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The production of multiple Higgs bosons at the LHC and beyond is a strong test of the mechanism of
electroweak symmetry breaking. Taking inspiration from recent experimental efforts to move toward limits
on triple-Higgs production at the Large Hadron Collider, we consider generic bosonic deviations ofHH and
HHH production from the Standard Model in the guise of Higgs effective field theory (HEFT). Including
one-loop radiative corrections within the HEFT and going up to Oðp4Þ in the momentum expansion, we
provide a detailed motivation of the parameter range that the LHC (and future hadron colliders) can explore,
through accessing nonstandard coupling modifications and momentum dependencies that probe Higgs
boson nonlinearities. In particular, we find that radiative corrections can enhance the sensitivity toHiggs self-
coupling modifiers and HEFT-specific momentum dependencies can vastly increase triple-Higgs produc-
tion, thus providing further motivation to consider these processes during the LHC’s high-luminosity phase.
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I. INTRODUCTION

Although the Higgs discovery in 2012 has catapulted
particle physics into an era of exploration of the TeV scale
with direct phenomenological measurements, the consis-
tency of LHC data with theoretical predictions of the
Standard Model of particle physics (SM) is startling.
Many aspects of nature are understood to be unsatisfactorily
described by the SM, and it is, therefore, surprising that the
SM’s success lives on some ten years after the discovery of
the Higgs boson. That said, the plethora of physics obser-
vations that informed the Higgs boson discovery can be
attributed to the Large Electron Positron electroweak pre-
cision program and the theoretical requirement of sponta-
neous symmetry breaking. It is the latter that is still poorly
understood, and, while the question of how the flavor sector
intersects with electroweak symmetry breaking is an impor-
tant one, the very existence of the TeV scale is a pressing
question in its own right.

Clearly, we are missing a crucial point and, given that the
SM is by construction ultraviolet complete, clues will likely
be provided by the experiments. It will fall onto theory to
contextualize any such new physics signature with the
questions that are left unanswered by the SM. Along these
lines, the electroweak symmetry-breaking potential remains
a motivated line of inquiry: The LHC multipurpose experi-
ments are becoming increasingly sensitive to telltale mod-
ifications in multi-Higgs boson rates that fingerprint the
electroweak potential, but data are at such an early stage that
large deviations would still go unnoticed. In fact, such
deviations can be expected in many scenarios of physics
beyond the SM (BSM) with relevance for physics at the
TeV scale but also for the early Universe (see, e.g., [1,2]),
thus making the Higgs potential a high-value phenomenol-
ogy target for the high-luminosity phase of the LHC and
beyond.
In this work, we perform a detailed precision investigation

of themost general bosonic deformation of theTeV scale. By
employing Higgs effective field theory (HEFT), we obtain
expectations of multi-Higgs pp → HH and pp → HHH
production rates, beyond the leading order. This means that
we will include one-loop radiative corrections by means of
the relevant one-particle-irreducible (1PI) Higgs functions
andwill consider up to chiral dimension-four operators in the
HEFT Lagrangian (for the relevant set of these operators,
see, for instance, [3,4]). By construction, we, therefore,
obtain all relevant bosonic correlation modifications
under the assumption of new physics around the TeV scale,

*Contact author: anisha@glasgow.ac.uk
†Contact author: daniel.domenech@uam.es
‡Contact author: christoph.englert@glasgow.ac.uk
§Contact author: maria.herrero@uam.es
∥Contact author: roberto.morales@fisica.unlp.edu.ar

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 110, 095016 (2024)

2470-0010=2024=110(9)=095016(20) 095016-1 Published by the American Physical Society

https://orcid.org/0000-0002-5294-3786
https://orcid.org/0000-0001-5967-9044
https://orcid.org/0000-0003-2201-0667
https://orcid.org/0000-0002-2322-1629
https://orcid.org/0000-0002-9928-428X
https://ror.org/00vtgdb53
https://ror.org/022r8mj40
https://ror.org/01cby8j38
https://ror.org/01tjs6929
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.095016&domain=pdf&date_stamp=2024-11-18
https://doi.org/10.1103/PhysRevD.110.095016
https://doi.org/10.1103/PhysRevD.110.095016
https://doi.org/10.1103/PhysRevD.110.095016
https://doi.org/10.1103/PhysRevD.110.095016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


in particular, generalizing the expectations of Standard
Model effective field theory (SMEFT). The triple-Higgs
final states are extremely rare in the SM at the LHC but have
been highlighted as a target of a future hadron machine or
BSM extensions [5–15]. Our analysis provides a theoreti-
cally robust interpretation framework to scrutinize large
enhancements of the current and future LHC multi-Higgs
program, with direct relevance to astrophysically relevant
observations [16].
This paper is organized as follows. In Sec. II A, we

briefly introduce Higgs effective field theory and provide
details of our (higher-order) calculation and implementa-
tion. In Sec. II B, we survey HHH and HH production in
HEFT beyond leading order. We summarize our findings
and provide an outlook in Sec. III. In the final Appendix,
we have included all the details of the 1PI Higgs functions
involved in the present computation.

II. HEFTYMULTI-HIGGS PRODUCTION BEYOND
LEADING ORDER

A. Elements of the calculation

In this work, we consider the two-loop factorizable
contributions to pp → HH;HHH, indicated in Figs. 1
and 2 for the two-Higgs production and the more complex
case of triple-Higgs production. While the gluon fusion

topologies for single-Higgs production have a long history
[17–21], the two- and three-Higgs contributions have been
considered in detail much later; in particular, the two-loop
QCD contribution to Higgs pair production in the finite top
mass limit has been made available only recently [22,23].
Electroweak corrections in the SM have been considered in
Ref. [24]. In this work, we will focus on the finite top limit,
at leading order, while focusing on the Higgs interactions
within HEFT beyond leading-order considerations. This is
a motivated approach as the next-to-leading-order (NLO)
QCD interactions are known to be relatively insensitive to
the electroweak details of the amplitude beyond the
relevance of the top mass threshold [25]. Therefore, by
reporting results in comparison with the SM expectation,
we can be confident that most QCD-relevant aspects will
generalize to the inclusion of the electroweak effects that
we consider in this work.
Throughout, following Refs. [26–28], we will use the on-

shell renormalization scheme for the physical states, the
electric charge is defined from the full eeγ on-shell three-
point function at vanishing momentum transfer (the
Thomson limit), and the HEFT coefficients are renormal-
ized in the MS scheme. The building blocks for, e.g., gg →
HHH are shown in Fig. 1 and for gg → HH in Fig. 2. More
precisely, we consider only factorizable two-loop contri-
butions in this work, which is a widely used approximation

FIG. 1. Representative Feynman diagram topologies contribution to gluon fusion triple-Higgs production: (a) triangle diagrams,
(b) box topologies, and (c) pentagon diagrams. The light-shaded regions refer to 1PI irreducible vertex functions [Eqs. (2.4), (2.6), and
(2.7)], whereas the dark-shaded ones refer to the connected reducible four-point scalar vertex function [Eq. (2.8)]. The fermion-Higgs
sector interactions and the fermion-gauge sector interactions are taken to be SM-like for the parameter choices of this work and also the
employed renormalization scheme. Hence, these fermionic diagrams are identical to the SM ones.

