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The increasing online availability of biodiversity data and advances in ecological modeling have led to a proliferation of open-
source modeling tools. In particular, R packages for species distribution modeling continue to multiply without guidance on 
how they can be employed together, resulting in high fidelity of researchers to one or several packages. Here, we assess the 
wide variety of software for species distribution models (SDMs) and highlight how packages can work together to diversify 
and expand analyses in each step of a modeling workflow. We also introduce the new R package ‘sdmverse’ to catalog meta-
data for packages, cluster them based on their methodological functions, and visualize their relationships. To demonstrate 
how pluralism of software use helps improve SDM workflows, we provide three extensive and fully documented analyses that 
utilize tools for modeling and visualization from multiple packages, then score these tutorials according to recent methodologi-
cal standards. We end by identifying gaps in the capabilities of current tools and highlighting outstanding challenges in the 
development of software for SDMs.

Keywords: code, habitat, niche, programming, R package, reproducibility

Introduction

Software for ecology and evolution has expanded dramati-
cally over recent years (Farley et al. 2018) and is often released 
as open-source packages for the R programming language 
(www.r-project.org). This expansion is particularly striking 
for species distribution models (SDMs), which estimate spe-
cies’ responses to environmental variables and can predict 
their geographic distributions for unsampled locations and 
times (Franklin 2010, Guisan  et  al. 2017, Peterson  et  al. 
2011). Packages in R for building, evaluating, and applying 
SDMs have expanded steadily over the past 20 years as the 
field has grown (Guisan and Zimmerman 2000, Valavi et al. 
2022). Researchers can now conduct complete analyses from 
data acquisition and geospatial data manipulation to model-
ing and post-processing of results within a single program-
ming environment. In 2023 on CRAN, the main network of 
servers maintaining up-to-date R package versions, approxi-
mately 40 packages relating to various aspects of SDMs were 
available (Sillero  et  al. 2023), with many more referencing 
SDMs on Github (>200 results; Supporting information).

Why are there so many packages for SDMs? The field 
is consolidating around a set of methodological standards 
(Araújo et al. 2019, Zurell et al. 2020), and researchers from 
different groups are developing tools to achieve them. This 
results in multiple approaches to address similar issues, and 
growing coding literacy among ecologists means new meth-
ods are typically accompanied by novel software implemen-
tations. Additionally, SDM analysis involves multiple linked 
tasks necessitating a variety of tools, including download-
ing data from public repositories, tabular data management 
and cleaning, manipulation of geospatial data, and statistical 
modeling. However, there is still a tendency for researchers, 
including package developers, to conduct their analyses using 
a single SDM package (Ahmed et al. 2015), which restricts 

the available tools for a given study and can result in an 
underestimation of methodological uncertainty arising from 
different approaches to the same problem. In addition, it is 
often difficult to identify the most appropriate methods from 
the wealth of options, especially for researchers new to the 
field. Removing these barriers would improve SDMs by bet-
ter utilizing available tools in current packages and the grow-
ing trove of those yet to be developed.

Representing a broad sample of developers of R packages 
for SDMs, we first assess the SDM software ecosystem, high-
lighting ways packages can work together to diversify and 
expand analyses. We focus on packages available on CRAN 
and Github before May 2023, but packages for SDMs are in 
constant development and keeping up-to-date can be a labo-
rious exercise. In an effort to catalog, annotate, and explore 
packages for SDMs, we present the new R package ‘sdmverse 
1’ (https://github.com/sylvainschmitt/sdmverse; https://
doi.org/10.5281/zenodo.13927581), a community-moder-
ated package bibliography explained in more detail below. 
Additionally, to demonstrate how different packages can be 
combined to improve SDM workflows, we provide three fully 
worked and documented analyses featuring frequent topics 
in the field (https://doi.org/10.6084/m9.figshare.27312903), 
then score them based on recent methodological standards 
(Araújo et al. 2019). We end by identifying gaps in the capa-
bilities of current tools and suggest possible ways forward by 
highlighting outstanding challenges in the development of 
SDM software.

