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Abstract

A method is proposed for estimating the (asymmetrical and non-uniform) band broadening function (BBF) in size-exclusion chromatography
(SEC). The following data are required: the molar mass calibration and the concentration- and molar mass chromatograms of a set of narrow
standards. In the narrow range of each standard, the BBF is uniform but skewed. Each uniform BBF is estimated through a nonlinear optimization
procedure that compares one (of the two) measured chromatograms with its theoretical prediction based on the other chromatogram. The method
is validated with numerical examples that simulate the analyses of narrow standards exhibiting log-normal and Poisson weight chain length
distributions. The BBF can be assumed of arbitrary shape, or represented by an exponentially-modified Gaussian (EMG). From the uniform BBF
estimate, the true polydispersity of the standard can be determined. The global non-uniform BBF is obtained by interpolation between a set of

uniform BBFs covering a wide range of elution volumes.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Size-exclusion chromatography (SEC) is the main analytical
technique for measuring the molar mass distribution (MMD)
of a polymer [1]. In ideal SEC, molecules are fractionated
according to their hydrodynamic volume. Unfortunately, per-
fect fractionation is impossible, due to secondary fractionation
mechanisms and band broadening (BB). Secondary fraction-
ations result from physicochemical interactions between the
analyzed polymer, the solvent, and the column packing [2], and
will not be further discussed. BB is mainly due to axial dispersion
in the fractionation columns, while other minor sources include
column-end effects, finite injection volumes, finite detection
cell volumes, and laminar flow profiles in the capillaries [3,4].
Due to BB, an instantaneous MMD is present in the detector
cell, even when analyzing chromatographically simple polymers
[5.,6].
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Assume that the MMD is directly determined from the con-
centration (or mass) chromatogram and an independent molar
mass calibration. In this case, the effect of BB is to underestimate
the global number-average molar mass (#,,), overestimate the
global weight-average molar mass (M,,), and therefore overesti-
mate the global polydispersity, M, /M,,. In contrast, with molar
mass sensitive detectors, the global polydispersity can be either
over- or underestimated. Thus, ideal light-scattering detectors
produce unbiased M., values, but overestimated M,,’s, and there-
fore the polydispersities are underestimated [7]. Also, ideal spe-
cific viscometers underestimate M, /M,, when the molar masses
are calculated with the exact Mark—Houwink (M-H) constants
of the analyzed polymer, or overestimate M,,/ M,, when employ-
ing an exact universal calibration [8—10]. An important point of
molar mass sensitive detectors, is to properly correct for the
inter-detector volume (IDV) shift [9-12].

Several mathematical models have been developed that
describe the complex physicochemical processes that take place
in a SEC analysis. Their aim is to simulate the chromatograms
from a priori knowledge of the MMD, the polymer-solvent-
matrix interactions, the column characteristics, and the flow
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conditions [13-16]. Unfortunately, these models involve a large
number of unknown physicochemical parameters, and as far
as the authors are aware, they have not yet been applied for
BB corrections. Alternatively, in the phenomenological (or
“black box”) approach by Tung [17], the concentration chro-
matogram w(V) is considered a broadened (or filtered) version
of a hypothetically true (or corrected) chromatogram w°(V), as
follows:

w(V) = /Oo g(V, Viw(V)dv ey
0

where g(V, V) is the (in general, non-uniform) BB function
(BBF); and V are the average retention volumes. At each v,
a different individual g(V) function is defined. For symmetrical
g(V) functions, then V is unambiguously assigned at the max-
imum (or mode). For skewed g(V) functions, then V can be
assigned at the mode, the mean, or any other measure of cen-
tral tendency. This ambiguity regarding asymmetrical BBFs is
a still unresolved problem in SEC data treatment, but it will not
be further discussed. For uniform (or elution volume invariant)
BBFs, Eq. (1) reduces to a simple convolution integral.

When neglecting the extra broadenings produced outside the
fractionation columns (in the injector, detector cells, and interde-
tector capillaries), then any generic k-chromatogram is distorted
by the same (common) BBEF, as follows [18,19]:

se(V) = /oo g(V, V)s(V)dV, (k=DR,LS,SV,0S) (2)
0

where s¢(V) is any measured chromatogram; s{(V) is its corre-
sponding BB-corrected chromatogram; and DR, LS, SV, and OS
indicate a differential refractometer, a light-scattering detector, a
specific viscosity detector, or a (still commercially unavailable)
colligative-property osmometer.

When linear homopolymers are analyzed with perfect or
ideal sensors, then the following expression interrelates the BB-
corrected concentration chromatogram spR (V) with any BB-
corrected molar mass chromatogram sz(V) (k=LS, SV, 0S)
[18-20]:

sp(V) = Ki[MC (V)] spp(V),
(apr = 0; aLs = 1; asy = o; aps = —1) 3)

where K}, is a detector gain; M€(V) is the molar mass calibration;
and agy =« is the M—H exponent for the given polymer-solvent-
temperature combination. In M¢(V), the superscript ‘c’ is intro-
duced to highlight the assumption that a molar mass calibration
obtained from narrow standards is unaffected by BB.