FIG. 2. Representative Feynman diagram topologies contribution to gluon fusion double-Higgs production similar to Fig. 1:
(a) triangle diagrams and (b) box topologies. The light-shaded regions again refer to 1PI irreducible vertex functions.
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for Higgs sector extensions; see, e.g., the recent [29] and
references therein.
The HEFT Lagrangian is organized by the chiral

dimension into two parts, L2 and L4, corresponding to
operators of Oðp2Þ and Oðp4Þ, respectively. The relevant
operators for this work are (we are using here the notation
of Ref. [27])

L2 ¼
1

2
∂μH∂

μH −
�
1

2
m2

HH
2 þ 1

2
κ3

m2
H

v
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8
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H

v2
H4

�

þ v2

4

�
1þ 2a

H
v
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H2

v2

�
Tr½DμU†DμU�

−
1

2g2
Tr½ŴμνŴ

μν� − 1

2g02
Tr½B̂μνB̂

μν� ð2:1aÞ

and

L4 ¼O□□þOH□□þOHH□□þOdd□þOHdd□þOdddd

þOHddþOHHddþOddW þOHddW þOddZ þOHddZ;

ð2:1bÞ
with U ¼ expðiπata=vÞ as the nonlinear sigma field of
½SUð2ÞL × SUð2ÞR�=SUð2ÞLþR (πa are the would-be
Nambu-Goldstone fields), thus preserving custodial iso-
spin. Hypercharge is embedded Uð1ÞY ⊂ SUð2ÞR so that
the model describes a nonlinear realization of electroweak
symmetry breaking SUð2ÞL ×Uð1ÞY → Uð1Þem. The field
strength tensors are defined as

Ŵμν ¼ ∂μŴν − ∂νŴμ þ i½Ŵμ; Ŵν�;
B̂μν ¼ ∂μB̂ν − ∂νB̂μ; with

Ŵμ ¼ gWa
μ
τa

2
; B̂μ ¼ g0Bμ

τ3

2
ð2:2Þ

with weak and hypercharge couplings g and g0, respec-
tively; τa are the Pauli matrices. Electroweak gauging in
Eq. (2.1) is achieved through the covariant derivative

DμU ¼ ∂μU þ iŴμU − iUB̂μ: ð2:3Þ

Notice that gauge-fixing and Faddeev-Popov terms were
omitted for simplicity in L2; in particular, we will imple-
ment the Feynman gauge in the numerical computations.
Furthermore, we are assuming that fermionic interactions
are the same as in the SM. Hence, we consider the new
physics only in the bosonic sector. Concretely, in the chiral
dimension-two Lagrangian, it is parametrized by the a, b,
κ3, and κ4 HEFT coefficients, and the chiral dimension-four
operators are collected in Table I.1

Once the on-shell renormalisation conditions are
imposed, the counterterms and all the renormalized
1PI vertex functions are written in terms of the renormal-
ized parameters electric charge and physical masses
mW ¼ gv=2, mZ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
v=2, and m2

H ¼ 2v2λ. From
this Lagrangian, one can derive the interactions that are
relevant for the calculation of the respective (sub)ampli-
tudes. The tree-level contribution comes from both L2 and
L4, whereas the loop contributions arise from the chiral
dimension-two Lagrangian only. The counterterms come
from the chiral dimension-two Lagrangian, and also the ai
coefficients of the chiral dimension four act as counter-
terms. The building blocks relevant for the gg → HHH
(gg → HH follows from similar decomposition as shown in
Fig. 2) are the irreducible two-, three-, and four-point vertex
functions. The renormalized self-energy of the (isosinglet)
Higgs boson is given by

ð2:4Þ

such that

Σ̂HHðm2
HÞ ¼

dΣ̂HH

dq2

����
q2¼m2

H

¼ 0 ð2:5Þ

in the on-shell scheme.

TABLE I. Relevant HEFT operators Oi with ai being the
corresponding HEFT coefficients.
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1For the bosonic and fermionic sector taken together, i.e.,
along with modified fermion-Higgs and fermion-gauge cou-
plings, relevant operators of type Ψ2UHD;Ψ2UHD2 [30–32]
are required for the consistent renormalization. We do not
investigate this further on this occasion.
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The electroweak vacuum expectation value is fixed
through the gauge boson masses assuming custodial
invariance as highlighted in Eq. (2.1). The renormalization
conditions are tabled in Refs. [26,27]; it is worth high-
lighting that, owing to the singlet nature of the Higgs
boson in HEFT, any gauge dependence cancels explicitly.
Although, at face value, HEFT is a much broader class of
field theories (see, in particular, Ref. [33]), this fact together
with similar cancellations of gauge dependencies in the
gauge boson sector [26,27] leads to technical simplifica-
tions that are not present in, e.g., SMEFT. Furthermore, it is
known that the HEFT approximates the resummation
behavior of SMEFT [34]. Nonetheless, the latter can be
obtained from the former through appropriate redefinitions,
which, in turn, allude to a less transparent power counting
of HEFT. In fixed order calculations, which one is forced to
use for the concrete computation of scattering probabilities,

such field redefinitions amount to scheme dependencies,
which are typically employed to gauge the theoretical
robustness of calculations in renormalizable scenarios.
This is qualitatively different in HEFT (also compared to
SMEFT). Here, scheme dependencies are directly linked
to truncation uncertainties which are to be tensioned
against the redundancies of field redefinitions, which do
necessarily equate to applying equations of motion when
higher-order corrections are considered [35]. For the
renormalization process of the 1PI contributions, all vertex
insertions are required for a consistent (gauge-independent)
renormalization procedure; see [26,27] as well as the
Appendix. Generic scheme dependencies, therefore, are
possibly intrinsically large in HEFT (but can be resolved by
matching calculations).
The renormalized irreducible three-point vertex function

is parametrized as

ð2:6Þ

which is manifestly invariant under permutations of the incoming external momenta pi. This shows a further motivation for
the HEFT formalism that is rooted in its relation to the Lorentz structures that the different interactions induce. These are
directly related to experimental measurements. SMEFT, in contrast, selects correlations in this space through internal
symmetry considerations. Similar to the three-point vertex, the renormalized four-point function is given by

ð2:7Þ
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While the irreducibly three-point interactions directly enter the box diagrams of the gg → HHH amplitude (as well as the
triangle diagrams of pp → HH), the triangle contributions to triple-Higgs production feature the reducible (truncated) four-
point contribution as indicated in Fig. 1(a). These are represented as

ð2:8Þ

With these building blocks, one can expand the squared
amplitude including the chiral dimension-four effects as

jMj2 ¼ jMd¼2j2 þ 2RefMd¼2M�
d¼4g; ð2:9Þ

where the d ¼ 2, 4 parts derive from the expansion of the
representation of the normalized amplitude in Fig. 1 at the
specified chiral dimension recorded in Eq. (2.1) and Table I,
respectively. In particular, triangle, box, and pentagon
contributions are obtained by multiplying with the relevant
(off-shell) scalar currents; cf. Eqs. (2.4)–(2.8).
Following Refs. [26–28], the relevant functions have

been obtained through a combination of FeynRules [36,37],
FeynArts, and FormCalc [38–41] interfaced with Vbfnlo [42].
We have validated our implementation for SM parameter
choices against MadGraph5_aMC@NLO [43,44]. Furthermore,
analytical cross-checks have been performed to verify
our implementation of the reducible four-point function
assuming the SM. Further details of the calculation of
the renormalized 1PI Higgs functions are given in the
Appendix.

