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Abstract: The steady-state response of forced single degree-of-freedom weakly nonlinear oscillators under primary reso-
nance conditions can exhibit saddle-node bifurcations, jump and hysteresis phenomena, if the amplitude of the
excitation exceeds a certain value. This critical value of excitation amplitude or critical forcing amplitude plays
an important role in determining the occurrence of saddle-node bifurcations in the frequency-response curve.
This work develops an alternative method to determine the critical forcing amplitude for single degree-of-freedom
nonlinear oscillators. Based on Lagrange multipliers approach, the proposed method considers the calculation
of the critical forcing amplitude as an optimization problem with constraints that are imposed by the existence of
locations of vertical tangency. In comparison with the Gröbner basis method, the proposed approach is more
straightforward and thus easy to apply for finding the critical forcing amplitude both analytically and numerically.
Three examples are given to confirm the validity of the theoretical predictions. The first two present the analytical
form for the critical forcing amplitude and the third one is an example of a numerically computed solution.
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© Versita sp. z o.o.

1. Introduction

In single degree-of-freedom (SDOF) weakly nonlinear os-cillators subjected to periodic excitations, nonlinear reso-nances may occur if the linearized natural frequency of thesystem and the frequency of an external excitation satisfya certain relationship. A small-amplitude excitation mayproduce a relatively large-amplitude response under pri-mary resonance conditions when the forcing frequency is
∗E-mail: mfebbo@uns.edu.ar

in the neighborhood of the linearized natural frequency.The critical threshold of the amplitude of excitation or,simply, the critical forcing amplitude is commonly referredto as a certain value of the excitation amplitude for whichthe response amplitude has one solution only if below thisvalue and can have three solutions if above this value [1–3].Beyond the critical forcing amplitude, the steady-stateforced response of the nonlinear oscillators under pri-mary resonance conditions may exhibit nonlinear dynamicbehaviors including saddle-node bifurcations, jump andhysteresis phenomena [1–3]. Figure 1 shows a typicalfrequency-response curve of the amplitude of the response
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as a function of the external detuning, for a certain forc-ing amplitude above the critical value. There is one so-lution branch for the detuning in the regimes σ < σ1 and
σ > σ2, and three coexisting solutions for σ1 < σ < σ2,respectively. Two solution branches merge at points Aand B where saddle-node bifurcations occur. It is notedthat points A and B are the jump-up and jump-downpoints and the corresponding frequencies are called jump-up and jump-down frequencies because they are the fre-quencies where the frequency-response curve leads to ajump when the excitation frequency is swept from left-to-right or right-to-left. These two points coincide with thelocations of vertical tangency of the frequency-responsecurve. The values of detuning σ1, σ2 can be found basedon this fact. A brief literature review is given here to
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Figure 1. Typical frequency-response curve of the primary reso-
nance response for certain forcing amplitude larger than
its critical value. Solid lines denote stable solutions and
dash-dot lines represent unstable solutions.

show the calculation of the critical forcing amplitude forSDOF nonlinear systems as well as for the jump frequen-cies. Kervorkian and Cole [4] used the method of multi-ple scales (MMS) to calculate the jump frequencies for ahardening nonlinear system. Friswell and Penny [1] andWorden [2] used the harmonic balance method (HBM) tocalculate the jump frequencies of the Duffing oscillatorwith linear damping. Friswell and Penny employed a nu-merical approach to compute the jump frequencies whileWorden used a different approach setting the discriminantof the frequency-response function equal to zero. Later,Malatkar and Nayfeh [3] developed a general procedureto determine the critical forcing amplitude and the jumpfrequencies based on the elimination theory of polynomi-als. To obtain their key results, they numerically solveda set of polynomial equations using an available softwarepackage.This paper aims to present an alternative method to de-