The correction for BB is important when the chromatograms
are narrow, or are broad but multimodal with sharp elbows and/or
narrow peaks. In the most general approach, the correction for
BB involves the three following difficulties: (1) estimation of the
BBF; (2) calculation of the corrected chromatograms from the
measured chromatograms and the BBF; and (3) estimation of
the corrected MMD. The numerical algorithms associated with
the last two items have been extensively treated in the literature
[19-25], and will not be further discussed.

If strictly monodisperse (or uniform) standards were avail-
able, then the BBF would be simple to determine, since any
si(V) chromatogram would directly provide the shape of the
individual BBFs; and the nonuniform BBF would be obtained
by interpolation between a set of such chromatograms. Unfor-
tunately, uniform standards are only available for low molar
mass materials (e.g., a pure solvent), and for some water-soluble
biopolymers. Almost-uniform synthetic standards have been
obtained by fractionation of narrow PS standards in temperature-
gradient interaction chromatography; and their chromatograms
have been adequately represented by exponentially-modified
Gaussian (EMG) functions [26]. Inside the linear calibration
range, these functions were only moderately non-uniform but
skewed, with the exponential decay or tailing toward the higher
elution volumes. Near to the limit of total exclusion, the BB
function became narrower and more skewed, and could not
be properly approximated by an EMG [26]. In general, the
BB effects are particularly serious near to the limit of total
exclusion.

Arbitrary-shaped BBFs can be estimated through a technique
that is based on recycling narrow standards [27]. However, this
method requires of two ill-conditioned deconvolutions, to com-
pensate for the large BB introduced by the pump and recycle
tubing (not present in a normal fractionation run).

When the shape of a narrow MMD is known a priori (e.g.,
it is represented by a Poisson distribution on a linear molar
mass axis), then a uniform and Gaussian BBF can be estimated
by comparing the DR chromatogram with the theoretical chro-
matogram that would be obtained in the absence of BB [28].
More recently, the method was extended to BBFs represented
by asymmetrical EMG functions [29]. For samples exhibit-
ing a Poisson or a log-normal weight-chain length distribution
(WCLD), theoretical correlations have been developed for deter-
mining the EMG parameters on the basis of the peak width, the
variance, and the inflection points of the DR chromatogram [29].
These methods do not require of any ill-conditioned numerical
inversion, but are restricted to imposing a shape to the analyzed
MMD.

Several publications have employed molar mass chro-
matograms for estimating uniform and Gaussian BBFs. Thus, a
method has been proposed [30,31] for simultaneously estimating
the standard deviation of the Gaussian BBF and the molar mass
calibration coefficients from the DR and LS chromatograms and
a linear molar mass calibration. In addition, an iterative proce-
dure has been proposed [18] for simultaneously estimating the
true MMD and the standard deviation of a uniform Gaussian
BBF from the DR and LS chromatograms of a narrow standard
and a linear calibration. The procedure is as follows: (i) guess a
standard deviation for the BBF; (ii) estimate spp (V) and sf (V)
by inversion of Eq. (2); (iii) estimate M°(V) through Eq. (3); and
(iv) iterate until the slope of log M°(V) coincides with that of the
(independently determined) molar mass calibration. The method
was evaluated by adopting a narrow Schulz—Zimm MMD, with
the following average molar masses and polydispersity: M,, =
50, 000 g/mol, M,, = 60,000 g/mol, and M,,/M, = 1.20. In
this case, the original MMD was well recuperated, but large
errors were observed in the standard deviation estimate [18].
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This work presents a new method for estimating the BBF in
SEC. The raw data are the (concentration and molar mass) chro-
matograms of narrow standards and the molar mass calibration.
The BBF can be assumed either arbitrary or represented by an
EMG. At present, two of the authors participate of the [UPAC
Project entitled: “Data Treatment in the Size-Exclusion Chro-
matography of Polymers”; and one of the project objectives is
the evaluation and standardization of the available BB correc-
tion techniques. Thus, the present article is a contribution toward
such goal.