B. Phenomenology and discussion

As with gg → HH [45,46], the interplay of triangle, box,
and pentagon topologies in gg → HHH, driven by the
finite top threshold, is critical for the expected phenom-
enology. With a total cross section of around 50 ab in
the SM at 14 TeV [25] (rising to ∼3.5 fb at a 100 TeV
FCC-hh), with significant theoretical uncertainties, a differ-
ential analysis of the invariant HH and HHH momenta
in triple-Higgs production is severely restricted at the
high-luminosity (HL) LHC. Therefore, we will limit
ourselves to a discussion of inclusive rates that can be
expected for HH and HHH production as a function of the
HEFT coefficients.
The present experimental constraints onHH production,

e.g., by the CMS experiment [47] which sets an observed
upper limit on the HH cross section of 3.9 times the SM
prediction in the 4b channel, can then be understood as
a∈ ½−1.2; 1.6�, b∈ ½−2.4; 2.2�, and κ3 ∈ ½−0.82; 2.94� at the
95% confidence level (not including the impact of a on the

tree-level Higgs branching ratios,2 keeping all nonvaried
parameters to unity, including κ4 ¼ 1, and assuming flat
QCD corrections). The lower limit on a and the upper limits
on b and κ3 arise from a breakdown of perturbation theory
when the inclusive cross sections cross zero. Note that this
κ3 limit is a stronger constraint compared to leading-order
precision κLO3 ∈ ½−1.03; 5.81� (neither limit includes the
impact from experimental selections, which somewhat
reduces the sensitivity [47]). The upper limit inferred from
LO analyses alone is, therefore, currently, deeply in the
strongly coupled parameter regime.3

Assuming the SM outcome prevails during the LHC’s
high-luminosity phase, one can expect a sensitivity of
pp → HH in the range of −2.3≲ κLO3 ≲ 6 to 0≲ κLO3 ≲ 2

depending on the final state [48] (these extrapolations do
not include weak corrections, highlighted by “LO”). The
shortfalls of the current constraints with regards to pertur-
bativity are self-correcting as more data become available
toward the HL-LHC phase: The radiative corrections
become controlled for κ3 values in this parameter region;
see Fig. 3. Triple-Higgs production has not been forecast in
a similar community-wide approach yet, but proof-of-
principle investigations suggest very loose constraints on
the quartic Higgs couplings jκ4j ≲ 30 [14], which is,
therefore, unlikely to play a significant role in more global
fits beyond the HH final states. From the momentum
structure of Eqs. (2.6) and (2.7), it is clear that nontrivial
momentum dependencies can profoundly reshape the
phenomenology of these final states. In particular, owing
to the singlet nature of the Higgs boson, the triple-Higgs
final states open up entirely new territory compared to HH
production (see also Ref. [49]).4 The combination of both
observations leverages triple-Higgs final states to add value
to the HL-LHC Higgs program even if the expectation in

2Obviously, the single-Higgs modifiers will be dominantly
constrained from single-Higgs physics in a more comprehensive
fit to LHC data; see [28].

3Turning to positive-definite “squared” NLO contributions
(cf. Fig. 3), the CMS result amounts to κ3 ∈ ½−0.80; 4.62�.

4Aspects related to the special role of Eq. (2.4) have been
discussed recently in Refs. [50,51].
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the SM is unpromising. We will mainly focus on 13 TeV
LHC collisions but comment on the relevance of our
findings for a future FCC-hh in passing.
In the following, we will identify a ¼ b ¼ 1 as a

couplings will be predominantly constrained by single-
Higgs measurements and b ¼ 1 is the expectation in the
SM. Note also that, as we are assuming the on-shell scheme
with HEFT parameters chosen to reproduce the SM for the
Higgs interactions with W and Z bosons (as well as SM-
like fermions), the dominant decay phenomenology of the
Higgs is SM-like, and our results, therefore, generalize to
the exclusive decay channels H → bb̄; ττ; γγ;WW.
Having a more detailed look at Fig. 3, we gather a

qualitative estimate of the size of the radiative weak
corrections within the approximation detailed above. As
can be seen, close to the SM-like choices κ3 ¼ κ4 ¼ 1, the
radiative corrections are moderately small: ∼10% for HH
and ∼30% for HHH production (the latter results from a
larger sensitivity to κ3, as the κ4 dependence is probed
highly off shell). These numerical NLO HEFT results for
the cross sections are in concordance with the numerical
results obtained in the Appendix for the 1PI functions and
indicate that the effective momentum for the virtuality q
value of the propagating internal Higgs boson at the LHC
is rather close to the threshold value, i.e., q ≃ 2mH and
q ≃ 3mH in HH and HHH production, respectively.
The size of the HEFT radiative corrections in HH and

in HHH production are in any case larger than the weak
radiative corrections within the SM framework which,
according to the results for the 1PI in the Appendix, are
expected to be below 3% forHH production and below 9%
for HHH production. A main message from Fig. 3 is that
the sensitivities to κ3 and κ4 change in the HEFT with
respect to the LO computation due to the one-loop weak
radiative corrections which include the nonlinearity HEFT
features and are highly sensitive to the off-shell momentum
of the internal propagating Higgs bosons attached to the 1PI
blob functions (see the Appendix for details on these 1PI
functions). In Fig. 3, we also include the squared NLO
contribution which is formally part of the two-loop con-
tribution to the Higgs self-interactions. These give a
measure of strong coupling when NLO and NLO2 differ
significantly. The robustness of this measure ultimately
requires a full two-loop calculation, which is beyond the
scope of this work, but the radiative corrections become
parametrically more relevant when moving further away
from the SM-like choices.
The radiative corrections to pp → HH further enhance

the cross section for κ3 < 0, which results from construc-
tive interference of the involved triangle and box diagrams
at leading order. For κ3 > 0, the radiative corrections
become decreasingly relevant in the region that we consider
in this work −1≲ κ3 ≲ 2, which is the region that will
likely be explored during the HL-LHC phase [48]. As κ4

FIG. 3. Cross sections within HEFT relative to the reference LO expectation; cf. Eq. (2.11). Here, we focus on sensitivities to κ3 and κ4
and set all NLO coefficients to ai ¼ 0. To highlight regions of strong coupling, we also include the squared NLO contributions which are
part of the NNLO corrections. For details, see the text.
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enters as a genuine higher-order effect in pp → HH, the
cross section dependence is relatively mild, deriving from a
radiative contribution to the trilinear Higgs vertex. The κ3
region that the LHC should explore at the high-luminosity
phase, given Eq. (2.10) can be considered relatively stable
from an electroweak point of view, in particular, for HH
production that is most relevant there.