termine the critical forcing amplitude for forced nonlinearoscillators. The main advantage of the proposed methodis that it does not require the calculation of the resul-tant or the Gröbner basis of two polynomials as employedfor example by Malatkar and Nayfeh [3] in a previous ap-proach to the same problem. Instead, the proposed methodconsiders the calculation as an optimization problem withconstraints, using the Lagrange multipliers approach. Asa result, it is possible to find the critical forcing ampli-tude by computing the derivatives of two functions only.Three examples are given to show the effectiveness andvalidation of the proposed method. The first two give thecritical forcing amplitude in analytical form while the lastone computes the solution numerically.To see the details of the calculation, we will analyze thesimplest case of a weakly nonlinear damped oscillatorsubjected to periodic excitation having mass m1, linearstiffness k1, nonlinear stiffness k3 and damping coefficient
c1, namely, the Duffing oscillator with periodic excitation.The equation of motion for the displacement amplitude xcan be readily found to be

ẍ + µ10ẋ + ω210x + αx3 = f0 cos(ωt) (1)
where µ10 = c1/m1, ω210 = k1/m1, α = k3/m1. For the caseof primary resonances, the forcing frequency ω is assumedto be almost equal to ω10 and, therefore ω = ω10 + εσ ,where ε is a small dimensionless parameter ε� 1 and σis an external detuning parameter.The nonlinear oscillations of Eq. (1) have been extensivelystudied in the literature (for example [5, 6]). By applyingthe MMS method the frequency-response equation for theamplitude of the first-order approximate solution can beobtained as(µ102 )2

a2 + (−σ + g20a2)2a2 = e2 (2)
where a denotes the amplitude of the primary resonanceresponse of the nonlinear system, e = f0/(2ω10) and
g20 = 3α/(8ω10). For the brevity of explanation, e willbe referred to here as the amplitude of excitation, or sim-ply forcing amplitude.The locations of the jumps points (or the points of verticaltangency) are obtained by differentiating the amplitude-frequency relation (2) implicitly with respect to a2 andthen, setting dσ/da2 = 0. The resulting expression is,
g(σ, a) ≡ (µ102 )2+2a2(−σ+g20a2)g20+(−σ+g20a2)2 = 0(3)with solutions

σ± = 2g20a2 ±
√
g220a4 − (µ102 )2

. (4)
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Determination of the critical forcing amplitude is to finda minimum value of forcing amplitude e in Eq. (2) forwhich the amplitude a has only one positive solution whenthe forcing amplitude is below its critical value and canhave three positive solutions when the forcing amplitude isabove its critical value. The frequency response curve forthis critical forcing value of e (will be denoted as ec) hasan inflection point at (ac, σc). The method to be developedin the following section provides the calculation of thisminimum ec by taking into account the restriction imposedby the locations of vertical tangency.
2. Mathematical formulation of the
problem
The problem of finding the critical amplitude of the exci-tation is a typical problem of minimizing a function sub-ject to some prescribed constraints. To solve this, we re-call some results of differential calculus applied to opti-mization problems (see for example [7]). In this case, theproblem is summarized as finding the minimum of a dif-ferentiable function f (σ, a) ≡ e2 (Eq. 2) subject to theconstraints: g(σ, a) = 0 (Eq. 3) and h(σ, a) ≡ ∂σ

∂a2 = 0.From the mathematical theory of optimization subject toconstraints, we select the method of Lagrange multipliersto find the stationary points of function f (σ, a) with theseconditions. By applying to the present problem, this re-sults in solving the following equation:
d(f (σ, a) + λ1g(σ, a) + λ2h(σ, a)) = 0 (5)

where d(r(σ, a)) represents the total differential of func-tion r(σ, a) and λ1 and λ2 are the so-called Lagrange un-determined multipliers. The two equations obtained fromEq. (5) are
∂f
∂σ + λ1 ∂g∂σ + λ2 ∂h∂σ = 0 (6)
∂f
∂a + λ1 ∂g∂a + λ2 ∂h∂a = 0 (7)

which, together with the two constraint equations
g(σ, a) = 0 and h(σ, a) = 0 give solutions for σ , a, λ1and λ2. It is straightforward to obtain λ2 from (6) whichgives:

λ2 = (− ∂f∂σ − λ1 ∂g∂σ
) 1

∂h
∂σ

(8)
Substituting this value of λ2 into Eq. (7) and using ∂σ

∂a =2a ∂σ
∂a2 = 2ah(σ, a), we readily obtain:

∂f
∂a + λ1 ∂g∂a + (− ∂f∂σ − λ1 ∂g∂σ

) 2ah(σ, a) = 0 (9)

From the fact that h(σ, a) = 0, Eq. (9) becomes
∂f
∂a + λ1 ∂g∂a = 0 (10)

Additionally, since h(σ, a) ≡ ∂σ
∂a2 = 0 ⇒ ∂f

∂a ≡2ag(σ, a) = 0, then Eq. (10) can be simplified as:
∂g
∂a = 0 (11)

This is an equation that provides σ as a function of a forthe critical amplitude of excitation. After substituting thisequation into g(σ, a) = 0 we can obtain the correspondingresponse amplitude ac and the detuning σc which providethe minimum value of f (σ, a) ≡ e2 and consequently, thecritical forcing amplitude ec .In summary, the detailed procedure for finding the criticalforcing amplitude can be divided into three steps. The firststep is to find the equation of determining the locations ofthe points of vertical tangency or jump frequencies by dif-ferentiating the frequency-response equation. For brevity,this is referred to here as the equation of vertical tangency,or Eq. (3) in this case. The second step is to obtain Eq.(11) by differentiating the equation of vertical tangencywith respect to the response amplitude a. The third stepis to solve the response amplitude a and external detun-ing σ (or frequency ω) from these two equations and thensubstitute them into the frequency-response equation toobtain the critical forcing amplitude ec . For such simpleproblems as will be discussed in the first two examples,the critical forcing amplitude can be obtained in explicitexpressions.
2.1. Examples and comparison with the exist-
ing methods

Here, we consider three examples for the calculation ofthe critical forcing amplitude. The first one is the Duff-ing oscillator subjected to periodic excitation which wasanalyzed in Section 1. The second one is a quasi-zerostiffness oscillator under inertial excitation [8] used as anonlinear ultra-low frequency vibration isolator and thethird one is a finite extensibility nonlinear oscillator [9]commonly used to model the impossibility of real oscil-lators to extend to infinity. In the first two cases, thevalues of the critical forcing amplitude are possible to befound analytically. Instead, the last case is an example ofthe application of the proposed method where the criticalforcing amplitude is numerically obtained.
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2.1.1. Duffing equation with periodic excitationLet us return to the case considered in Section 1. Thistime, we explicitly develop the solution for the criticalforcing amplitude ec resulting from Eq. (1). Letting ∂g
∂a = 0results in σ = 32g20a2. Then substituting it into g(σ, a) =0 we obtain the following expression for a2:

a2 =√13 µ10
g20 (12)

The final expression for ec is obtained by substituting thisvalue of a2 into Eq. (2):
ec =√ 13√3 µ310

g20 (13)
Fig. 2 shows two frequency-response curves for variousvalues of e. One is with the critical forcing amplitude ec ,and the other is with a slightly different value of e = eu =√

µ3104g20 obtained from [10] (relative error between ec and
eu is ∆e(%) ≈ 14%) plotted for comparison. In all caseswe use g20 = 0.0375 and µ10 = 1. The validity of theobtained ec is evident.
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Figure 2. Different frequency-response curves to show the critical
forcing amplitude for the Duffing oscillator as calculated
using the proposed method (dotted line) and a slightly
larger value than this (solid line) extracted from [10]. Data
plotted using g20 = 0.0375, µ10 = 1. In this case the critical
forcing amplitude can be analytically obtained (see text).