Species distribution modeling workflow

We structure our assessment of existing software by following 
a typical SDM workflow (Fig. 1), which has been described 
at length in books (Franklin 2010, Peterson  et  al. 2011, 
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Guisan et al. 2017), software notes (Naimi and Araújo 2016, 
Golding et al. 2018, Kass et al. 2018, Cobos et al. 2019), and 
step-by-step guides (Sillero et al. 2021, Peterson et al. 2022). 
This paper covers a representative variety of tools but is not 
meant to be a comprehensive survey of R packages for SDMs. 
We focus on workflows for correlative SDMs for modeling 
individual species, and thus exclude biophysical and mecha-
nistic models, as well as joint and multispecies models. We 
also mention several of the many packages that focus on 
retrieving environmental data or conducting general spatial 
analyses. Citations and title descriptions for packages noted 
in the main text appear in Table 1, and URLs for package 
tutorials can be found in the Supporting information.

Data preparation

Occurrence data cleaning and processing
Occurrence data are widely available via online reposito-
ries hosting biodiversity records from museums, herbaria, 
research studies, and citizen science initiatives. However, 
most require curation before they are fit for use in SDMs 
(Anderson et al. 2020). Several R packages connect to these 
databases through APIs for downloading occurrence data 
(e.g. ‘rgbif ’ [Chamberlain et al. 2023], ‘BIEN’ [Maitner et al. 
2018], or ‘robis’ [Provoost and Bosch 2022]).

Although large volumes of data are available, they are 
often prone to sampling bias and geographical, temporal, and 

taxonomical errors (Marcer et al. 2022) that can result in spu-
rious estimates of species’ niches and distributions (Zizka et al. 
2020). Several packages are tailored for cleaning and clas-
sifying species’ occurrence records. ‘CoordinateCleaner’ 
flags potentially erroneous records by checking proximity to 
well-known geographic features (e.g., centroids for adminis-
trative regions and institutions), identifying spatial outliers, 
and finding coordinates with suspicious values or formatting 
problems. Relatedly, ‘bRacatus’ provides a continuous index 
of the validity and biogeographical status of occurrences based 
on range maps or checklists. Other packages have functions 
to move occurrence records to the closest predictor variable 
grid cell when coordinate uncertainty or georeferencing errors 
place them in ‘impossible’ locations (e.g., a terrestrial organism 
in the ocean; ‘ellipsenm’, ‘kuenm’), and for removing records 
with missing or duplicated values (‘ENMTools’, ‘fuzzySim’, 
‘modleR’, ‘sdm’, ‘SDMtune’). Some have specialized filtering 
tools to identify environmental outliers (‘flexsdm’), estimate 
influence of positional uncertainty on model output (‘usdm’), 
and flag potential taxonomic or temporal data errors (‘bdc’).

Environmental data processing
Gridded data representing environmental predictor variables 
such as interpolated climate reconstructions, land use, land 
cover, topography, soil, geology, marine bathymetry, flow/
currents, and salinity are available from a wide variety of open 
databases, and packages are available to access many of these 

Figure 1. Species distribution model (SDM) workflow as described in this paper, separated into steps within two main phases: “Data prepa-
ration” (green) and “Modeling” (pink). Analysis metadata (purple) is collated after the modeling phase is complete. A summary of analyses, 
visualizations, and processes enabled by R packages is found below each step.
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Table 1. A collection of R packages for species distribution modeling mentioned in the main text with their citations and title descriptions. 
Package titles were acquired in November 2023 from either CRAN or Github. Some titles were reworded slightly for clarity. When more 
than one reference existed for a package (e.g. two or more papers), the most recent one is listed. URLs for package tutorials are in the 
Supporting information.

Package Citation Package title

bamm Soberón and Osorio-Olvera 2023 Species distribution models as a function of biotic, abiotic and 
movement factors (BAM)

bdc Ribeiro et al. 2022 Biodiversity data cleaning
biomod2 Thuiller et al. 2009 Ensemble platform for species distribution modeling
blockCV Valavi et al. 2019 Spatial and environmental blocking for K-fold and LOO cross-

validation
bRacatus Arlé et al. 2021 A method to estimate the accuracy and biogeographical status of 

georeferenced biological data
CAST Meyer et al. 2023 ‘caret’ applications for spatial-temporal models
CoordinateCleaner Zizka et al. 2019 Automated cleaning of occurrence records from biological 