As pp → HHH offers richer final state kinematics, with
cross sections predominantly driven by the Higgs trilinear
interactions, the radiative corrections are more relevant than
for pp → HH. Similar to HH production where the lower
three-point function destructively interferes with the box
topologies, the biggest share of the cross section arises
from the pentagon contributions in Fig. 1(c), which are

FIG. 4. Cross section contours within the NLO HEFT for 13 TeV HH (left) and HHH (right) production, relative to the NLO
reference expectation as defined in Eqs. (2.10) and (2.12). The contours are in the ðκ4; κ3Þ plane.

FIG. 5. Cross section contours within the NLO HEFT for 13 TeV HH (left) and HHH (right) production, relative to the NLO
reference expectation as defined in Eqs. (2.10) and (2.12). The contours are in the ðaHdd; κ3Þ plane (first row) and the ða□□; κ3Þ plane
(second row).
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destructively offset against the triangle and box contribu-
tions, which interfere constructively. κ3 < 0, therefore, leads
to an enhancement of the cross section, while the κ4
dependence is relatively flat due to the s-channel suppres-
sion. The wider kinematical phase space compared to HH
production, however, enables cancellations between the
different effective topologies in different phase space
regions. Overall, this leads to a reduced cross section via a
softer distribution for mHHH ≳ 3mt, when including radia-
tive corrections with κ3 ¼ κ4 ¼ 1. We can, therefore, expect
that nonstandard top interactions that are not discussed in this
work are likely to be visible in this channel, too.
From the above discussion, it becomes clear that visible

enhancements via κ4 at the LHC in HHH production, in

particular, when considering SM parameter choices of the
HEFT coupling space, are difficult to obtain (see also
Refs. [13,14]). Limiting ourselves to Oðp2Þ operators, this
process is predominantly driven by modifications of the
trilinear Higgs coupling, which is much better accessible
with HH production; cf. Fig. 4. New opportunities arise
from the Oðp4Þ interactions. As κ3 is a relevant parameter
given the above discussion, we show pairwise correlations
of the relevant interactions, as a ratio against the SM
parameter choice κ3 ¼ κ4 ¼ a ¼ b ¼ 1 (with top quarks
taken SM-like) in Figs. 5–7, where we focus on cross
sections expanded according to Eq. (2.9).5 More concretely,
in the following, we refer to

σrefNLO ¼ σHEFTNLO ðκ3; κ4; a; b ¼ 1; ai ¼ 0Þ; ð2:10Þ

where ai are the relevant HEFT operator coefficients, as the reference value (see, e.g., [52] for a discussion on how this
choice can be related to the SM through field redefinitions). When scanning over the HEFT parameters, we will always
retain a choice a ¼ b ¼ 1.

FIG. 6. Cross section contours within the NLOHEFT for 13 TeVHH (left) andHHH (right) production, relative to the NLO reference
expectation as defined in Eqs. (2.10) and (2.12). The contours are in the ðadd□; κ3Þ plane (first row) and the ðaH□□; κ3Þ plane (second row).

5Cross sections are, therefore, not positive definite, and negative cross sections are typically understood as parameter choices giving
rise to strong coupling as the S matrix remains unitary.
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It should be noticed that this NLO reference cross section value in Eq. (2.10) is not far numerically from the SM-LO
prediction. For the LHC with 13 TeV collisions, we observe

σSMLO ðHHÞ ¼ σrefLOðHHÞ ¼ 17.40 fb; σSMLO ðHHHÞ ¼ σrefLOðHHHÞ ¼ 0.041 fb; ð2:11Þ

σrefNLOðHHÞ ¼ 18.45 fb; σrefNLOðHHHÞ ¼ 0.029 fb: ð2:12Þ

Notice again that, according to the results for the 1PI
insertions in the Appendix, the SM NLO corrections are
expected to be very small (below 3% for HH production
and below 9% for HHH production), and, in consequence,
the SM LO provides quite stable SM rates. Then, for
illustrative purposes, the forthcoming results for the ratios
σHEFTNLO ðHHÞ=σrefNLOðHHÞ and σHEFTNLO ðHHHÞ=σrefNLOðHHHÞ
can be easily translated into results for σHEFTNLO ðHHÞ=
σSMLO ðHHÞ and σHEFTNLO ðHHHÞ=σSMLO ðHHHÞ by simply re-
scaling them with factors 1.06 and 0.71, respectively. The
important feature is that any of these ratios will provide
sensitivity to the HEFT coefficients via NLO corrections
within the HEFT. As explained fully in the Appendix, these
NLO corrections are of two types, one-loop corrections and
corrections from the Oðp4Þ coefficients. These two cor-
rections affect the momenta dependence of the scattering

amplitudes and result in notable departures of the cross
section predictions with respect to the SM predictions. In
particular, the change in the dependence with the virtuality
q of the internal propagating Higgs bosons plays a very
relevant role in these departures and is basically due to the
nonlinearity in the boson interactions within the HEFT (see
the Appendix for more details). More specifically, Figs. 5
and 6 display the interactions that affect, via radiative
corrections and NLO operators, both HH and HHH
production. Interactions such as ∼aHdd; addW; addZ for
the on-shell final state Higgs momenta are qualitatively
similar to κ3 modifications, as the threshold of double- and
triple-Higgs production dominates the cross section.
In these cases, the cross section modifications largely

follow theOðp2Þ paradigm; see Fig. 5 (showing a significant
correlation in HH). Nontrivial momentum dependencies,
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FIG. 7. Cross section contours within the NLO HEFT for 13 TeV HHH production, relative to the NLO reference expectation as
defined in Eqs. (2.10) and (2.12). The contours are in the ðadddd; κ3Þ plane (upper left plot), the ðaHddW; κ3Þ plane (upper right plot), and
the ðaHHdd; κ3Þ plane (lower plot).
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such as a□□, create less standard scalings through the q4

enhancement of the off-shell propagator that is accessed in
both HH and HHH production (e.g., in HH production a
decrease in the three-point contribution can be compensated
by an enhancement in the two-point function giving rise to
the characteristic contours for a□□ versus κ3).
As becomes clear for these interactions already, non-

