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The equilibrium properties of a charged plane immersed in an aqueous electrolyte solution are examined
using a generalized Poisson-Boltzmann equation that takes into account the finite ion size by modeling
the solution as a suspension of polarizable insulating spheres in water. This formalism is applied to a gen-
eral solution composed of two or more counterion species with different valences, sizes, and effective
permittivity values. It is shown that, due to the dependence of the dielectrophoretic force on the ion size
and effective permittivity value, the concentration of the smaller counterion strongly increases while that
of the larger one decreases in the immediate vicinity of the charged surface. As a result the surface poten-
tial value strongly increases as compared to the usual modified Poisson-Boltzmann theory that only
includes steric interactions among ions. This effect is particularly important in the case of mixtures of

univalent and divalent counterions, being significant even for relatively low surface charge values.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The existence of an electrical double layer around a solid ob-
ject in contact with an aqueous electrolyte solution plays a crucial
role in colloid and polymer science, biophysics, electrochemistry,
medicine, and numerous separation technologies (e.g., water and
waste water filtration, membrane filtration, protein and cell sep-
aration, immobilization of enzymes, etc.) [1-3]. This is why mod-
els of the electrical double layer structure are subjects of great
interest. The theoretical model based on the Poisson-Boltzmann
(PB) equation is an acknowledged and widely used description
of the diffuse part of the equilibrium electric double layer. How-
ever, it is not difficult to point at a number of shortcomings of this
theory such as: the finite size of the ions is neglected, interactions
among ions and between the solid object and the ions are not ta-
ken into account, the permittivity of the medium is assumed to be
constant, incomplete dissociation of the electrolyte is ignored, etc.
[4].

Since the pioneering work by Bikerman [5], various attempts
have been made to modify the classic PB equation so that the vol-
ume constraint can be accounted for; we direct the reader to Ba-
zant et al. [6] for a historical background. All these works are
based on two assumptions: ions have an effective ionic radius R;
so that the local ion concentration cannot surpass a finite value
(the lower index i corresponds to the ion type) and an activity coef-
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ficient (y;) is introduced in order to take into account the ion size
effects. While different expressions for the activity coefficient have
been used [7], most of these works [8-10] describe the ion size
with an adjustable constant which is the same for all ion types in
the system.

These assumptions lead to the following main consequence: the
ion density close to a charged interface cannot attain unrealisti-
cally high values, improving on the results predicted by PB equa-
tion. However, it still presents important shortcomings: the
correction of the modified PB over the PB equation only appears
at high surface charges and for high bulk electrolyte concentrations
and, in order to fit experimental data, it is necessary to consider
effective ionic radii much larger than the hydrated ionic radii,
which is physically objectionable.

It should be noted that the above mentioned assumptions imply
a restriction on the ability of ions to approach one another or the
solid-liquid interface. However, a finite ion size also means that
ions have a finite volume that can no longer be occupied by the
suspending medium. In recent papers [11,12] we presented an
extension of the modified PB equation considering that ions can
be modeled as insulating spheres with a permittivity different from
that of the surrounding medium. This led to the following modifi-
cations of the theoretical model:

- The presence of ions in the suspending medium modifies its
permittivity. Moreover, since the ion concentration near a
charged interface strongly depends on the distance to its sur-
face, the electrolyte solution permittivity should also depend
on this distance.
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- A variable permittivity of the electrolyte solution leads to the
appearance of a new force term acting on an ion since charges
tend to move into regions of higher permittivity (a consequence
of the so called Born energy).

- The dielectric sphere representing an ion gets polarized by the
local electric field and acquires a dipole moment. Therefore,
an additional dielectrophoretic force acting on the dipole will
appear wherever the local field is non-uniform.

The study was made assuming symmetric binary electrolyte
solutions with equal effective ionic radii and permittivity values
for both ionic species. The main consequence was the amplification
of the steric effects predicted by the usual modified PB equation,
even for reasonable effective ionic radii.