2. Theoretical considerations

Consider a discrete SEC model that has been previously
described in Refs [20] and [24]. The model assumptions are
as follows: (i) the mass and molar mass detectors are ideal in
the sense that they respond to Egs. (2) and (3), except for the
fact that their signals are contaminated with additive zero-mean
random noises; (ii) the IDV has been accurately corrected for;

gV, VD)

g(VC-‘rlv V]C)

0

(iii) the mass and molar mass chromatograms elute in a common

elution volume range [V1-V,,], and are sampled at regular elu-

tion volume intervals AV; and (iv) the molar mass calibration

log M€(V) is known, and can be in general “nonlinear”.
Rewritten in discrete form, Eqgs (2) and (3) yield:

sk = Gs;

(k = DR, LS, SV, 0OS) (4a)

s; = Kx[M1"%sfg;  (k =LS, SV, 0S) (4b)
where s is a (m x 1)-column vector containing the heights of
s5i(V) in the range [V1-V,,]; s} is a (p x 1)-column vector con-
taining the heights of s{(V) in the (narrower) range [V} — V[f];
ME€ is a (p x p) diagonal matrix containing the ordinates of
M*(V) in the range [V} — V;]; and G is a (m x p) rectangu-
lar matrix representing g(V, V), with V in [V1-V,,], and V in
[vy — V1. The sampling interval AVis selected from a compro-
mise between small A Vs that produce highly-resolved corrected
chromatograms, and large A Vs thatimprove the numerical inver-
sion of G. Typical AV values are in the range 0.01-0.03 mL.

gVes1+a> VY)

Consider building the (true and nonuniform) G matrix from
a (known and continuous) analytical expression of g(V, V). At
each discrete elution volume, the heights of all the individ-
ual g(V) functions with average retention volumes in the range
[V — V] must be calculated. Most analytical functions (e.g., a
Gaussian distribution) never strictly drop to zero, and this would
produce “full” G matrixes, with most of their elements close to
zero. This increases the correlation between columns of G; and
therefore it increases the ill-conditioned nature of its numerical
inversion. To improve the numerical inversion of G, we propose
to set to zero all the smaller components of G (e.g., lower than
1% of the maximum). Furthermore, we fix the total number of
nonzero points of any individual g(V) function to n(=c+d+ 1),
where ¢ and d are respectively the number of nonzero points
before and after V.

The ideal G is of minimal dimensions, with p columns
strictly covering the corrected chromatogram range [V} — Vil
and m rows strictly covering the measured chromatogram range
[V1—Vu]. For measured chromatograms containing m points, the
corrected chromatograms will contain p =m—c—d points, and
the minimum sized (m x p) matrix G is:

0 0
0
gV, Vi)
0

8WVerj, V) sV V) L s p) )

g(VC+j+d7 V/C) g(VC"r[?s V[C;)

0 :
0 e gV V) |

In Eq. (5), any generic jth column contains the # nonzero heights
of g(V, V),at V = V5.

In a wide range of elution volumes, the BBF and its cor-
responding G matrix are both non-uniform. In contrast, in the
narrow range of a calibration standard, the BBF is uniform and
represented by g=[g1, g2, . .., gn]1, where the superscript ‘T’
indicates transpose. Its corresponding G matrix is also uniform,
and is totally specified by only the n nonzero elements of any
g(V) function. Furthermore, any two consecutive columns jth
and (j + 1)th of G are identical, except for the fact that the (j + 1)th
column contains all its nonzero elements shifted one position
downwards.

An estimate of any corrected k-chromatogram is obtained by
inversion of its corresponding G matrix through [Eq. (4a)]:

(k = DR, LS, SV, 0S) (©6)

where the GI=!! is (p x m)-matrix that represents a regularized
pseudo-inverse of G; and the symbol “A” indicates “estimate
of”. Several numerical procedures have been developed for cal-
culating GI=s; [20,22]. In this work, the following singular
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value decomposition expression [32] is employed:

" ulsg
§=6"Ns =) v = p)

=t "
(o1200>...20,>2...20,20) @)

where u; and v; are the eigenvectors of GGT and GTG, respec-
tively; and the o;s are the singular values of G (or square roots
of the eigenvalues of GTG). In the summation of Eq. (7), the
number of “effective” terms is limited to 7, to avoid amplifying
the measurement noise. The parameter r is selected from a trade-
off between a highly oscillatory and an excessively smoothened
solution.

2.1. Estimation algorithms

The uniform g(V) function can be assumed either arbitrary or
represented by an EMG. Consider first an arbitrary g(V) given
by g=1[g1, &2, - - - gn]T. The raw data are the measured mass
chromatogram spr, the measured molar mass chromatogram s
(with k either LS or SV), and the molar mass calibration M°.

Call § pr (k=LS or SV) an estimate of the molar mass chro-
matogram, calculated from the measured DR chromatogram.
Such estimate is obtained by replacing Eq. (6) into Egs. (4a) and
(4b), yielding:

8 .or = KiGIM ]G spr;  (k =LS, SV) ®)

We define the following estimation error vector:
€. or = Sk — Sk.DR = Sk — KiGIMC]* G spp;

(k =LS, SV) )

Ideally, &, . =10, ..., 0]T. Eq. (9) represents m algebraic
equations in n (<m) unknowns, g1, g2, ..., g&,. We avoid for
possible errors in the detector gain, Ky, by normalizing Eq. (9)
as follows:

Sk GIMI“G" T spr

- st Mhuil . (k=LS,SV)
skl [IGIMC]I* G~ sprli

(10)

€stpr =

where €, . is the normalized estimation error vector; and ||*||;
is the 1-norm of a vector, i.e.: ||x||1 = Zj|x;].