trivial momentum dependencies that are attributed to the
Higgs boson’s singlet character in HEFT can indeed alter
the cross sections significantly, leading to a different
contour structure as different phase space regions are
modified in different and characteristic ways [e.g., by
comparing Fig. 6 against the momentum behavior tabled
in Eqs. (2.4)–(2.7)]. When turning to interactions that
exclusively impact the four-point interactions (Fig. 7),
these are typically suppressed due to the off-shellness with
which they are probed as contributions to triple-Higgs
production. The notable exception here is adddd, which
signifies a dramatic momentum-dependent departure from
the SM, thus leading to cross section enhancements,
particularly when HH measurements indicate κ3 ≃ 1 in
the future. Our findings, therefore, reflect qualitative the
power counting of HEFT so that κ3 as a chiral dimension-
two operator that does not suffer from the kinematical
drawbacks of κ4 shapes the HHH cross sections, yet with
significant complementarity compared to HH.
Of course, all of our discussion needs to be viewed

against the backdrop of a small HHH baseline rate.
Intrinsically, this makes order-1 modifications not directly
phenomenologically relevant, in particular, as we can
expect a realistic reconstruction in a busy environment
to be experimentally challenging. That said, the HL-LHC is
likely to test the κ3 ≳ −0.5; this is a parameter region where
a significant, order-of-magnitude departure of the HHH
production is possible provided that the Higgs potential
reflects a sizable amount of nonlinearity. Such enhance-
ments could be probable at the HL-LHC and future
colliders and might constitute a strong motivation to pursue

this final state whilst closing in on the HL-LHC HH
production sensitivity target.
Of course, the size of the HEFT parameters is con-

strained in concrete BSM scenarios. Nondecoupling effects
can play a significant role in determining the a priori scale
and scheme-dependentHEFTcoefficient (see, e.g., [53–55]).
On the one hand, for renormalizable models, the size of the
interactions of higher chiral dimensions are loop suppressed
or even absent due to how electroweak symmetry is realized.
For instance, Eq. (A4) together with (A5) indicates the chiral
dimension-four terms as radiative effects when the latter are
constrained to be zero at a given reference scale. If the loop
expansion, expressed as an operator truncation of a given
chiral dimension [3] is indeed awell-behaved series, the large
cross section excursions expressed by sizable HEFT coef-
ficients are not realistic. On the other hand, sensitivity is a
model-dependent statement, and the a priori size of HEFT
(or SMEFT) parameter constraints is not directly illuminat-
ing. The current nil results of the LHC BSM program have
encouraged a novel outlook to (non)perturbative realizations
of electroweak symmetry breaking that are entirely consis-
tent with current constraints; see also [56]. A main message
of our work is that experimental constraints on multi-Higgs
production beyondHH will enable us to navigate this BSM
landscape phenomenologically, especially capturing highly
nonstandard physicsmodels that would otherwise bemissed.
Continuing this thought by looking toward the more

distant future, in Fig. 8, we show representative distribu-
tions of cross section modifications at a 100 TeV FCC-hh.
Our findings here are qualitatively similar to those for
13 TeV collisions, of course, at a significantly increased
SM production rate. In particular, the momentum depend-
encies are, therefore, probed with a higher expected
sensitivity. And, as 100 TeV collisions probe the tails of
HHH production much more efficiently than the LHC, we
see larger enhancements for parameter choices, that pop-
ulate the phase space regions of large momentum transfers,
e.g., adddd which is shown alongside the κ3 LHC/FCC-hh

01.234

5

10
20

FIG. 8. Left: cross section predictions within the NLO HEFT for 100 TeV HHH production and comparison with 13 TeV. These
predictions are again relative to the NLO reference expectation of Eq. (2.10). Corrections are quantitatively similar to the LHC case,
generalising our 13 TeV findings also to collisions at higher energy. Right: contours in the ðadddd; κ3Þ plane.
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comparison in Fig. 8. These observations tie into the
existing results of 100 TeV triple-Higgs production pre-
sented in various model contexts; see Refs. [5–9,11,13].

III. SUMMARY AND CONCLUSIONS

The production of multiple Higgs bosons at the LHC and
beyond is a powerful tool for discerning the nature of the
electroweak scale by directly investigating the symmetry-
breaking dynamics. This comes at the price of relatively
small (in the case of HH production) and challenging (in
the case of HHH production) cross sections in the SM.
However, BSM modifications of the Higgs potential at the
TeV scale can lead to significant alterations of cross
sections. In particular, when underlying parameters of
the Higgs potential are very far from the SM point, cross
sections can be significantly enhanced, making radiative
corrections exceedingly relevant. In this work, adopting the
framework of Higgs effective field theory, we have inves-
tigated all dominant bosonic modifications of the dominant
production modes gg → HHðHÞ including one-loop radi-
ative corrections in the HEFT framework up toOðp4Þ in the
momentum expansion. We find that the power counting
expected from the HEFT construction is largely reflected in
the cross section enhancements observed in the HHðHÞ
rates. This further motivates HH physics while moving
toward the HL-LHC phase. If the TeV scale contains
aspects of nonlinearity, they will show up in pronounced
ways in di-Higgs production. Owing to its small rate in the
SM, triple-Higgs production remains challenging also
when turning to HEFT. However, parameter regions exist
where triple-Higgs production can provide complementary
information, at a very large enhancement, for which HH
production would show an anomaly in the range of its HL-
LHC sensitivity extrapolation. Such a situation could then
lead to a direct discovery of BSM aspects of the TeV scale,
which could be probed in much more detail at future
hadron-hadron machines.
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APPENDIX: DETAILS OF THE 1PI HIGGS
FUNCTIONS

Here, we analyze the 1PI Higgs functions involved in
this work. The results of the renormalized 1PI functions are
presented schematically in Eqs. (2.4), (2.6), and (2.7) for
the cases of two, three, and four external Higgs legs,
respectively. To get the analytical and numerical results, we
have implemented the HEFT model with FeynRules [36,37]
and performed the main calculations with FormCalc and
LoopTools [38–41]. We use here the Feynman–’t Hooft gauge
and regularize the integrals with dimensional regularization
in D ¼ 4 − ϵ dimensions. For the renormalization pre-
scription, we apply the on-shell renormalization conditions
for the H, Z, and W bosons, and the HEFT coefficients are
renormalized in the MS scheme. The set of relevant HEFT
Feynman rules for this computation in covariant Rξ gauges
as well as the details of the renormalization procedure can
be found in [26,27,57]. For comparison, we have also
computed in parallel the renormalized 1PI functions within
the SM framework to one loop and with on-shell conditions
for the SMH, Z, andW bosons. In all cases, the tadpole 1PI
H function has been renormalized to zero value.
The NLO HEFT results for the renormalized self-energy

ΣHH are given in (2.4) and receive contributions from loop
diagrams, counterterms, and a single NLO coefficient a□□.
The bosonic loop diagrams are collected in Fig. 9. The
NLO HEFT results for the renormalizedHHH andHHHH
1PI functions in Eqs. (2.6) and (2.7) receive contributions
from different origins: (i) from the LO Lagrangian terms,
which depend on the LO coefficients (κ3 inHHH and κ4 in
HHHH), (ii) from the NLO Lagrangian terms, which
depend on the NLO coefficients (generically called ai’s),
(iii) from the one-loop diagrams collected in Fig. 9
(involving the LO coefficients a, b, κ3, and κ4 in the
vertices), and (iv) from counterterms, which are generated
from both the LO Lagrangian (in this case leading to the
terms involving δκ3, δκ4, δZH, δm2