In the present work we extend the study to a general electrolyte
solution composed by two or more counterion species with differ-
ent valences, sizes, and effective permittivity values. We show that
even relatively small size differences lead to strong changes of the
local equilibrium ion concentrations near the charged interface
mainly due to the strong dielectrophoretic force and its depen-
dence on the counterion sizes and effective permittivities.

2. Theory

Let us to consider an infinite plane with a surface charge density
os immersed in an infinite solution made of m ionic species repre-
sented by insulating spheres with effective radius R;, permittivity
¢, signed valence z;, and bulk concentration ¢;* (in mol per unit vol-
ume) with i€ {1,2,...,m}, suspended in a continuous medium with
permittivity ¢,, (Fig. 1).

2.1. Permittivity of the solution

Due to the presence of the ions, the permittivity &, of the solu-
tion should depend on their concentrations and permittivity val-
ues. It can be determined using the Maxwell mixture formula
[13], which is quite accurate over the whole concentration range
when the dispersions have a lower permittivity than the suspend-
ing medium:

1 +221 1¢U+2sw
1 721 1¢1;+2:4,

In this expression ¢; is the local value of the volume fraction
occupied by ions of species i:
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Fig. 1. Schematic representation of the considered system, see text.
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where ¢; is the local concentration of ionic species i (in mol per unit
volume) and N, is the Avogadro number. Since the ion effective per-
mittivity is lower than the permittivity of water (the permanent
water molecule dipoles in the hydration layer are strongly oriented
by the radial ionic field), the electrolyte solution permittivity de-
creases close to the charged plane where the total ion concentration
increases.

Expression (1) is more general than the linear dependence of
the electrolyte solution permittivity on the ion concentrations used
in previous works [14,15], which can only be valid for low ion
concentrations.

2.2. Poisson equation
The distribution of the electric potential, ¥, is determined by

the Poisson equation that must now be written taking into account
the spatial dependence of the electrolyte solution permittivity:

V (&E)=6V-E+E Vee=—6V¥ V¥ Ve =p
= ENAZZiCi (3)
i=1
where p is the charge density, e is the elementary charge, and Eis

the electric field. Taking into account the plane geometry of the
problem, Eq. (3) can be rewritten as:
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2.3. lonic concentrations

The ionic concentrations in the solution are determined by the
following competing macroscopic average (per mol) forces acting
upon the ions:

(i) The electric force:

—E —
FE=zeE = —zeVy (3)

This force attracts counterions towards the charged plane and
repels co-ions. It only depends on the ion charge, being indepen-
dent on their size and permittivity values.

(ii) The thermal force due to the random ion movement:

FT = kTvIn( S (6)
1 C]’)c

where k is the Boltzmann constant and T is the absolute tempera-
ture of the system. Since the counterion concentration usually in-
creases close to the charged plane while the co-ion concentration
decreases, this force normally repels counterions from the plane
while it attracts co-ions. It is independent of the ion size and per-
mittivity values.
(iii) The steric force limiting the ability of ions to approach one
another that appears when ion size effects are taken into
account

_
F§ = —kTVIny, (7)
where 7; are the ionic activity coefficients. As in our previous works

we use for simplicity, and for reasons to be discussed later on, a Bik-
erman [5] type expression for these coefficients:
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where p is the packing coefficient (p=1 for perfect packing,
p=m/3v2 ~0.74 for close packing, p~0.64 for random close

packing, p = /6 ~ 0.52 for simple cubic packing). The steric force
usually repels both counterions and co-ions away from the
charged plane. It only depends on the ion sizes (the sizes of all
the ion types), being independent of the ion charge and permittiv-
ity values.

(iv) The Born force that appears when the permittivity of the
solution is allowed to change [16], since the electrostatic
energy of an ion depends on the permittivity of the sur-
rounding medium

-2 2 zZe? 7z’ _ (1
A /EdV V=5 9)

—>

This force tends to move the ions to regions of higher permit-
tivity repelling both counterions and co-ions from the charged
plane. Its value strongly increases with the ion charge while it de-
creases with its size. It does not depend on the ion permittivity
value.