collections
dismo Hijmans et al. 2023c Species distribution modeling
dsmextra Bouchet et al. 2020 A toolkit for extrapolation assessments in density surface models
ecospat Di Cola et al. 2017 Spatial ecology miscellaneous methods
ellipsenm Cobos et al. 2023 Ecological niche characterizations using ellipsoids
embarcadero Carlson 2020 Species distribution models with BART
ENMeval Kass et al. 2021 Automated tuning and evaluations of ecological niche models
enmSdmX Smith et al. 2023 Species distribution modeling and ecological niche modeling
ENMTML Andrade et al. 2020 Create and process ecological niches, including several pre- and 

post-processing methods
ENMTools Warren et al. 2021 Analysis of niche evolution using niche and distribution models
flexsdm Velazco et al. 2022 Tools for data preparation, fitting, prediction, evaluation, and 

post-processing of species distribution models
fuzzySim Barbosa 2015 Fuzzy similarity in species distributions
grinnell Machado-Stredel et al. 2021 Dispersal simulations based on ecological niches
KISSMig Nobis and Normand 2014 A keep it simple species migration model
kuenm Cobos et al. 2019 Detailed development of ecological niche models using Maxent
megaSDM Shipley et al. 2022 Integrating dispersal and time-step analyses into species distribution 

models
MigClim Engler et al. 2012 Implementing dispersal into species distribution models
MinBAR Rotllan-Puig and Traveset 2021 Determining the minimal background area for species distribution 

models
modEvA Barbosa et al. 2013 Model evaluation and analysis
modleR Sánchez-Tapia et al. 2020 A workflow for ecological niche models
ntbox Osorio-Olvera et al. 2020 From getting biodiversity data to evaluating species distribution 

models in a friendly GUI environment
occCite Owens et al. 2021 Querying and managing large biodiversity occurrence datasets
predicts Hijmans 2023a Spatial prediction tools 
rangeModelMetadata Merow et al. 2019 Provides templates for metadata files associated with species range 

models
RangeShiftR Malchow et al. 2021 An R package for individual-based simulation of spatial eco-

evolutionary dynamics and species' responses to environmental 
changes

sampbias Zizka et al. 2021 Evaluating geographic sampling bias in biological collections
sdm Naimi and Araújo 2016 Species distribution modeling
SDMtune Vignali et al. 2020 Species distribution model selection
ShinyBIOMOD Ondo 2023 A ‘shiny’ interface to ‘biomod2’

(summary of package description)
spThin Aiello-Lammens et al. 2015 Functions for spatial thinning of species occurrence records for use 

in ecological models
SSDM Schmitt et al. 2017 Stacked species distribution modeling
terra Hijmans 2023b Spatial data analysis
usdm Naimi et al. 2014 Uncertainty analysis for species distribution models
voluModel Owens and Rahbek 2023 Modeling species distributions in three dimensions
wallace Kass et al. 2023 A modular platform for reproducible modeling of species niches 

and distributions
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in R (e.g., ‘geodata’ [Hijmans  et  al. 2023d] or ‘sdmpredic-
tors’ [Bosch and Fernandez 2023]). The ‘terra’ package and 
its predecessor ‘raster’ provide many tools for working with 
vector and raster data in R. Some packages automate raster 
processing for SDM analyses (e.g., ‘SSDM’ can crop a set of 
rasters to a common extent and resample them to the coarsest 
resolution). Other useful functions for manipulating predic-
tor variables can interpolate between timesteps (‘enmSdmX’) 
and investigate spatial autocorrelation with respect to the 
occurrence data (‘ecospat’).

Environmental variables tend to have high collinearity 
(Jiménez-Valverde et al. 2009), which can lead to high vari-
ance in model coefficients (i.e., sensitivity to small changes in 
input data) and challenges in interpreting variable importance 
(Smith and Santos 2020). Several approaches can be taken 
to address correlated predictor variables: making diagnostic 
plots (‘ENMTools’), removing redundant variables (pair-
wise: ‘ENMTML’, ‘flexsdm’, ‘modleR’, ‘ntbox’; sequential: 
‘fuzzySim’, ‘SDMtune’, ‘usdm’), or reducing variable dimen-
sionality through ordination (‘ENMTML’, ‘ENMTools’, 
‘flexsdm’, ‘kuenm’, ‘ntbox’). As selecting appropriate predic-
tor variables is complex and may require multiple steps, these 
tools can help users make better informed decisions.

