼= 1.995, produced high errors in the BBF
stimates, with eg = 34.2 × 10−3 for arbitrary-shaped BBFs,
nd with eg = 19.6 × 10−3 for EMGs. The reason is that the BB
egligibly affects a broad MMD, and therefore little informa-
ion on the BBF can be recuperated from the corresponding
hromatograms. Similarly, the algorithm did not provide
ood results for a narrow Poisson WCLD with λ = 500 and
¯

w/M̄n
∼= 1.002. In this case, the small differences between the

R and LS chromatograms were hidden by the measurement

oise. After a series of simulations involving log-normal and
oisson WCLDs of different averages and noises, the procedure
roved effective for samples with polydispersities in the
ange 1.005–1.50.
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. Conclusions

A method was proposed for estimating a uniform (but
kewed) BBF, based on analyzing narrow standards with a molar
ass sensitive detector. The simulations involved a Poisson

istribution of a relatively low molar mass, and a log-normal
istribution of a higher molar mass. In both cases, quite reason-
ble BBF estimates were observed. The BBF estimates were best
nd faster when adopting EMG functions. In addition, the EMG
arameter estimates showed a correct variation with the molar
ass; making it possible to estimate the overall non-uniform
BF by simple interpolation of the obtained EMG parameters.

The numerical algorithm is free from errors in the detec-
ors gains, and it has proven immune to different shapes of the

CLD, to high-frequency noises, to errors in the calibration
lope, and to errors in the M–H parameter α (when SV sen-
ors are applied). However, the method has proven to be very
ensitive to errors in the IDV. Assuming no errors in the IDV,
ery reasonable BBF estimates were recuperated for standards
ith true polydispersities in the range 1.005–1.50. For extremely

ow polydispersities, the procedure fails because the molar mass
hromatogram almost coincides with the concentration chro-
atogram. In such cases, however, the mass chromatogram

ould be considered as a good approximation to the sought BBF.
or high polydispersities, the procedure fails because the BB has
negligible effect of on the measured chromatograms.

Molar mass calibrations are in general determined from the
oncentration chromatograms that are also required in the pro-
osed BBF estimation technique. The errors in the molar mass
alibrations are in part due to an incorrect assignment of the
verage elution volumes to the average molar masses. Perhaps,
etter estimates could be obtained if (rather than using the mass
hromatograms of narrow standards), the corresponding BB-
orrected chromatograms were used.

In triple detection, a second (independent) molar mass-
ensitive sensor is incorporated, and this could introduce addi-
ional consistency tests between the measured chromatograms,
he molar mass calibration, and the BBF estimates. For triple
etection, Eqs. (12a) and (12) could be extended and a similar
terative procedure to that of Netopilı́k [18] could be applied to
imultaneously estimate the uniform BBF and the molar mass
alibration.

Applications of the proposed technique onto LS–DR and
V–DR measurements will be presented in a future work. In

he first case, the detectors were interconnected in series, and the
DV could be unambiguously determined. In the second case, the
etectors were interconnected in parallel, and important uncer-
ainties arose in relation with the sign and magnitude of the IDV.
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