Finally, g is obtained from the following minimization pro-
cess:

mgin(esk’DR )= mgin(eg;{’DReskYDR +¢p): (k=LS,SV) (lla)
with

n
¢r =B [28 — giy1 —gi-11>. and go=gu11 =0

i=1

’ (11b)

where e, ,, is the scalar functional or mean square error of
€5, pr > and B (>0) is a weighting factor. In Eq. (11b), ¢§ is a scalar
filtering function that is introduced to impose some correlation
between any three consecutive points of g. The square bracket
of Eq. (11b) is an estimate of the second derivative of g(V),

Table 1
Final Expressions for the numerator of the second term of Eq. (12b), when the
ki-chromatogram is estimated from the k>-chromatogram

ki k> G[MC](Hkl —sz)G[*ll
LS DR G [Me] Gl

N\ DR G [MC]a G[—l]

LS SV G [Me]d-o g1
DR LS G ML gl=1

DR SV G M@ gl

SV LS G [Me]eD g1

and therefore the effect of ¢§ is to reduce the high frequency
oscillations in the estimates of g(V).

In essence, the proposed procedure is based on estimating one
of the chromatograms from the knowledge of the other. Egs. (11)
can be generalized to any pair of generic detectors {k, k2 }, as
follows:

rrgn(esklh) = mgin(e}w2 €5, 1, T ) (12a)
with
Sk, G[MC](ak] *akz)G[—l]skz
e = — ;
He T sl IGIME] 4 G gy Iy
(ki, k» = DR, LS, SV) (12b)

with ¢§ as in Eq. (11b). For all the possible combinations of DR,
LS, and SV sensors, Table 1 presents the resulting expressions
of G[M€]% ~%)GI=11 in Eq. (12b). Note that for SV sensors,
the M—H slope « is also required (see Table 1). Also, note that
the product G!~!sy, in Eq. (12b) is an estimate of Sk, -

Assume now that g(V) is represented by a first-order EMG. A
convolution product between a Gaussian and an exponentially
decaying function defines the EMG [29,33-35]:

RPN S Gl (O S ( V>
§ LY, 27‘[0']3]3 TBB P ZG]%B P TBB
(13)

where ‘*’ indicates “convolution product”; ie. [f1(V)x
H(V) = [5° iV = V) f2(V)dV]; Vi and o are respectively
the mean and standard deviation of the Gaussian function; and
TR is the “time” constant of the exponential decay. Note that an
EMG defined as in Eq. (13): (i) involves three parameters: Vg,
oBB, and tgy; and (ii) is a smooth function, because it results
from the convolution of two smooth functions.

In Eq. (13), g(V) is normalized in the sense that
Jo~ 8(V)dV = 1. Also, the mean volume of g(V) results: V =
Jo° Ve(V)dV = Vg + tp. If V = 0 is imposed onto all indi-
vidual g(V) functions, then the mean retention volume of the
corrected chromatograms will coincide with the mean retention
volume of the measured chromatogram. This condition is auto-
matically ensured by adopting Vg = —1gg; and in this case, Eq.
(13) reduces to the following two-parameter expression:

(V+ TBB)2>
—_—— *k €X

V) =
gV) 202,

1
—F€Xp
A/ 27T0’BB TBB <
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Since the EMG of Eq. (14) is a smooth function, then the filtering
factor of Eq. (11b) is no longer required. Thus, the minimization
problem of Eq. (12a) reduces to the following two-parameters
search:

min (eg, , )= min
k) .k
{oB.7BB} "2 {oBB,TBB}

(GO (15)

with €5y, 4, A8 in Eq. (12b).

Initial guesses are required on the sought uniform BBF (or
equivalently on vector g and on the uniform matrix G), to solve
Egs. (12) and (15). For arbitrary BBFs, we propose to obtain an
initial guess of g by simply “contracting” the DR chromatogram
into a reduced number of n points. For BBFs represented by an
EMG, we propose to select an initial pair of parameters ogg and
BB that grossly approximates the DR chromatogram.

Finally, consider a criterion for the initial selection of dimen-
sions n and p of G. The measured chromatograms contain m
nonzero points in [V{-V,,]. Since m=p+n — 1, many combi-
nations of n and p satisfy such expression. We propose the fol-
lowing two-steps procedure. In Step I, we adopt it = p; ~ m;
and to this effect we must extend the original chromatograms
with leading and lagging zeroes, such their original m points
are transformed into /71y = 2m — 1 points. Then, the optimiza-
tion algorithm is applied, and the intermediate estimates of g(V)
and siz(V) are obtained, that we shall call g;(V) and §k2) 1 (V),
respectively. The overestimated range of 3,22’ ;(V) generates spu-
rious oscillations in the corrected chromatogram tails. In Step
11, such spurious oscillations are eliminated by simply reducing
the system dimensions into 2 < /iy and p < pj. Then, the opti-
mization algorithm is applied for the second time, to produce
the final estimates g(V) and fvzz( V).