(v) The dielectrophoretic force that appears when ions are
assumed to behave as dielectric spheres, which become
polarized acquiring an induced dipole moment m;. There-
fore, wherever the local field is non-uniform, a dielectroph-
oretic force [17]

& — &e
& + 2¢&
appears, which repels both counterions and co-ions from the
charged plane since m; is negative. This force is proportional to
the ion volume and increases with decreasing ion permittivity
value.

As can be seen, all the forces that depend on the finite ion size
contribute to increase the double layer thickness.

FP = (- V) E = 2me.R}

1

V(E?) (10)

2.4. Equilibrium potential and ionic concentrations

In equilibrium, the total force acting on the ions must vanish so
that

FE+FT+FS+FP+FP=0 (11)

Using Egs. (5)-(10), and taking into account the plane symme-
try of the considered problem, the above equation reduces to:
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The solution of this equation is:
K; zie¥V
= exp(f)exp(~ ) (13)
where K; are integration constants, while
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2.5. Boundary conditions

In order to complete the theoretical model, we use the follow-
ing boundary conditions:

(1) The Gauss law relating the surface charge density on the
plane to the normal component of the electric field

dy(x) Os

X |,  &(x=0) 17

(2) The origin of the electric potential at x — oo,
P(x —o00) =0 (18)

(3) The requirement that the ionic concentrations attain their

bulk concentrations at x — oo
Ci(x — 00) = C* (19)

These conditions make it possible to determine the integration
constants:

1

K: = T c* = y?‘(;?Q (20)
A-IEmer
Combining this result with Egs. (2) and (13) leads to
47N,
$i=—g" //‘ cRPexp(f;)exp(-zy) (1)
1
where
eV
- (22)

is the dimensionless electric potential. Using Eq. (8), the ionic con-
centrations finally become:

Vioceexp(fi)exp(-zy)
47zNAin 1
3

Ci = -
1y R exp(fy)exp(-zy)

(23)

1+

2.6. Numerical solution

For computational reasons it is convenient to use the spatial
variable

q = exp(—Kx) (24)

that confines the problem into a finite region, where

_[e2NaY 3z
K= W (25)

is the reciprocal Debye length. This transforms the theoretical mod-
el into:

Py eryrXlacrexplfexp(-zy) (dlnse 1) @ o

¢ ViEe@PY i ZEC dq dq

where ¢, is defined in Eq. (1), and

o zZer (1 1 747'EI<TK2R? /0 Ee(&i — &)
"7 8TKTR; \&r & e . &+ 26

dy ,dy | dy
dq{qdﬁqdq

dq (27)

These equations were solved using a finite differences scheme,
i.e., discretizing the spatial variable q. Then the following algorithm
was used:

1. The starting point is the solution of Eq. (26) for an uncharged
plane:¥(q) = 0,fi(q) = 0,¢i(q) = ¢;° and &.(q) = &2.
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2. The charge on the plane is slightly increased:
2.1. Eq. (26) is linearized and solved using the previous val-
ues for fi(q), ci(q) and &.(q);
2.2. Eq. (21) is used to calculate ¢;;
2.3. These values are used to calculate new values of &.(q)
using Eq. (1);
2.4. These values are used to calculate new values of fi(q)
using Eq. (27);
2.5. Points 2.1-2.4 are repeated until convergence is
attained.

3. Point 2 is repeated until the desired surface charge is attained.

It must be noted that because the variable y changes rapidly
near the charged interface (q = 1), an appropriate simulation space
grid must be modeled. In this work, the g-space grid is automati-
cally adapted to the evolution of the potential profiles. If, during
the simulation, strong changes of y with g are detected in any re-
gion of the g coordinate, more grid points are added into this re-
gion to ensure good accuracy and moderate CPU times.

3. Results and discussion

The calculations were performed considering an infinite plane
with surface charge density os<0 in contact with different aque-
ous electrolyte solutions (typical values for the ion parameters
are given in Table 1). Hydrated ionic radii and permittivity values
have been taken from references [18,19], respectively. It should
be noted that the ion permittivity values decrease with the valence
modulus due to the increase of the permanent water molecule di-
pole orientation in the hydration shell.