2.1.2. Critical forcing amplitude using Gröbner basis
methodIn this subsection, we compare our method for the calcula-tion of the critical forcing amplitude with another method

borrowed from [3]. In that work, Malatkar and Nayfeh pro-posed essentially two methods to obtain the critical forc-ing amplitude. The first method is based on the Sylvesterresultant while the second one uses the Gröbner basis forpolynomials. We arbitrarily select the second one basedon the Gröbner basis to perform a comparison between ourproposed approach and their method. The Gröbner basismethod uses the fact that f ′(σ, a) and f ′′(σ, a), which arethe first and the second derivative of f (σ, a) with respectto a respectively, vanish at the inflection point of coordi-nates (σc, ac). The method can be divided into three steps,namely• Calculate the first two derivatives of the frequency-response equation f ′(σ, a) and f ′′(σ, a).
• Compute the Gröbner basis for the polynomials
f ′(σ, a) and f ′′(σ, a) and obtain two polynomials
G1, G2 which also vanish at the inflection point(σc, ac).• Obtain ac from G1 = 0 and σc from G2 = 0. Fi-nally, replace those values of ac and σc into thefrequency-response curve Eq. (2) to obtain ec .For the example discussed in Section 2.1.1, from Eq. (2)we can obtain the first two derivatives of the frequency-response equation as

f ′(σ, a) = µ102 a+ 6a5g20 − 8a3g20σ + 2aσ 2;
f ′′(σ, a) = µ2102 + 30a4g220 − 24a2g20σ + 2σ 2 (14)

To compute the Gröbner basis for polynomials f ′(σ, a) and
f ′′(σ, a) we use the Groebner Basis function of Maple toobtain the following results:
G1(σ, a) = −a3µ210 + 3g220a7; G2(σ, a) = −3a5g20 + 2a3σ(15)Equating G1 = 0 we obtain a2 = √ 13 µ10

g20 which is thesame as Eq. (12) obtained using our proposed method,and then from G2 = 0 we have σ = 32g20a2 which hasbeen obtained from making ∂g
∂a = 0 in Section 2.1.1. Withthese two values of σ and a, replacing them into Eq. (2)we obtain

ec =√ 13√3 µ310
g20 (16)

which is the same value obtained from our method (seeEq. 16). As it can be seen from the beginning, the ex-isting method is based on calculating the Groebner basisfrom a set of given polynomials which is not a trivial mat-ter. Instead, our proposed method is based on finding aderivative, which is more straightforward.
767

Unauthenticated
Download Date | 9/22/15 5:53 PM



On the critical forcing amplitude of forced nonlinear oscillators

2.1.3. Cubic spring with inertial excitationThis type of quasi-zero stiffness SDOF nonlinear oscil-lator has been studied by [8] and [11] and is possible tobe found in practical applications of nonlinear absorbers.The equation of motion of such a system with inertial ex-citation is:
ẍ + 2ξẋ + γx3 = −ω2f cos(ωt) (17)

where ξ is the damping coefficient and γ is a nonlinearparameter that measures the degree of the nonlinearity.After applying, for example, the HBM and considering x =
a cos(ωt) we arrive at the frequency-amplitude relation:

916γ2 a6
ω4 − 32γ a4

ω2 + (1 + 4 ξ2
ω2
)
a2 = e2 (18)

where we have set f = e for the sake of consistency ofdiscussion.Then, the function g is calculated by differentiatingEq.(18) with respect to a2 and setting dω/da2 = 0. Itresults in:
g = 2716γ2 a4

ω4 − 3γ a2
ω2 + 1 + 4 ξ2

ω2 (19)
Following the proposed method, making ∂g

∂a = 0 leads usto ω2 = 2724γa2. Then, substituting it into g(ω, a) = 0 weobtain a2 as:
a2 = 323 ξ2

γ (20)
Then, the resulting expression for the critical forcing am-plitude ec is obtained by substituting this value of a2 intoEq. (18):

ec =√ 12827γ ξ (21)
Figure 3 shows the frequency response curves for ec givenby Eq. (21) and for eu = √ 89 (1+√3)2(5+3√3)

γ(2+√3)2 ξ calculatedfrom [10] for comparison. We use γ = 3.3×10−3, ξ = 0.04for all cases. Again, the validity of the method developedis evident.
2.1.4. Finite extensibility oscillator with periodic excita-
tionAs a final example we analyze the case of a finite extensi-bility nonlinear oscillator. This type of systems is widelyused to model real oscillators which can not be extendedto infinity. For example, such systems can be found in theliterature when modelling the bonds between moleculesin a polymer or DNA molecule [12]. Unlike the previoustwo cases, we select this system as an example of a nu-merically obtained ec . The modulation equation, which is