To evaluate the quality of alternative BBF estimates g, the
following (scalar) mean square error is defined:

~ T,
(o B0l 06
g'g
where g is the true a priori known solution. Clearly, Eq. (16) is
inapplicable in a real experiment.

3. Simulation examples
3.1. Raw data

“Synthetic” or simulated examples are useful for evaluating
numerical procedures, because the sought solutions are known
a priori. Except for the MMDs, we simulated the experimental
conditions and BBF that were determined by Busnel et al. [26].
The simulations involved ambient temperature, tetrahydrofurane
(THF) as carrier solvent, and a mixed-gel column from Polymer
Laboratories (5 pm, 60 cm length) [26]. The molar mass cali-
bration was assumed linear (Fig. 1a), and given by [26]:

log MS(V) = 10.562 — 0.4223 V (17)

The continuous BBF is represented by a non-uniform EMG
(see Fig. 1a). Its theoretical expression is in Eq. (14), and its
parameters are slightly reduced along the elution volume accord-

6 log M* (V)

Poisson MMD
8 7 wy (log M°)
4] Log-Normal MMD
wyy (log M)
0 T T
4.0 4.5 .
(® log M

Fig. 1. Simulated examples: raw data. (a) Molar mass calibration, log M¢(V),
non-uniform BBF, g(V, V), and corrected DR chromatograms, SBR(V)\LN and
spr(V)lp. (b) Proposed MMDs: log-normal distribution, win (log M), and Pois-
son distribution, wy,(log M°).

ing to [26]:
opp(V) = 0.165 — 0.002 V (18a)
(V) =0.160 — 0.0015V (18b)

We simulated the analyses of two narrow PS standards of
known WCLDs. Their analytical expressions are in Table 2,
where i is the number of repetitive units. They correspond
to a lower molar mass Poisson distribution wp(i) with
My,/M, = 1.010; and to a higher molar mass log-normal
distribution wy N (i) with M,/ M, = 1.107. These distributions
are shown in Fig. 1b with a common logarithmic molar mass
axis. A Poisson WCLD is the narrowest possible distribution
that is obtainable through a synthetic polymerization process.
Note that the molar masses of the Poisson distribution are in
the limit of low sensitivity of a LS or SV detector. However,
this problem is not considered here, since we are assuming
perfect ideal sensors. The log-normal WCLD was chosen to
emulate the typical polydispersities of standards with molar
masses around 200,000 g/mol. (If a Poisson WCLD with
M, = 200, 000 g/mol had been chosen, then its polydispersity
of around 1.0005 would be unrealistic in practice.)

For each simulated WCLD, the true (or corrected) mass
chromatograms were obtained from the MMDs and the linear
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Table 2
Simulated examples: raw data®

Log-normal WCLD

Poisson WCLD

Analytical expressions and averages

wiN() = V2o Ni EN
M, (g/mol)P 207780
M, (g/mol)® 230100
My M, 1.107

Corrected chromatograms: number of points and elution volume range
122

p
[V — Vg1 (mL) [11.22-13.64]

BBF: number of points and limiting parameter values

n(=c+d+1) 63(=26+36+1)
ogp (mL) [0.1377-0.1426]
g (mL) [0.1395-0.1432]

Measured chromatograms: number of points and elution volume range
m=p+n—1 184
[Vi=Vi] (mL) [10.70-14.36]

1 [InGi/D]? . 2
exp {—T} (with i = 2100 and of, = 0.32)

wp(i) = 7 SA (with A=100)
10519

10623
1.010

41
[15.10-15.90]

63 (=26+36+1)
[0.1332-0.1348]
[0.1361-0.1374]

103
[14.58-16.62]

2 For the discretizations, the elution volume interval was AV=0.02 mL.
b Styrene molar mass: Ms, = 104.15 g/mol.

calibration, yielding the dashed curves st (V)|Ln and sfyp (V)|p
of Fig. 1a. All the chromatograms are discrete, with values at
regular elution volume intervals AV=0.02mL. The true (or
corrected) LS chromatograms, sf o(V)ILn and sy ¢(V)|p, were
obtained from the DR chromatograms through Eq. (3), and
adopting K1 s =0.02. Table 2 presents the total number of points
(p) and elution volume ranges [V} — Vl‘j] of the corrected chro-
matograms. Fig. 2 presents the corrected DR and LS chro-
matograms (in dashed trace). Also, Fig. 2 shows the first and
last “effective” BBFs, placed at the first and last nonzero points
of the corrected chromatograms. Each individual g(V) function
exhibits n=63 nonzero points, with ¢ =26 leading points, and
d =36 lagging points (Table 2). Note that the average volumes
of the individual g(V) functions are not placed at their maxima.