The remaining system parameters are given in Table 2. Note
that for sake of simplicity we did not take into account, just as done
in [7], the existence of a minimum approach distance of ions to the
charged plane.

3.1. Two univalent counterion types and equal bulk concentrations

We first consider an aqueous 5 mM LiCl and 5 mM CsCl electro-
lyte solution. Fig. 2 shows the counterion concentration profiles for
different model approximations. The blue line represents the clas-
sical PB solution. Since this solution is solely determined by the
electric and thermal forces, the Li* and Cs* densities coincide.
The red line represents the modified PB solution that additionally
includes the steric interactions among ions. The counterion con-
centrations no longer grow to unreasonably high values but rather
attain saturation values that are related to the finite ion size. These

Table 1

Parameter values for different ionic species.
lon Z; Ri (A) &ileo
Li* 1 3.82 25
Cs* 1 3.29 25
Na* 1 3.58 25
H* 1 2.82 25
Ca** 2 4.12 7
Cl -1 3.32 25
OH~ -1 3 25

Table 2
Parameter values used in the simulation except when indicated otherwise.
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Fig. 2. Counterion concentration profiles for an aqueous 5 mM LiCl and 5 mM CsCl
electrolyte solution and a 0.4 C/m? surface charge. Used parameter values given in
Tables 1 and 2.

values can be derived from Eq. (23), setting f; = 0 (in order to sup-
press all effects related to the ion and the electrolyte solution per-
mittivities) and considering that the surface potential is negative
and very high (in modulus):

3p (o3 3p 1

o = = (28)
. 47TNA CéRgs + CEiOREi 4nNA Rgs + Rii

csat _ 3p (o4 _ 3p 1
“ 47INA CéRgs + CfloRil 4nNA Rgs + RE]

(29)

where the second equalities result from the consideration that LiCl
and CsCl have equal bulk concentrations. Note that the Bikerman
Eq. (8) leads to saturation values that depend on the volume frac-
tion occupied by all the ion species rather than the individual ion
sizes corresponding to each of these species. Because of this, the
Li* and Cs* concentrations are the same close to the charged plane.
While this behavior constitutes a shortcoming of the Bikerman
equation, and other more elaborate equations that solely depend
on the volume fraction occupied by all the ions [20], we still used
this equation because it made it possible to study the different
counterion size effects solely related to the ion and electrolyte solu-
tion permittivities.

The black lines in Fig. 2 represent the results predicted by the
full theory presented in this work that considers ions as dielectric
spheres. The Born and dielectrophoretic forces tend to lower the
counterion concentration: the Born force pulls ions to regions of
higher permittivity while the dielectrophoretic force pulls ions to
regions of lower electric field (because the induced dipole moment
of the dielectric sphere representing the ion is negative). Because of
this, full counterion saturation is no longer attained and, further-
more, the Li* and Cs* concentrations close to the charged plane
no longer coincide. The Cs* concentration surpasses the Li* concen-
tration because the repelling dielectrophoretic force acting on the
Cs* ions is smaller due to their smaller size. The Born force has a
qualitatively opposite dependence on the ion size: it is smallest
for the largest ion. However this dependence is weaker for the Born
(proportional to R;') than for the dielectrophoretic force (propor-
tional to R?). Furthermore, for relatively large ions the Born force
is much weaker than the dielectrophoretic force.

Fig. 3 shows the dimensionless electric potential profiles for the
different model approximations (left ordinate) and the relative
electrolyte solution permittivity profile corresponding to the full
theory (right ordinate). The classical PB solution, blue line, leads
to the lowest potential because the corresponding double layer
thickness is lowest, Fig. 2. When the steric force is incorporated
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Fig. 3. Dimensionless electric potential profiles for an aqueous 5 mM LiCl and 5 mM
CsCl electrolyte solution and a 0.4 C/m? surface charge (left ordinate); relative
electrolyte solution permittivity profile corresponding to the full model (right
ordinate). Used parameter values given in Tables 1 and 2.

into the model, red line, the potential increases due to the lowering
of the counterion concentration, Fig. 2, and the corresponding in-
crease of the double layer thickness required to neutralize the fixed
surface charge. However, the slopes of the blue and red curves at
the charged plane remain equal to one another because both the
surface charge and the electrolyte solution permittivity have the
same value for these two models, Eq. (17).