0 0.05 0.1 0.15 0.2 0.25
0.5

1

1.5

2

2.5

3

3.5

ω
a

 

 

critical
up critical

Figure 3. Frequency-response curves to show the critical forcing
amplitude for the quasi-zero stiffness oscillator as cal-
culated using the proposed method (dotted line) and a
slightly larger value than this (solid line) extracted from
[10]. Data plotted using γ = 3.3 × 10−3, ξ = 0.04. In
this case the critical forcing amplitude can be analytically
obtained (see text).

the result of applying the HBM to the equation of motionof this type oscillator is given in [9] and reproduced hereto be:
a2 ( 2ω2

NL√1− a2 + 1− a2 − ω2)2+4ξ2ω2
NLω2a2 = e2 (22)

where, a, e and ξ have the same meaning as above and
ωNL is a nonlinear parameter. Then, function g is obtainedfrom differentiating Eq. (22) implicitly with respect to a2and setting dω/da2 = 0. The resulting expression is:
g ≡

( 2ω2
NL√1− a2 + 1− a2 − ω2)2

+ 2a2ω2
NL

( 2ω2
NL√1− a2 + 1− a2 − ω2)

(2 + (1− a2)−1/2)(√1− a2 + 1− a2)2 + 4ξ2ω2
NLω2 = 0 (23)

where the value of ω can be found to be
ω± = ωNL

√
b(a2, ξ2)±√b2(a2, ξ2)− 4c(a2) (24)
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where
b(a2, ξ2) = 2√1− a2 + 1− a2 + a2(2 + (1− a2)−1/2)(√1− a2 + 1− a2)2−2ξ2

and
c(a2) = ((1− a2)−1/2 + 1 + a2)(√1− a2 + 1− a2)3

Then, combining Eqs. (23) and (24) the function g is sim-ply written as
g = ω± ∓ ωNL

√
b(a2, ξ2)−√b2(a2, ξ2)− 4c(a2) = 0

Due to the complicate expression for function g, an ex-plicit expression for the critical forcing amplitude cannotbe given. Instead, a numerical solution will be sought.After making ∂g
∂a = 0 and solving it for a (numerically) wethen substitute this value of a = ac into Eq. (24) for ω− toobtain ωc . Note that we have picked the value of ω− for ω.If instead we have taken the value of ω+ this would resultin obtaining a complex value of a which makes no sense.Finally, we substitute this pair (ωc, ac) into Eq. (22) toobtain ec . The obtained frequency-response curve for ectogether with another curve calculated using the value eextracted from [10] are shown in Fig. 4 for ξ = 0.2 and

ωNL = 0.75. Again, this numerically obtained value of ecis as expected.
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Figure 4. Frequency-response curves to show the critical forcing
amplitude for the finite extensibility nonlinear oscillator
as calculated using proposed method (dotted line) and a
slightly larger value than this (solid line) extracted from
[10]. Data plotted using ξ = 0.2 and ωNL = 0.75. In this
case the critical forcing amplitude is numerically computed
(see text).

3. Conclusion
An alternative method to obtain the critical forcing ampli-tude for SDOF nonlinear oscillators has been proposedin this work. The proposed method involves in setting theproblem into an optimization problem with constraints, im-posed by the existence of locations of vertical tangencyand then using Lagrange multipliers approach to solve it.Unlike previous approaches to the same problem, whichare based on the calculation of the Sylvester resultant orthe Gröbner basis of polynomials, the main advantage ofthe proposed method is that it is easy to apply since it re-quires only the computation of the derivative of two func-tions. Briefly, the procedure for applying the proposedmethod includes differentiating the equation of verticaltangency to obtain another equation, solving these twoequations to obtain the response amplitude and detuning(or frequency) and substituting the resultant response am-plitude and detuning into the frequency-response equa-tion to obtain the critical forcing amplitude. Three ex-amples were given to confirm the validity of the proposedmethod that was applied to obtain the critical forcing am-plitude in both analytical and numerical scenarios.
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