For each analyzed WCLD, two (true and non-uniform) G
matrixes were built with Eqs. (5), (14) and (18), for strictly
covering their elution volume ranges. At any elution volume
V;, the jth column of G contains the ordinates of the particular
g(V) function with V = V. The columns of the non-uniform G
matrixes were obtained as follows: (i) at each V;}, calculate the
true opp and tpp parameters, with Eqgs. (18a) and (18b); (ii) with
V= V, calculate the n heights of the individual g(V) function
with Eq. (14); (iii) set to zero all the column elements smaller
than 1% of the maximum value; and (iv) normalize the column
elements, such that their sum is equal to 1. For the log-normal
distribution, a (184 x 122)-matrix G was defined, that covered
the elution volume range 10.70-14.36 mL. For the Poisson dis-
tribution, a (103 x 41)-matrix G was defined, that covered the
elution volume range 14.58-16.62 mL (Table 2).

The noise-free “measured” chromatograms were calculated
with Egs. (4a) and (4b). Then, zero-mean Gaussian sequences
were added onto the noise-free chromatograms to produce the
final measured chromatograms spr(V) and s s (V) of Fig. 2. In all
cases, the variances of the additive noises were equal to 0.25% of
the chromatogram maxima. For the measured chromatograms,
Table 2 presents the total number points (m) and the volume

Log-Normal MMD

27 L 0.02
1 L 0.01
0 0.00
@ v ¥ [mL] Ve
Poisson MMD
4 ] /.\
SpR | \ Stg
;"(“/ L 0.08
/
jo C
&) o g\ &(V.V5)
2 .
L 0.04
|
0 - —= 0.00
4 Vo
15 16
) W vy Vimbd

Fig. 2. Simulated examples: raw data. (a) Log-normal distribution. (b) Pois-
son distribution. Limiting BBFs [gL.n(V, V), gLn(V, V;), gp(V, Vi), gp(V, V;)],
“measured” chromatograms [spr(V), sLs(V)], and corrected chromatograms
[spr(V), st (V)]



Table 3

Simulated examples: intermediate adjustments and Final global results

Log-normal WCLD?*

Poisson WCLDP

Estimated dimensions and ranges of the BBF and the measured

chromatograms

Step I
np=pr=m 184 103
myp=2m—1 367 205

[Vi=Viulr (mL) [8.88-16.20] [13.56-17.64]

Step II:
m(=n+p—1) 244 (=95+150—-1) 163 (=95+69—1)
[V1i=Vin] (mL) [10.10-14.96] [13.98-17.22]

BBF estimates and performance indexes

Arbitrary BBF: gLN(V) of Fig. 3a gp(V) of Fig. 3d
g (x10%) 0.43 0.57

BBF as EMG: 2LN(V) of Fig. 4a 2p(V) of Fig. 4b
6pp (mL) 0.143 0.137
#pp (mL) 0.136 0.133
g (x103) 0.19 0.13

MMD average estimates

Arbitrary BBF:
M, (g/mol) 210120 10540
M (g/mol) 230050 10610
M, M, 1.095 1.007

BBF as EMG:
M, (g/mol) 209020 10510
Mo (g/mol) 230990 10620
M/ M, 1.105 1.010

4 See Fig. 3a—c.
b See Fig. 3df.

ranges [V1-V},]. Note that the measured chromatograms are only
slightly wider than any individual BBF.

3.2. BBF estimates

For each of the two simulated examples, consider esti-
mating their uniform BBFs. The raw data are the measured
chromatograms and the molar mass calibration. First, consider
applying the proposed algorithm of Eqgs. (11a) and (11), for the
case of arbitrary shaped BBF estimates. For both WCLDs, the
following common parameters were adopted: (a) r= 10 for the
deconvolution operations; and (b) =500 for the smoothing
term of Eq. (11b). These values were obtained from a compro-
mise between smooth BBF estimates with high objective func-
tionals eg, ¢ 1,y » and oscillatory BBF estimates with low values of
€sLs,pR*

The final solutions are in Table 3 and in Fig. 3. Table 3 shows
the intermediate and final vector dimensions and elution vol-
ume intervals. For the log-normal WCLD, the intermediate and
final BBF estimates (g;.n(V) and g1.n(V), respectively) are in
Fig. 3a. For the Poisson WCLD, the intermediate and final BBF
estimates g;p(V) and gp(V) are in Fig. 3d. Their correspond-
ing corrected chromatograms are in Fig. 3b,e. In both examples,
spurious oscillations are observed in the intermediate estimates.
Such oscillations were eliminated in Step II, when reducing the
dimensions of 71; and p; (see Table 3). In both examples, the
final BBF estimates are slightly oscillatory and exhibit 7 = 95
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non-zero points (i.e., they are somewhat broader than the real
n=63). However, the final estimates are quite acceptable, with
the (broader) log-normal distribution presenting slightly better
results. The true BBF is only slightly non-uniform in the nar-
row ranges of the chromatograms. For this reason, grn(V) is
close to the true initial and last individual broadening functions
gin(V, VT) and gin(V, V;) (Fig. 3a); and similarly, gp(V) is
close to gp(V, VT) and gp(V, V5) (Fig. 3d).