The electric potential further increases for the full model, black
line, because of two effects: firstly the repulsive Born and dielec-
trophoretic forces that lower the thickness of the saturation zone
increasing the total double layer thickness and, secondly, the elec-
trolyte solution permittivity that strongly decreases inside the
double layer due to the excluded ion volume. The low permittivity
value close to the charged plane also determines the higher initial
slope of the black line as compared to the red and blue ones.

Fig. 4 shows the profiles of the different force terms. For clarity,
it was separated into two parts: Fig. 4a shows the results corre-
sponding to the PB and the modified PB including just the steric
force equations, while Fig. 4b shows all the forces corresponding
to the full theory.

The blue lines in Fig. 4a represent the attractive electric and the
repulsive thermal forces corresponding to the PB solution. Both
forces exactly compensate each other and have the same values
for both counterion types. Adding the steric interaction, red lines,
increases the electric force modulus everywhere except at the
interface, because the double layer becomes thicker decreasing
the screening of the surface charge. For this same reason, the ther-
mal force also increases far from the charged surface. However, at
shorter distances, this force strongly decreases and finally vanishes
because of the almost constant counterion concentration near the
interface. On the contrary, the steric force attains its highest value
at the interface despite this concentration plateau, because the
activities diverge when the concentrations tend to their maximum
values, Eq. (8). All these forces still have the same values for both
counterion types.

Fig. 4b represents all the forces corresponding to the full model.
The attractive electric force becomes even stronger mainly because
the Born and dielectrophoretic forces being repulsive increase the
thickness of the double layer. The other reason is the decrease of
the electrolyte solution permittivity, Fig. 3, because of which the
electric force at the charged surface attains a much higher value
than in Fig. 4a. This and the repulsive steric force are the only ones
that have the same values for both counterion types. On the con-
trary, thermal forces split into two lines because of the different
counterion concentrations, Fig. 2. Note that for the larger Li* ion