H, δv=v, and δZπ) and the
NLO Lagrangian (generically called δai’s). These latter
are typically generated by the shift ai → ai þ δai and are
needed in the HEFT to remove the extra divergences
appearing from the loop diagrams in addition to the
divergences removed by the previous counterterms in the
LO Lagrangian. These four contributions can be written
generically as follows:

Γ̂NLO ¼ ΓLO þ Γai þ ΓLoop þ ΓCT; ðA1Þ

BOSONIC MULTI-HIGGS CORRELATIONS BEYOND LEADING … PHYS. REV. D 110, 095016 (2024)

095016-11



where

ΓLO
HHH ¼ −3κ3

m2
H

v
; ΓLO

HHHH ¼ −3κ4
m2

H

v2
; ðA2Þ

and the NLO coefficients that enter in the Γai’s are aH□□,
add□, aHdd, addW , and addZ for HHH and adddd, aHH□□,
aHdd□,aHHdd,aHddW , andaHddZ forHHHH (seeTable I). In
addition, a□□ enters in bothHHH andHHHH via the finite
contributions to δZH and δm2

H in the on-shell scheme.
Specifically,

δZH ¼ Σ0Loop
HH ðq2 ¼ m2

HÞ −
4m2

H

v2
a□□;

δm2
H ¼ −ΣLoop

HH ðq2 ¼ m2
HÞ −

2m4
H

v2
a□□: ðA3Þ

The renormalized 1PI functions for HH, HHH, and
HHHH have been checked to be finite for all values of the
external momenta. For this finiteness check, just theOðΔϵÞ
pieces (named δϵ) of the counterterms and the HEFT
coefficients in Eqs. (2.4), (2.6), and (2.7) are needed.
We include them below for completeness:

FIG. 9. 1PI bosonic loops. Here, wavy lines denote generically gauge bosons,W and/or Z, and dashed lines denote generically scalar
bosons H and/or Goldstone bosons π.
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δϵZH ¼ Δϵ

16π2
3a2

v2
ð2m2

Wþm2
ZÞ; Δϵ ¼

2

ϵ
− γEþ logð4πÞ;

δϵm2
H ¼ Δϵ

16π2
3

2v2
ðð3κ23þ κ4Þm4

H− 2a2m2
Hð2m2

Wþm2
ZÞþ ð4a2þ 2bÞð2m4

Wþm4
ZÞÞ;

δϵZπ ¼−
Δϵ

16π2
1

v2
ðða2−bÞm2

H − ð3a2þ 5=3Þm2
W−5=3m2

ZÞ;

δϵv=v¼
Δϵ

16π2
2ðm2

Wþm2
ZÞ

3v2
;

δϵκ3 ¼−
Δϵ

16π2
1

2m2
Hv

2
ðκ3ða2−bþ 9κ23− 6κ4Þm4

H − 3ð1−a2Þκ3m2
Hðm2

Wþm2
ZÞþ 6ð−2abþ 2a2κ3þbκ3Þð2m4

Wþm4
ZÞÞ;

δϵκ4 ¼−
Δϵ

16π2
1

2m2
Hv

2
ðκ4ð2a2− 2bþ 9κ23− 6κ4Þm4

H − 6ð1−a2Þκ4m2
Hðm2

Wþm2
ZÞ

þ 6ð−2b2þ 2a2κ4þbκ4Þð2m4
Wþm4

ZÞÞ;

δϵa□□ ¼−
Δϵ

16π2
3a2

4
; δϵaH□□ ¼ Δϵ

16π2
3að2a2−bÞ

2
;

δϵadd□ ¼ Δϵ

16π2
3aða2−bÞ

2
; δϵaHdd ¼ 0; δϵaddW=2¼ δϵaddZ ¼−

Δϵ

16π2
3aða2−bÞ;

δϵadddd ¼−
Δϵ

16π2
3ða2−bÞ2

4
; δϵaHH□□ ¼−

Δϵ

16π2
3ð12a4 − 10a2bþb2Þ

4
;

δϵaHdd□ ¼−
Δϵ

16π2
3ð6a4− 7a2bþb2Þ

2
; δϵaHHdd ¼ 0;

δϵaHddW ¼ Δϵ

16π2
3ð4a4 − 5a2bþb2Þ; δϵaHddZ ¼

Δϵ

16π2
3ð4a4 −5a2bþb2Þ

2
: ðA4Þ

The above results for δϵκ4, δϵadddd, δϵaHH□□, δϵaHdd□, δϵaHHdd, δϵaHddW , and δϵaHddZ are new in the literature,6 as far as
we know.
Notice that from these divergences in (A4) one can easily derive the running equations for the involved HEFT coefficients

ci (concretely, κ3, κ4, and the ai’s):

ciðμÞ ¼ ciðμ0Þ þ
1

16π2
γci log

�
μ2

μ02

�
; δϵci ¼

Δϵ

16π2
γci ðA5Þ

In particular, for the simplest choice of a ¼ b ¼ 1 which will be the one taken in our numerical analysis in this work, there
are just a few coefficients involved here that run, specifically, κ3, κ4, a□□, aH□□, and aHH□□, with corresponding
anomalous dimensions:

γκ3 ¼ −
1

2m2
Hv

2
ðκ3ð9κ23 − 6κ4Þm4

H þ 6ð3κ3 − 2Þð2m4
W þm4

ZÞÞ;

γκ4 ¼ −
1

2m2
Hv

2
ðκ4ð9κ23 − 6κ4Þm4

H þ 6ð3κ4 − 2Þð2m4
W þm4

ZÞÞ;

γa□□
¼ −

3

4
; γaH□□

¼ 3

2
; γaHH□□

¼ −
9

4
: ðA6Þ

6The others are extracted from [27]. Notice that we have included here the last line in δϵκ3 that was dropped in the edited version of [27].
Partial checks of the above results for theHEFT divergences have been donewith the previous literature. InRef. [58], the 1PI functionswere
renormalized to one loop for external off-shell momenta considering the pure scalar theory (i.e., no gauge bosons included) and with
massless Goldstone bosonsWe find agreement in the divergences of the ai’s of the scalar sector, concretely in aHdd□ and aHH□□ (which are
aΔH and b□H in their notation). In Ref. [59], the divergence of the adddd coefficient (γ in that reference) was derived within the pure scalar
theory (i.e., only scalar loops) from the one-loop renormalization ofHH → HH scattering.We also find agreement with this divergence by
doing the corresponding simplifications. InRef. [60], all kinds of bosonic loops (scalar andgauge bosons, but using the equivalence theorem
and the isospin limit withmW ¼ mZ) were computed for different scattering amplitudes, and the renormalization of the trilinear and quartic
Higgs couplings were derived. Our results for δϵκ3 and δϵκ4 are in agreement with this reference after using the equation of motion of the
Higgs field and simplifying our results by taking the isospin limit, i.e., setting mW ¼ mZ.
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Finally, in order to analyze numerically the size of the
radiative corrections in these renormalized 1PI functions, it is
illustrative to also split the previous results in an alternative
way, separating the contributions into tree-level ones and
one-loop ones of orders Oðℏ0Þ and Oðℏ1Þ, respectively:

Γ̂NLO ¼ Γtree þ ΔΓ1-loop; ðA7Þ

where

Γtree ¼ ΓLO þ Γai; ΔΓ1-loop ¼ ΓLoop þ ΓCT: ðA8Þ

Notice that LO and tree coincide only if all the involved ai’s
of the NLO Lagrangian are assumed to be vanishing. On the
other hand, in the self-energy case, the LO contribution is
absent and there are just contributions from Σa□□ and
from ΔΣ1-loop.
We summarize in Figs. 10–13 the most relevant numeri-

cal results for the Γ̂NLO functions. In this numerical
analysis, we include both the radiative corrections from
the bosonic sector and from the fermionic sector, more
specifically, from top loops. We have computed the top
loop corrections to all the involved 1PI functions within the
SMframework, sincewehave assumed that the topcouplings
to gauge bosonsW, Z, and γ (and g) and the Higgs bosonH
are exactly as in the SM. The top loops (not shown
here for brevity) are just the sunset diagram in HH, the
triangle diagram in HHH, and the box diagram in HHHH.
On the other hand, our main focus in this section is to show
the main effects on the 1PI functions that produce relevant
distant predictions between the HEFT and the SM. These
most relevant BSMeffects are basically (i) from thevirtuality
of the external legs, (ii) from the LO HEFT coefficients κ3
and κ4, and (iii) from the NLO HEFT ai coefficients. For
simplicity, we will show in this section the effect of just one
external leg being off shell, whereas the others are set on
shell. Specifically, in Hðp1ÞHðp2ÞHðp3Þ we are assuming
p2
1 ¼ q2, p2

2 ¼ p2
3 ¼ m2

H, and in Hðp1ÞHðp2ÞHðp3ÞHðp4Þ
we are assuming p2

1 ¼ q2, p2
2 ¼ p2

3 ¼ p2
4 ¼ m2

H. In theHH

case, the unique momentum involved q≡ ffiffiffiffiffi
q2

p
is

obviously off shell. Finally, as said in the main text, in all
the numerical estimates in this work we take the input values
of a ¼ b ¼ 1.
First, we show in Fig. 10 the results for the modulus

of the NLO renormalized self-energy as a function of the
off-shell momentum q defining the degree of virtuality in
the internal Higgs boson that is propagating in the total
process. The left plot is for a□□ ¼ 0, and we have included
the predictions from the HEFT and from the SM for
comparison. The contributions from just bosonic loops
are included separately in order to compare them with the
full results including both bosonic and top loops. As we can
see, the size of the top loop corrections in the HEFT case is
much smaller than the bosonic ones, and these latter
dominate largely the HH rates (the orange line is under-
lying the red line). In contrast, in the SM case, the two
contributions from bosonic and top loops are of similar size
and, therefore, compete in the full result. Comparing the
full HEFTand full SM results, it is clear that the effect from
the virtuality of q is more pronounced in the HEFT than in
the SM, and this can lead to large departures in the
predicted HEFT rates compared to the SM rates. When
the effect of a□□ ≠ 0 is incorporated in the full results
(right plot), the departures of the HEFT prediction com-
pared to the SM ones can be even more separated,
particularly, for negative a□□. As a consequence, the rates
for the considered multi-Higgs processes at LHC can also
be very different, as is seen in the main text.
Figure 11 shows the HEFT predictions for the modulus

of the 1PI (complex) functions ΓHHH (left) and ΓHHHH
(right) as a function of the off-shell momentum q and
compares them with the SM predictions. We include the
full predictions NLO (dashed lines) and LO (solid lines) in
both cases HEFT (in color) and SM (in black). The HEFT
coefficients explored in these plots are κ3 and κ4, for which
we are setting some illustrative values shown in the legend.
The other HEFT coefficients ai’s are set to zero. Notice that
this setting of all ai ¼ 0 implies Γai ¼ 0, and, therefore,
the tree-level predictions and LO predictions coincide;

FIG. 10. In the left plot, the predictions for the self-energy within the NLO HEFTas a function of the off-shell momentum q are shown
for a□□ ¼ 0. Both the full (bosonþ top loops) and the separate contributions from boson loops are displayed. The corresponding SM
predictions are also included for comparison. In the right plot, the NLO HEFT predictions for various a□□ values are shown.
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i.e., Γtree ¼ ΓLO. Notice also that, in the case of the SM
predictions, this identification is always true.
Let us first comment on the HHH case (left plot). The

comparison of the LO HEFT predictions with the LO SM
predictions (both constant with q) shows the expected
linear shift with κ3. For κ3 ¼ 1, both LO HEFTand LO SM
predictions coincide. For jκ3j > 1 (jκ3j < 1), the HEFT
prediction is shifted upward (downward) compared to the
SM. We next compare the NLO predictions, which now
clearly show a different q dependence. The NLO HEFT
lines show a very important effect from the virtuality of q
separating the predictions from the corresponding LO ones.
This is in contrast to the NLO SM prediction, which shows

a very small departure compared to the LO SM one. This
demonstrates that the size of the radiative correction (highly
dominated by the bosonic loops) within the HEFT can be
large, whereas within the SM it is very small. It should also
be noticed that this is true even at low q close to the
threshold value of q ¼ 2mH. For κ3 ¼ 1, we find different
values for the NLO HEFT prediction and the NLO SM one
even at this close to the threshold region. This difference
also reflects the nonlinearity feature within the bosonic
HEFT loops in comparison with the bosonic SM loops. A
summary of ratios NLO/LO will be given at the end of this
appendix in Table II. Finally, regarding the sign of the NLO
correction compared to the LO prediction, we see that for

FIG. 11. Predictions for the 1PIHHH (left) and 1PIHHHH (right) functions within the HEFT, LO, and NLO, as a function of the off-
shell momentum q and for various values of the κi parameters (κ3 in the left plot and κ4 in the left plot). The other HEFT coefficients are
set to a ¼ b ¼ 1 and ai ¼ 0. The momenta assignment inHHH is p1, p2, p3 with p2

1 ¼ q2 and p2
2 ¼ p2

3 ¼ m2
H and inHHHH is p1, p2,

p3, p4 with p2
1 ¼ q2 and p2

2 ¼ p2
3 ¼ p2

4 ¼ m2
H . In the case of HHHH, we also fix the values s23 ¼ ðp2 þ p3Þ2 ¼ ð1500 GeVÞ2 and

t ¼ ðp1 − p3Þ2 ¼ −ð500 GeVÞ2 as an example.

