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Abstract: The steady-state response of forced single degree-of-freedom weakly nonlinear oscillators under primary reso-
nance conditions can exhibit saddle-node bifurcations, jump and hysteresis phenomena, if the amplitude of the
excitation exceeds a certain value. This critical value of excitation amplitude or critical forcing amplitude plays
an important role in determining the occurrence of saddle-node bifurcations in the frequency-response curve.
This work develops an alternative method to determine the critical forcing amplitude for single degree-of-freedom
nonlinear oscillators. Based on Lagrange multipliers approach, the proposed method considers the calculation
of the critical forcing amplitude as an optimization problem with constraints that are imposed by the existence of
locations of vertical tangency. In comparison with the Grébner basis method, the proposed approach is more
straightforward and thus easy to apply for finding the critical forcing amplitude both analytically and numerically.
Three examples are given to confirm the validity of the theoretical predictions. The first two present the analytical
form for the critical forcing amplitude and the third one is an example of a numerically computed solution.
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1. Introduction

in the neighborhood of the linearized natural frequency.
The critical threshold of the amplitude of excitation or,
simply, the critical forcing amplitude is commonly referred
to as a certain value of the excitation amplitude for which
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In single degree-of-freedom (SDOF) weakly nonlinear os-
cillators subjected to periodic excitations, nonlinear reso-
nances may occur if the linearized natural frequency of the
system and the frequency of an external excitation satisfy
a certain relationship. A small-amplitude excitation may
produce a relatively large-amplitude response under pri-
mary resonance conditions when the forcing frequency is
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the response amplitude has one solution only if below this
value and can have three solutions if above this value [1-
3]

Beyond the critical forcing amplitude, the steady-state
forced response of the nonlinear oscillators under pri-
mary resonance conditions may exhibit nonlinear dynamic
behaviors including saddle-node bifurcations, jump and
hysteresis phenomena [1-3]. Figure 1 shows a typical
frequency-response curve of the amplitude of the response
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as a function of the external detuning, for a certain forc-
ing amplitude above the critical value. There is one so-
lution branch for the detuning in the regimes ¢ < ¢y and
o > 0y, and three coexisting solutions for o1 < 0 < 0y,
respectively. Two solution branches merge at points A
and B where saddle-node bifurcations occur. It is noted
that points A and B are the jump-up and jump-down
points and the corresponding frequencies are called jump-
up and jump-down frequencies because they are the fre-
quencies where the frequency-response curve leads to a
jump when the excitation frequency is swept from left-to-
right or right-to-left. These two points coincide with the
locations of vertical tangency of the frequency-response
curve. The values of detuning o0y, 0; can be found based
on this fact. A brief literature review is given here to
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Figure 1. Typical frequency-response curve of the primary reso-
nance response for certain forcing amplitude larger than
its critical value. Solid lines denote stable solutions and
dash-dot lines represent unstable solutions.

show the calculation of the critical forcing amplitude for
SDOF nonlinear systems as well as for the jump frequen-
cies. Kervorkian and Cole [4] used the method of multi-
ple scales (MMS) to calculate the jump frequencies for a
hardening nonlinear system. Friswell and Penny [1] and
Worden [2] used the harmonic balance method (HBM) to
calculate the jump frequencies of the Duffing oscillator
with linear damping. Friswell and Penny employed a nu-
merical approach to compute the jump frequencies while
Worden used a different approach setting the discriminant
of the frequency-response function equal to zero. Later,
Malatkar and Nayfeh [3] developed a general procedure
to determine the critical forcing amplitude and the jump
frequencies based on the elimination theory of polynomi-
als. To obtain their key results, they numerically solved
a set of polynomial equations using an available software
package.

This paper aims to present an alternative method to de-

termine the critical forcing amplitude for forced nonlinear
oscillators. The main advantage of the proposed method
is that it does not require the calculation of the resul-
tant or the Grdobner basis of two polynomials as employed
for example by Malatkar and Nayfeh [3] in a previous ap-
proach to the same problem. Instead, the proposed method
considers the calculation as an optimization problem with
constraints, using the Lagrange multipliers approach. As
a result, it is possible to find the critical forcing ampli-
tude by computing the derivatives of two functions only.
Three examples are given to show the effectiveness and
validation of the proposed method. The first two give the
critical forcing amplitude in analytical form while the last
one computes the solution numerically.

To see the details of the calculation, we will analyze the
simplest case of a weakly nonlinear damped oscillator
subjected to periodic excitation having mass mq, linear
stiffness ki, nonlinear stiffness k3 and damping coefficient
¢1, namely, the Duffing oscillator with periodic excitation.
The equation of motion for the displacement amplitude x
can be readily found to be

X 4 toX + wiyx + ax® = fy cos(wt) (1)

where 1o = ¢1/my, wly = ki/mq, @ = k3/my. For the case
of primary resonances, the forcing frequency w is assumed
to be almost equal to wq and, therefore w = wyo + €0,
where ¢ is a small dimensionless parameter € < 1 and ¢
is an external detuning parameter.