(@) o= - - -
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6F - ~. ® e Thermal force B
i @x \"69 ————— Steric force
3ot
g L
Z ol
~ L
S a3t
| $~‘ . - . PB+steric J
6L s l$.- —0— Li' PB i
fé & - —— Cs" 1
9 -".-’,'. N | . 1 1
0.0 0.2 0.4 0.6 0.8 1.0
x (nm)
(b)
\ PR - Electric force
~~~~~~~~~ Thermal force
6 PR Steric force T
= S NN Born force
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2 .
~ g
= op#-T
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o e
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3k o—Li* e b
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') PN S
0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 4. Different molar force profiles for an aqueous 5mM LiCl and 5 mM CsCl
electrolyte solution and a 0.4 C/m? surface charge. (a) Poisson-Boltzmann and
Poisson-Boltzmann with steric interactions among ions. (b) Full model. Used
parameter values given in Tables 1 and 2.

the thermal force becomes attractive close to the interface where
the corresponding concentration, Fig. 2, increases with distance.
The Born forces are rather weak for both counterion types due to
their relatively large size, Eq. (9), attaining their maxima at dis-
tances where the electrolyte solution permittivity strongly
changes, Fig. 3. This force is always slightly stronger for Cs* than
Li* because the former ion is smaller than the latter. Finally, the
strongest changes with respect to Fig. 4a are due to the repulsive
dielectrophoretic force, which is strongest for the Li* ion because
of its larger size. Close to the charged plane these forces first de-
crease with distance because the counterion concentration satu-
rates leading to a constant volume charge density while the
electrolyte solution permittivity remains constant. Therefore the
electric field decreases linearly with distance so that the F(E?),
Eq. (10), decreases with distance. The increment of the dielectroph-
oretic forces that follows is due to the increase of the electrolyte
solution permittivity while the final drop results from the decrease
of the derivative of the electric field due to the lowering of the vol-
ume charge density.

Fig. 5 shows the dependence of the dimensionless surface po-
tential on the surface charge density. The potential values along
the right ordinate correspond to ¢, = 0.4 C/m? that is the value used
in Figs. 2—4. As can be seen, steric effects are dominant at high sur-
face charge values when the counterion concentration attains sat-
uration close to the interface. The surface potential further
increases mainly due to the dielectrophoretic force when the full
model is considered, because the thickness of the double layer in-
creases even more. Note, however, that for relatively low surface
charge values, when saturation due to steric forces is not attained,
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Fig. 5. Dimensionless surface potential as a function of the surface charge for an
aqueous 5 mM LiCl and 5 mM CsCl electrolyte solution. The potential values along
the right ordinate correspond to the surface charge used in Fig. 4. Used parameter
values given in Tables 1 and 2.
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Fig. 6. Counterion concentration profiles for an aqueous 5 mM NaCl electrolyte
solution at pH=4 and a 0.5 C/m? surface charge. The black line with diamonds
represents the total counterion concentration predicted by the full model. Used
parameter values given in Tables 1 and 2.

the dielectrophoretic force becomes the main reason for the incre-
ment of the surface potential with respect to the PB solution.

3.2. Two univalent counterion types and different bulk concentrations

We next consider a system with two univalent counterions that
widely differ both in size and in bulk concentration: an aqueous
5 mM NaCl solution at pH =4, which implies a 0.1 mM bulk con-
centration of H* ions. In order to obtain stronger effects, the surface
charge was increased to a still reasonable 0.5 C/m? value. Fig. 6
shows the obtained concentration profiles.

The PB theory, blue lines, leads to unreasonably high Na" and
small H" concentrations close to the charged plane. These concen-
trations only depend on the ion charges and bulk concentrations
being independent of the ion sizes.

The modified PB theory including steric effects, red lines, leads
to a strong saturation of the counterion concentration that expands
the double layer. As in the previous case, ion saturation values, Eqs.
(28) and (29), only depend on the total excluded ion volume in the
bulk rather than the individual ion sizes. However, these saturation
concentrations are not equal anymore because the bulk concentra-
tions differ from one another:

sat _ 3p CRa _ 3p
Na 47INA C;IcaRﬁla + C;CRI‘: 47'(NA

0.0216 (30)

32 [ T T T T T T
28 i Full model
L PB+steric
24[ [NaCl]= 5 mM PB
S
4 20f
=~ I
16F
[ 6=0.5 C/m*
12}
8 L 1 1 1 PR 1 1
3 4 5 6 7 8 9 10

pH

Fig. 7. Dimensionless surface potential as a function of the pH for an aqueous 5 mM
NaCl electrolyte and a 0.5 C/m? surface charge. Remaining parameters given in
Tables 1 and 2.

oot — 3p Ci 3p

MO ATNA R, + cRE, 4TIN,

0.000432 (31)

The full model, black lines, shows that the repelling dielectropho-
retic force that is much stronger for Na* than H* ions because of