TABLE II. NLO/LO ratios for the 1PI HHH and 1PI HHHH functions for different values of κ3 and κ4,
respectively. Two values of q are chosen in each case. The settings for the other external momenta involved in the
1PI functions are defined as in the previous figures. The SM predictions are also included for comparison.

jΓNLO
HHHj=jΓLO

HHHj jΓNLO
HHHHj=jΓLO

HHHHj
κ3 q ¼ 251 GeV q ¼ 1000 GeV κ4 q ¼ 376 GeV q ¼ 1000 GeV

−1 1.1 4.4 −2 0.49 6.2
−0.5 1.2 7.9 −1 1.5 13
0.5 0.77 6.3 −0.5 3.7 27
1 0.84 2.8 0.5 5.4 29
1.5 0.82 1.7 1 3.2 15
2 0.76 1.3 1.5 2.5 10

2 2.1 7.9
5 1.7 4.0

SM 0.97 1.0 SM 0.91 0.99
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the SM it is negative for low q < 350 GeV and positive
for q > 350 GeV. In the HEFT case, we find a positive
correction for negative κ3, whereas for positive κ3 we find a
negative correction at low q that changes to positive at high
q. This change of positive to negative correction happens at
around q ¼ 400 GeV, q ¼ 550 GeV, q ¼ 600 GeV, and
q ¼ 650 GeV for κ3 ¼ 0.5, 1, 1.5, 2, respectively. The
most relevant outcome from this plot is that the NLO HEFT
prediction for this 1PI HHH function defining the size of
the HHH blob vertex in the main text could lead to large
departures compared to the SM values, showing both
possibilities either increasing or decreasing the SM rates.
We have also explored the κ4 effect via the loops in the
HHH case, but we do not show it here because it is less
relevant, being very small.

Regarding the HHHH case (right plot), the most
relevant parameter is κ4. The κ3 parameter also enters
via the loops, but its effects are very tiny and less relevant
for the present computation. Consequently, they are not
shown here. As can be seen in this plot, we have also found
important departures between the HEFT and the SM
predictions. The comparison of the LO HEFT and LO
SM predictions shows the expected linear shift with jκ4j,
being upward for jκ4j > 1 and downward for jκ4j < 1.
Going NLO, notice again that the HEFT prediction for
κ4 ¼ 1 (dashed red line) does not coincide with the SM
prediction (dashed black line), and the distance is large
even at low q close to the threshold value of q ¼ 3mH. The
size of the NLO correction in the SM case is again very
small compared to the size of the correction within the

FIG. 12. Predictions for the 1PI HHH functions within the NLO HEFT as a function of the off-shell momentum q and for various
values of the relevant ai coefficients. The LO HEFT coefficients are set to a ¼ b ¼ κ3 ¼ κ4 ¼ 1. The setting for the momenta are as in
the previous figures.
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HEFT. As for the sign of these corrections, we find them
negative in the SM case and positive in all the HEFT cases
studied, except for the largest negative value considered in
this plot of κ4 ¼ −2, where the correction is negative for
q < 470 GeV and positive for q > 470 GeV. In any case,
the most relevant effect in this 1PI function as in the
previous case is the off-shell effect that can change the size
of the HHHH blob vertex considerably.
Finally, we show next in Figs. 12 and 13 the effects from

the NLO HEFT ai coefficients on the 1PI HHH and
HHHH functions, respectively. In these plots, we set
κ3 ¼ κ4 ¼ 1. In this case, we show again the results as a
function of the virtuality of q and choose several bench-
mark values for each single nonvanishing ai coefficient (the
other ai’s are set to zero). Concretely, we explore the values

ai ¼ 0;�0.01;�0.1. We include both the tree predictions
Γtree (solid lines) and the full one-loop ones Γ̂NLO (dashed
lines). Our main interest here is to learn on the relative size
of the radiative corrections, i.e., Oðℏ1Þ versus Oðℏ0Þ, and
the relative importance of the various ai’s coefficients.
Notice that, in this case, the tree HEFT and the tree SM
predictions coincide for the particular setting ai ¼ 0 (solid
red lines).
Let us first comment on the 1PI HHH results in Fig. 12.

We notice the appearance of dips in some solid lines at
specific q values, which are produced because of the two
competing contributions to the tree predictions, ΓLO, which
is q independent, and Γai, which is q dependent. Depending
on the sign of the ai’s, these two contributions may
interfere constructively or destructively (add or subtract)

FIG. 13. Predictions for the 1PI HHHH functions within the NLO HEFT as a function of the off-shell momentum q and for various
values of the relevant ai coefficients. The LO HEFT coefficients are set to a ¼ b ¼ κ3 ¼ κ4 ¼ 1. The setting for the momenta is as in the
previous figures. Notice that the plot for aHddZ is not included here, because it is practically identical to the aHddW one.
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and produce cancellations. On the other hand, in the large q
region, it is clear that the most relevant ai coefficient is
add□, since it leads to larger values of ΓHHH as compared
to other coefficients with the same size. For instance, for
add□ ¼ 0.1 we get at q ¼ 1000 GeV a value of ΓHHH∼
6000 GeV, whereas for the other coefficients with the same
size we get a smaller prediction ΓHHH < 1000 GeV.
Another relevant coefficient at large q is aH□□. In general,
we find important radiative corrections in several cases
(depending on the q and ai values) manifesting as large
separations between the NLO and the tree predictions. In
summary, the largest HEFT departures compared to the SM
case are obtained at large virtuality of q and large jaij
values. Similar conclusions are obtained from the 1PI
HHHH results in Fig. 13. In this case, the most relevant
parameters at large q values seem to be adddd and aHdd□,
since they provide the largest deviations compared to the
SM rates.
In summary, when going from LO to NLO within the

HEFT, we find important corrections in the 1PI HHH and
HHHH functions defining the size of the blob vertices
involved in the HH and HHH production from gluon-
gluon fusion at the LHC. These corrections depend notably
on the size of the virtuality of the internal propagating

Higgs boson momentum and can be large depending on
the q values. Obviously, for the relevant estimates at the
LHC, the q values are finally integrated over all the
available phase space. If we focus on the sensitivity to
κ3 and κ4, we summarize in Table II the predicted ratios for
jΓNLO

HHH=ΓLO
HHHj and jΓNLO

HHHH=ΓLO
HHHHj at two different values

of q and for several benchmark values of κ3 and κ4. The
two selected values for the virtuality are (i) q close to
the threshold production value, i.e., q ≃ 2mH in HH
production and q ≃ 3mH in HHH production, and
(ii) q ¼ 1000 GeV. For instance, for the lowest q values
close to threshold values we find that the size of the
radiative corrections in the 1PIs within the HEFT (depend-
ing on the κi values) are (i) 10%–24% for HHH and
(ii) ≳50% for HHHH. These radiative corrections should
be compared with the corresponding SM radiative correc-
tions which are small as deduced from this table, ∼3% for
HHH and ∼9% for HHHH. They are in concordance with
the final cross section NLO/LO rates presented in the main
text, in particular, in Fig. 3. Obviously, to understand the
comparison with the relevant HH and HHH production
rates at the LHC, these ratios of 1PI vertices that depend on
q should be integrated over all available LHC phase space.
But they provide in any case a useful reference.
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