Finally, consider recuperating the original MMDs from the
estimated uniform arbitrary BBFs, the concentration chro-
matograms, and the molar mass calibration. The procedure
was as follows: (i) calculate the corrected mass chromatograms
through Egs. (6) and (7), by deconvolution of the measured
mass chromatograms; and (ii) combine the corrected mass chro-
matograms and the molar mass calibration to obtain the MMD
estimates wyn(log M) and wp(log M€). The results are in
Fig. 3c.f. For the broader log-normal MMD, the estimate is quite
acceptable. For the narrower Poisson distribution, the MMD esti-
mate is more oscillatory, due to the worse posed nature of its
deconvolution operation. Table 3 presents the estimated average
molar masses and polydispersities.

Now, let us apply the proposed algorithm of Eq. (15), for the
case of uniform BBFs represented by EMGs. Better results are to
be expected in this case because: (a) the true BBF was originally
defined as a (slightly non-uniform) EMG; and (b) in each numer-
ical example, the algorithm needs to estimate only two constant
parameters: opp and tpp (rather than n =95 unknowns). For the
intermediate and final estimates of the elution volume intervals,
the 71, p, and /i dimensions, and the r parameter, the same values
previously described for the arbitrary BBF cases were readopted
(upper section of Table 3).

The BBF estimates are in Fig. 4, and the global results are
in the second section of Table 3. As expected, the results are
better than before, for which reason the average errors e, are
somewhat lower than for the arbitrary BBF cases. Even though
not shown, the intermediate chromatogram estimates of Steps 1
and /I were also improved versions of the arbitrary BBF case.
Compared with the true EMG parameters of Table 2, the esti-
mated EMG parameters are in the upper or lower limits of their
true values. Also, the estimated parameters opg and Tgp are
slightly reduced when changing from higher molar masses of
the log-normal distribution to the lower molar masses of the
Poisson distribution. The lower section of Table 3 presents the
estimated average molar masses and polydispersities. In gen-
eral, all estimates are in good agreement with their true values
presented in Table 2. Again, the averages were slightly better
estimated when the BBFs were assumed EMG functions. This
is reasonable, since the MMDs were estimated from the BBF
estimates, and the best BBF estimates corresponded to the EMG
functions.

3.3. Checks of robustness

The presented examples were simulated with varying con-
ditions and detector combinations. The results are summarized
in Table 4. In Case I, the variances of the additive noise that
contaminate the measured chromatograms were increased from
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Fig. 3. Simulated examples: estimates when assuming arbitrary BBFs: (a—c) Log-normal MMD; (d—f) Poisson MMD; (a, d) BBF estimates after Step I (thin dashed
curves), and after Step II (thick dashed curves). The limiting “true” BBFs are shown in continuous trace: (b, e) True and estimated corrected chromatograms after
Steps I and II; (c, f) True and estimated MMDs.

0.25% to 2.5% of the chromatogram maxima. In spite of this In Case II of Table 4, +5% errors were introduced into the
change, the BBF estimates were only slightly deteriorated, as it slope of the calibration log M°(V). Again, negligible deviations
can be seen from the resulting e, values and from the estimated were observed in the BBF estimates. But while clockwise

EMG parameters. rotations of log M®(V) produce broader-than-real estimates on
Log-Normal MMD Poisson MMD
3 3
IANUR) ENUAA! &) &1
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Fig. 4. Simulated examples: estimates when assuming the BBFs represented by EMGs. (a) Log-normal MMD. (b) Poisson MMD. The BBF estimates after Step [
(in thin dashed curves), and after Step II (in thick dashed curves). The limiting “true” BBFs are in continuous trace.