their much larger size, leads to a strong decrement of the Na* con-
centration near the plane and a corresponding increment of the H*
concentration. The sum of these two concentrations shows that the
total counterion concentration is saturated but no longer uniform:
it increases close to the interface because H" ions can be packed
more densely than Na* ions. It should be noted that this behavior
has been achieved despite the use of the Bikerman equation for
the steric interaction, Eq. (8), which does not favor the increase of
the smallest ion concentration near the charged plane. Actually,
the full model concentrations are quite similar to the results pre-
sented in [7] where a PB theory modified by means of an activity
expression that does take into account the individual ion sizes
[21,22] was used. It is remarkable that the inclusion of the Born
and the dielectrophoretic forces results in a similar behavior.

Fig. 7 shows the dependence of the dimensionless surface po-
tential on the pH keeping constant the surface charge at the same
value as in Fig. 6: 0.5 C/m?2. The PB solution, blue line, is practically
independent of the pH value since the bulk H* concentration re-
mains much smaller than the Na* concentration over the whole
considered pH range. The modified PB theory including steric inter-
actions among ions, red line, shows a slight decrease of the surface
potential at the lowest pH values. Its origin can be explained con-
sidering the total counterion saturation concentration:

at | sat 3P CRa + 63
CIS\Ia+CH 747'CN x‘R3 OCR3
A CRaftina T CH Ry

00 3
3p 1+Co'j<1R3Hﬂ (32)
CNa RNa

T 4TN4RS,
which increases with ¢y because Ry is smaller than Ry,. Therefore, a
smaller double layer thickness is required in order to neutralize the
surface charge leading to a lower surface potential.

Finally, the surface potential dependence on pH strongly in-
creases when the full model is considered. This is mainly due to
the repelling dielectrophoretic force and its dependence on the
ion size: much stronger for Na* than H* ions. This increases the
H* concentration close to the charged plane lowering even more
the thickness of the double layer and, therefore, the surface
potential.
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Fig. 8. Counterion concentration profiles for an aqueous 5 mM NaCl and 5 mM
CaCl, electrolyte solution and a 0.4 C/m? surface charge. Used parameter values
given in Tables 1 and 2.

3.3. One univalent and one divalent counterion type and equal bulk
concentrations

We finally consider a 5 mM NaCl and 5 mM CaCl, mixture. Fig. 8
shows the counterion concentration profiles for different model
approximations. The blue line represents the classical PB solution.
Since the electric attractive force is two times higher for Ca** than
for Na* ions, the counterion population near the plane is made al-
most exclusively of Ca™ ions that attain unreasonably high values.

The red line represents the modified PB solution that addition-
ally includes the steric interactions among ions. The counterion
concentrations no longer grow to unreasonably high values but
rather attain saturation values that are related to the finite ion
sizes. These values can be derived from Eq. (23) just as in the case
of Egs. (28) and (29), setting f; to zero and considering that the po-
tential is very high and negative. This leads to:

3p
st 33
@ 47N4RS, (33)

qr=0 (34)

showing that the univalent Na* ions are fully expelled from the sat-
uration layer that is exclusively made of divalent Ca** ions.

Finally the black lines correspond to the full model that repre-
sents the ions as dielectric spheres. The main difference with re-
spect to the previous cases is that this theory includes repelling
dielectrophoretic forces that are much higher for Ca™ than for
Na“, not because of the size difference as in the previously consid-
ered cases, but due to the huge permittivity difference: 7 for diva-
lent versus 25 for univalent ions. Far from the plane the field is
weak and the electric force is stronger than the dielectrophoretic
force because the former is linear in the field while the latter, Eq.
(10), depends on the field squared. This is also the reason why
the dielectrophoretic force can become stronger than the electric
force close to the plane where the field is much stronger. Because
of this, the Na* ion concentration surpasses the concentration of
Ca™" ions in the immediate neighborhood of the charged plane.

Fig. 9 shows the dependence of the surface potential on the sur-
face charge. The potential values along the right ordinate corre-
spond to o, =0.4 C/m? that is the value used in Fig. 8. The large
increment of the surface potential due to the inclusion of the steric
interaction among ions (difference between the red and blue lines)
is due to the saturation of the counterion concentration close to the
charged plane and the corresponding increase of the double layer
thickness. However, the full model that further represents the ions
as dielectric spheres leads to an even greater increment of the sur-

T
Full model
—— PBsteric
——PB 20.1
? [CaCl,]=5 mM
S 1ok [NaCll=5mM i
=
- 8.80
4.58
P " " " " " PR
0.1 1

o, (C/m’)

Fig. 9. Dimensionless surface potential as a function of the surface charge for an