The nonlinear oscillations of Eq. (1) have been extensively
studied in the literature (for example [5, 6]). By applying
the MMS method the frequency-response equation for the
amplitude of the first-order approximate solution can be
obtained as

(o

2
> ) a’ 4 (—0 + gxa®)’a’ = e? (2)

where a denotes the amplitude of the primary resonance
response of the nonlinear system, e = fy/(2wio) and
g2 = 3a/(8wqg). For the brevity of explanation, e will
be referred to here as the amplitude of excitation, or sim-
ply forcing amplitude.

The locations of the jumps points (or the points of vertical
tangency) are obtained by differentiating the amplitude-
frequency relation (2) implicitly with respect to a? and
then, setting dal/da? = 0. The resulting expression is,

o

2
g(O,G) = ( 5 ) +202(—U+92002)920+(—U+gzo02)2 =0

)

with solutions

2
oL = 292002 + \/ 95004 — (%) . (4)
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Determination of the critical forcing amplitude is to find
a minimum value of forcing amplitude e in Eq. (2) for
which the amplitude a has only one positive solution when
the forcing amplitude is below its critical value and can
have three positive solutions when the forcing amplitude is
above its critical value. The frequency response curve for
this critical forcing value of e (will be denoted as e.) has
an inflection point at (a., o.). The method to be developed
in the following section provides the calculation of this
minimum e, by taking into account the restriction imposed
by the locations of vertical tangency.

2. Mathematical formulation of the
problem

The problem of finding the critical amplitude of the exci-
tation is a typical problem of minimizing a function sub-
ject to some prescribed constraints. To solve this, we re-
call some results of differential calculus applied to opti-
mization problems (see for example [7]). In this case, the
problem is summarized as finding the minimum of a dif-
ferentiable function f(o,a) = e? (Eq. 2) subject to the
constraints: g(o,a) = 0 (Eq. 3) and h(o,a) = 5%’2 =0.
From the mathematical theory of optimization subject to
constraints, we select the method of Lagrange multipliers
to find the stationary points of function f(o, a) with these
conditions. By applying to the present problem, this re-
sults in solving the following equation:

d(f(o,a)+ Ag(o,a)+ Ah(o,a)) =0 (5)

where d(r(o, a)) represents the total differential of func-
tion r(o, @) and A; and A; are the so-called Lagrange un-
determined multipliers. The two equations obtained from
Eq. (5) are

—th=+Ah-=0 (6)
g

of g . oh
3g Thig, Thg, =0 (7)

which, together with the two constraint equations
g(o,a) = 0 and h(o,a) = 0 give solutions for o, a, A
and A,. It is straightforward to obtain A, from (6) which

gives:
of dg\ 1
)\ = _— = )\ _— —_—
: ( do 180) o ®)

Substituting this value of A, into Eq. (7) and using g—‘u’ =
2a2% = 2ah(o, a), we readily obtain:

of dg _of
do

3
or _Ma%) 2ah(o,a) =0 (9)

From the fact that h(o, a) =0, Eq. (9) becomes

of 9 _

— =0 10
da A da (10)
Additionally, since h(o,a) = a% = 0= % =

2ag(o,a) =0, then Eq. (10) can be simplified as:

ag_
%—0 (11)

This is an equation that provides o as a function of a for
the critical amplitude of excitation. After substituting this
equation into g(o, a) = 0 we can obtain the corresponding
response amplitude a. and the detuning o, which provide
the minimum value of f(c, a) = e? and consequently, the
critical forcing amplitude e..

In summary, the detailed procedure for finding the critical
forcing amplitude can be divided into three steps. The first
step is to find the equation of determining the locations of
the points of vertical tangency or jump frequencies by dif-
ferentiating the frequency-response equation. For brevity,
this is referred to here as the equation of vertical tangency,
or Eq. (3) in this case. The second step is to obtain Eq.
(11) by differentiating the equation of vertical tangency
with respect to the response amplitude a. The third step
is to solve the response amplitude a and external detun-
ing o (or frequency w) from these two equations and then
substitute them into the frequency-response equation to
obtain the critical forcing amplitude e.. For such simple
problems as will be discussed in the first two examples,
the critical forcing amplitude can be obtained in explicit
expressions.