M.M. Yossen et al. / J. Chromatogr. A 1128 (2006) 171-180 179

Table 4
Simulated examples: checks of robustness

Case no. Log-normal WCLD Poisson WCLD

Arbitrary BBF EMG Arbitrary BBF EMG

I) Measurement noise variances: 2.5% of the chromatograms maxima

e, (x10%) 6.2 0.87 2.8 1.1
6pp (mL) - 0.140 - 0.143
#gg (mL) — 0.132 - 0.127
II) Changes of 5% in the molar mass calibration slope
e, (x10%)* 6.5/5.6 4.2/1.5 1.5/0.68 0.32/0.15
6gp (mL)* - 0.156/0.128 — 0.139/0.136
7gg (mL)* — 0.143/0.128 — 0.132/0.132
IIT) SV sensor with changes of +5% in the M—H slope «
eo (x10%) 3.9/3.9 4.2/1.8 3.5/8.0 0.47/0.53
6gp (mL)* — 0.156/0.133 — 0.140/0.138
7gg (mL)* — 0.143/0.121 - 0.131/0.128
IV) Changes of £0.02 mL in the IDV
eg (x 103 117/62 190/43 365/71 422/49
6pp (mL)* - 0.091/0.191 - 0.041/0.195
tgg (mL)* — 0.089/0.163 - 0.118/0.140

2 The first value corresponds to positive changes, and the second value to
negative changes.

both the BBF and the MMD, the opposite occurs for counter
clockwise rotations.

In Case III of Table 4, the LS detector was changed to an
ideal SV detector with the M—H slope o =0.712 (corresponding
to PS in THF at 25 °C) [36]. In this case, +=5% variations in the
value of o produced negligible deviations in the BBF estimates.
While positive variations produced broader than real BBF
estimates, the opposite occurred for negative variations. Thus,
errors in « are qualitatively equivalent to errors in the linear
calibration slope.

In Case IV of Table 4, errors in the IDVs were simulated. In
this case, a very high parameter sensitivity was observed. Thus,
when shifting the LS chromatograms towards lower elution
volumes by only 0.02 mL (i.e., the adopted discretization inter-
val), then unacceptably large errors were produced (Table 4).
Also, the BBF estimates were narrower than real when the LS
chromatograms were shifted towards lower elution volumes;
and wider than real when the shift was in the opposite direction.

Finally, both wider and narrower WCLDs were simulated. A
(rather wide) Schulz—Flory WCLD with M, = 42, 800 g/mol
and M, /M, = 1.995, produced high errors in the BBF
estimates, with e, =34.2 x 10~3 for arbitrary-shaped BBFs,
and with e, =19.6 x 103 for EMGs. The reason is that the BB
negligibly affects a broad MMD, and therefore little informa-
tion on the BBF can be recuperated from the corresponding
chromatograms. Similarly, the algorithm did not provide
good results for a narrow Poisson WCLD with A =500 and
My, /M, = 1.002.In this case, the small differences between the
DR and LS chromatograms were hidden by the measurement
noise. After a series of simulations involving log-normal and
Poisson WCLDs of different averages and noises, the procedure
proved effective for samples with polydispersities in the
range 1.005-1.50.

4. Conclusions

A method was proposed for estimating a uniform (but
skewed) BBF, based on analyzing narrow standards with a molar
mass sensitive detector. The simulations involved a Poisson
distribution of a relatively low molar mass, and a log-normal
distribution of a higher molar mass. In both cases, quite reason-
able BBF estimates were observed. The BBF estimates were best
and faster when adopting EMG functions. In addition, the EMG
parameter estimates showed a correct variation with the molar
mass; making it possible to estimate the overall non-uniform
BBF by simple interpolation of the obtained EMG parameters.

The numerical algorithm is free from errors in the detec-
tors gains, and it has proven immune to different shapes of the
WCLD, to high-frequency noises, to errors in the calibration
slope, and to errors in the M-H parameter o (when SV sen-
sors are applied). However, the method has proven to be very
sensitive to errors in the IDV. Assuming no errors in the IDV,
very reasonable BBF estimates were recuperated for standards
with true polydispersities in the range 1.005—1.50. For extremely
low polydispersities, the procedure fails because the molar mass
chromatogram almost coincides with the concentration chro-
matogram. In such cases, however, the mass chromatogram
could be considered as a good approximation to the sought BBF.
For high polydispersities, the procedure fails because the BB has
a negligible effect of on the measured chromatograms.

Molar mass calibrations are in general determined from the
concentration chromatograms that are also required in the pro-
posed BBF estimation technique. The errors in the molar mass
calibrations are in part due to an incorrect assignment of the
average elution volumes to the average molar masses. Perhaps,
better estimates could be obtained if (rather than using the mass
chromatograms of narrow standards), the corresponding BB-
corrected chromatograms were used.

In triple detection, a second (independent) molar mass-
sensitive sensor is incorporated, and this could introduce addi-
tional consistency tests between the measured chromatograms,
the molar mass calibration, and the BBF estimates. For triple
detection, Egs. (12a) and (12) could be extended and a similar
iterative procedure to that of Netopilik [18] could be applied to
simultaneously estimate the uniform BBF and the molar mass
calibration.

Applications of the proposed technique onto LS-DR and
SV-DR measurements will be presented in a future work. In
the first case, the detectors were interconnected in series, and the
IDV could be unambiguously determined. In the second case, the
detectors were interconnected in parallel, and important uncer-
tainties arose in relation with the sign and magnitude of the IDV.
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