aqueous 5 mM NaCl and 5 mM CacCl, electrolyte solution. The potential values along
the right ordinate correspond to the surface charge used in Fig. 8. Used parameter
values given in Tables 1 and 2.

face potential (difference between the black and red lines). The
reason is that the saturation layer is mostly made of Na* ions close
to the plane and Ca*™ ions further away rather than just Ca*™ ions
when only steric interactions are taken into account. This reduces
the saturation layer charge density so that it needs to be thicker in
order to neutralize the surface charge.

4. Conclusion

We present a detailed account of the equilibrium diffuse double
layer properties for a charged plane immersed in an aqueous elec-
trolyte solution. We use an extension of the modified PB equation
that takes into account the finite ion size by modeling the aqueous
electrolyte solution as a suspension of polarizable insulating
spheres in water, which leads to the following consequences [11]:

(1) The excluded volume occupied by the ions modifies the local
value of the electrolyte solution permittivity.

(2) The resulting permittivity gradients lead to the appearance
of a Born force that tends to move ions towards regions of
higher permittivity.

(3) Ions get polarized by the local electric field and are acted
upon by a dielectrophoretic force that is proportional to
the field gradient.

We apply this formalism to a general electrolyte solution com-
posed of two or more counterion species with different valences,
sizes, and effective permittivity values. We show that the interplay
of the electric, thermal, steric, Born and dielectrophoretic forces
leads to rather unexpected effects in the three considered
situations:

Case 1. Two univalent counterion types and equal bulk concen-
trations: 5 mM LiCl and 5 mM CsCl mixture. Instead of a satura-
tion layer close to the plane evenly populated by Li* and Cs*
ions a thicker layer made mostly of the smaller Cs™ ions is pre-
dicted. This is mostly due to the dielectrophoretic force that
repels counterions away from the charged plane and is propor-
tional to the ion volume that is larger for the Li* ion.

Case 2. Two univalent counterion types and different bulk con-
centrations: 5 mM NaCl solution at pH = 4. Instead of a satura-
tion layer close to the plane made almost exclusively of Na*
ions, a broader layer with a high H" and a lowered Na* compo-
sition in the plane proximity is predicted. While this layer is
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saturated, the total counterion concentration is no longer uni-
form increasing close to the interface because H* ions can be
more densely packed than Na* ions. It should be noted that this
behavior, mostly due to the dielectrophoretic force and its
dependence on the ion size, is achieved despite the use of a ste-
ric interaction equation that does not favor the increase of the
smallest ion concentration near the charged plane.

Case 3. One univalent and one divalent counterion type and
equal bulk concentrations: 5 mM NaCl and 5 mM CaCl, mixture.
Instead of a saturation layer close to plane made almost exclu-
sively of Ca** ions, a broader layer with a higher Na* than Ca™
concentration in the immediate proximity of the plane followed
by a region where the Ca*™ concentration amply surpasses that
of Na*, is predicted. Contrary to the two preceding cases, this
behavior is mainly due to the dependence of the dielectropho-
retic force on the effective ion permittivity (much smaller for
divalent than univalent ions) rather than the ion size.

Besides these detailed changes in the double layer composition,
there is a global change that is common to all the considered cases:
the surface potential value strongly increases as compared to the
modified PB theory that includes steric interactions among ions.
This effect is particularly important in the case of mixtures of uni-
valent and divalent counterions, being significant even for rela-
tively low surface charge values.

Earlier works [7] have shown that when different size counteri-
ons are present in the system, the composition of the diffuse dou-
ble layer can strongly differ from the classical prediction: smaller
ions tend to come closer to the charged plane than larger ones
and this effect can even overcome a difference in ion valences.
However, this behavior was deduced using an expression for the
activity coefficients that depends on the sizes of the different ion
types [21] rather than the total volume excluded by all the ion
types [5,20]. In this work we show that a similar behavior also oc-
curs due to a totally different phenomenon: just the dependence of
the Born and the dielectrophoretic forces on the ion sizes and effec-
tive permittivities. This suggests that the ion size effects reported
to date, both in and out of equilibrium, are still strongly underes-
timated. A full theory incorporating activity coefficients that de-
pend on the sizes of the different ion types together with all the

forces related to the representation of the ions as dielectric spheres
and considering, furthermore, that the minimum approach dis-
tances of ions to the interface must depend on the ion size, is re-
quired. This is a work in course that will be presented in the
near future.
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