2.1. Examples and comparison with the exist-
ing methods

Here, we consider three examples for the calculation of
the critical forcing amplitude. The first one is the Duff-
ing oscillator subjected to periodic excitation which was
analyzed in Section 1. The second one is a quasi-zero
stiffness oscillator under inertial excitation [8] used as a
nonlinear ultra-low frequency vibration isolator and the
third one is a finite extensibility nonlinear oscillator [9]
commonly used to model the impossibility of real oscil-
lators to extend to infinity. In the first two cases, the
values of the critical forcing amplitude are possible to be
found analytically. Instead, the last case is an example of
the application of the proposed method where the critical
forcing amplitude is numerically obtained.
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2.1.1.  Duffing equation with periodic excitation

Let us return to the case considered in Section 1. This
time, we explicitly develop the solution for the critical
forcing amplitude e, resulting from Eq. (1). Letting g—g =0
results in 0 = %gzoaz. Then substituting it into g(o, a) =
0 we obtain the following expression for a:

1 1o

2

a“=\/=z— 12
\/;920 (12

The final expression for e, is obtained by substituting this
value of a? into Eq. (2):

1 U130
e, =1/ —=2 13
3\/?920 (13)

Fig. 2 shows two frequency-response curves for various
values of e. One is with the critical forcing amplitude e,
and the other is with a slightly different value of e = ¢, =
\/% obtained from [10] (relative error between e, and
ey s Ae(%) ~ 14%) plotted for comparison. In all cases
we use gz = 0.0375 and pp = 1. The validity of the
obtained e, is evident.

= = =critical
6F | — up critical 1

Figure 2. Different frequency-response curves to show the critical
forcing amplitude for the Duffing oscillator as calculated
using the proposed method (dotted line) and a slightly
larger value than this (solid line) extracted from [10]. Data
plotted using g20 = 0.0375, 1o = 1. Inthis case the critical
forcing amplitude can be analytically obtained (see text).

2.1.2. Critical forcing amplitude using Grébner basis
method

In this subsection, we compare our method for the calcula-
tion of the critical forcing amplitude with another method

borrowed from [3]. In that work, Malatkar and Nayfeh pro-
posed essentially two methods to obtain the critical forc-
ing amplitude. The first method is based on the Sylvester
resultant while the second one uses the Grobner basis for
polynomials. We arbitrarily select the second one based
on the Grobner basis to perform a comparison between our
proposed approach and their method. The Grébner basis
method uses the fact that f’(o, a) and f”(o, a), which are
the first and the second derivative of f(o, a) with respect
to a respectively, vanish at the inflection point of coordi-
nates (0., a.). The method can be divided into three steps,
namely

e Calculate the first two derivatives of the frequency-
response equation f'(a, a) and (o, a).

e Compute the Grébner basis for the polynomials
f'(o,a) and f”(o,a) and obtain two polynomials
Gy, G, which also vanish at the inflection point
(UCIUC)'

e Obtain a. from G; = 0 and o, from G, = 0. Fi-
nally, replace those values of a. and o into the
frequency-response curve Eq. (2) to obtain e..

For the example discussed in Section 2.1.1, from Eq. (2)
we can obtain the first two derivatives of the frequency-
response equation as

f'(o,a) = %a +6a° g2 — 8a° g0 + 2a0%;

2
f"(g,a) = % + 304" g3, — 240°g0 + 20 (14)

To compute the Grobner basis for polynomials f'(g, a) and
(o, a) we use the Groebner Basis function of Maple to
obtain the following results:

Gi(0,a) = —a’piy + 3g50”; Gy(o,a) = —3a°gy +2a’c

(1)
Equating G; = 0 we obtain o = %% which is the
same as Eq. (12) obtained using our proposed method,
and then from G, = 0 we have ¢ = %gzoaz which has
been obtained from making % = 0 in Section 2.1.1. With

these two values of ¢ and a, replacing them into Eq. (2)

we obtain
[ 1
ec=1 —=— 16
3v/3 920 (10

which is the same value obtained from our method (see
Eq. 16). As it can be seen from the beginning, the ex-
isting method is based on calculating the Groebner basis
from a set of given polynomials which is not a trivial mat-
ter. Instead, our proposed method is based on finding a
derivative, which is more straightforward.
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2.1.3.  Cubic spring with inertial excitation

This type of quasi-zero stiffness SDOF nonlinear oscil-
lator has been studied by [8] and [11] and is possible to
be found in practical applications of nonlinear absorbers.
The equation of motion of such a system with inertial ex-
citation is:

X+ 2&x + yx° = —w?f cos(wt) (17)

where & is the damping coefficient and y is a nonlinear
parameter that measures the degree of the nonlinearity.
After applying, for example, the HBM and considering x =
a cos(wt) we arrive at the frequency-amplitude relation:

9 206 3 at & 5
_3 14425 ) o = 18
167 2V ( * of=et  (19)

where we have set f = e for the sake of consistency of
discussion.
Then, the function g is calculated by differentiating
Eq.(18) with respect to a? and setting dw/da? = 0. It
results in:

27 2 2
g = 16y21—3 ”—+1+4i (19)

Following the proposed method, making S—Z = 0 leads us

to w? = Zya®. Then, substituting it into g(w, a) = 0 we
obtain a? as:
32&
2
229 20
a 3 (20)

Then, the resulting expression for the critical forcing am-
plitude e, is obtained by substituting this value of a? into
Eq. (18):

128
e, = Fyé (21)

Figure 3 shows the frequency response curves for e, given

by Eq. (21) and for e, = /8 %5 calculated

from [10] for comparison. We use y = 3.3x 1073, & = 0.04
for all cases. Again, the validity of the method developed
is evident.

2.1.4. Finite extensibility oscillator with periodic excita-
tion

As a final example we analyze the case of a finite extensi-
bility nonlinear oscillator. This type of systems is widely
used to model real oscillators which can not be extended
to infinity. For example, such systems can be found in the
literature when modelling the bonds between molecules
in a polymer or DNA molecule [12]. Unlike the previous
two cases, we select this system as an example of a nu-
merically obtained e.. The modulation equation, which is

3.5
= = =critical
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Figure 3. Frequency-response curves to show the critical forcing
amplitude for the quasi-zero stiffness oscillator as cal-
culated using the proposed method (dotted line) and a
slightly larger value than this (solid line) extracted from
[10]. Data plotted using y = 3.3 x 1073, & = 0.04. In
this case the critical forcing amplitude can be analytically
obtained (see text).

the result of applying the HBM to the equation of motion
of this type oscillator is given in [9] and reproduced here
to be:

2
2
a? wNL — | +4&wk wPa? = e (22)

V1—a?+1—a?

where, a, e and & have the same meaning as above and
wni is a nonlinear parameter. Then, function g is obtained
from differentiating Eq. (22) implicitly with respect to @
and setting dw/da? = 0. The resulting expression is:

E( szL w2)2
Vi—a?+1-—
2w
+ 20’ w? A—wz)
A (\/1 —a’+1-a?

2+ (1—a?)"?)
(V1—a?+1—a2?

+482wl,w? =0 (23)

where the value of w can be found to be

we = wni\/blo?, &) +/b2(a?, &) — hc(a?)  (24)
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where
2 o212
b(GZ’EZ): 2 a (2—}_(/I a ) )_252
Vi—a?+1-a? (V1—a?+1—a?)?
and

(1—a*) " +1+a?)
(V1—a2+1—a?)

Then, combining Egs. (23) and (24) the function g is sim-
ply written as

c(a?) =

g=wsTF wNL\/b(az, &) —+/b?%(a?,&2) — 4c(a?) =0

Due to the complicate expression for function g, an ex-
plicit expression for the critical forcing amplitude cannot
be given. Instead, a numerical solution will be sought.
After making % = 0 and solving it for a (numerically) we
then substitute this value of @ = a, into Eq. (24) for w_ to
obtain w.. Note that we have picked the value of w_ for w.
If instead we have taken the value of w, this would result
in obtaining a complex value of a which makes no sense.
Finally, we substitute this pair (w., a.) into Eq. (22) to
obtain e.. The obtained frequency-response curve for e,
together with another curve calculated using the value e
extracted from [10] are shown in Fig. 4 for & = 0.2 and
wne = 0.75. Again, this numerically obtained value of e,
is as expected.

0.9r
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Figure 4. Frequency-response curves to show the critical forcing
amplitude for the finite extensibility nonlinear oscillator
as calculated using proposed method (dotted line) and a
slightly larger value than this (solid line) extracted from
[10]. Data plotted using & = 0.2 and wy; = 0.75. In this
case the critical forcing amplitude is numerically computed
(see text).

3. Conclusion

An alternative method to obtain the critical forcing ampli-
tude for SDOF nonlinear oscillators has been proposed
in this work. The proposed method involves in setting the
problem into an optimization problem with constraints, im-
posed by the existence of locations of vertical tangency
and then using Lagrange multipliers approach to solve it.
Unlike previous approaches to the same problem, which
are based on the calculation of the Sylvester resultant or
the Grobner basis of polynomials, the main advantage of
the proposed method is that it is easy to apply since it re-
quires only the computation of the derivative of two func-
tions. Briefly, the procedure for applying the proposed
method includes differentiating the equation of vertical
tangency to obtain another equation, solving these two
equations to obtain the response amplitude and detuning
(or frequency) and substituting the resultant response am-
plitude and detuning into the frequency-response equa-
tion to obtain the critical forcing amplitude. Three ex-
amples were given to confirm the validity of the proposed
method that was applied to obtain the critical forcing am-
plitude in both analytical and numerical scenarios.
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