Bias assessment and correction
Since occurrence data are typically compiled from studies or 
collection efforts without robust sampling designs, they often 
reflect spatial sampling bias (Erickson and Smith 2021). 
Sampling bias can arise for many reasons, such as imperfect 
detection or site accessibility. Ignoring these biases can result 
in models that have high predictive accuracy against the same 
(biased) data yet misrepresent species’ true distributions and 
environmental tolerances.

As an initial assessment, the geographical distributions 
of occurrence data and features that may cause spatial biases 
can be explored using visualization tools in the ‘sampbias’ 
package. Spatial thinning reduces geographic clustering by 
removing occurrence records (and optionally pseudo-absence 
or background records) within some geographical distance of 
other records either measured directly (‘ecospat’, ‘ellipsenm’, 
‘enmSdmX’, ‘ENMTML’, ‘flexsdm’, humboldt, ‘ntbox’, 
‘spThin’) or dictated by a spatial grid (‘biomod2’, ‘dismo’, 
‘ENMTools’, ‘fuzzySim’). Spatial-grid thinning is much 
quicker than distance-based methods, so the former can 
precede the latter for larger datasets. Alternatively, environ-
mental thinning implemented in ‘flexsdm’ reduces clustering 
in environmental space to address biases related to sampled 
environments, or occurrence records can be downweighted 
by proximity (Stolar and Nielsen 2015) with ‘enmSdmX’.

Model training extent and background sampling
When modeling species’ distributions from presence-only 
data, background (or pseudo-absence) samples are typically 
taken across an area defined as the ‘training extent’, represent-
ing the area theoretically accessible to the species (Barve et al. 
2011). Choosing this extent carefully is important, as the 
model can make spurious associations if the extent includes 

regions with suitable conditions that have been inaccessible 
to the species (Soberón 2007).

Random sampling of grid cells to generate background 
points can be performed easily in R, but there are many other 
tools for sampling points following more specialized strategies. 
Random samples within spatial buffers of a specified distance 
around occurrences, or within polygons describing habitat 
types, can ensure the model training extent excludes areas too 
far from observed presences or isolated by dispersal barriers 
(‘biomod2’, ‘ellipsenm’, ‘flexsdm’, ‘ENMTML’, ‘MinBAR’, 
‘modleR’, ‘SSDM’). Some packages can also restrict sampling 
to areas within a specified environmental distance (‘biomod2’, 
‘ENMTML’, ‘flexsdm’). Model training extents can also be 
delimited based on dispersal simulations to better represent 
areas accessible to the species (‘grinnell’), or alternatively on 
the extent that optimizes model fit (‘MinBAR’). ‘voluModel’ 
can be used to generate training extents using alpha hulls 
for 3-dimensional systems (e.g., marine environments) and 
sample both horizontally across the study region and through 
depth-structured environmental data.

Data partitioning for model evaluation
In order to evaluate models, we must first decide which data 
are used to assess model accuracy. As independent testing data 
(i.e., data separate from those used for model training) are rare, 
SDM accuracy is often assessed with cross-validation. This 
involves partitioning the occurrence records into k folds (i.e., 
subsets), then sequentially building models using all folds but 
one and evaluating them on the withheld fold. Alternatively, 
n randomly selected occurrence records can be sequentially 
withheld for validation in a process called either leave-n-out 
or delete-d jackknife (‘ENMeval’, ‘flexsdm’, ‘modleR‘, ‘sdm’, 
‘SSDM’). Small sample-size challenges robust assessment of 
model accuracy, and for these cases pooling solutions can be 
used (‘ecospat’; Collart and Guisan 2023).

Random data partitions tend to overestimate model per-
formance when predictions are made to new areas or times. 
One way to help address this issue is to partition data into 
‘blocks’ according to some structure (e.g., spatial, tempo-
ral, environmental; Roberts  et  al. 2017) that increases sta-
tistical independence between training and validation data. 
Spatial partitions can be implemented in a ‘checkerboard’ 
pattern where data (occurrence and/or background records) 
are grouped by an array of squares (‘blockCV’, ‘ENMeval’, 
‘flexsdm’), along latitudinal or longitudinal lines (‘biomod2’, 
‘blockCV’, ‘ellipsenm’, ‘ENMeval’, ‘flexsdm’), or with spatial 
clustering algorithms (‘biomod2’, ‘blockCV’, ‘enmSdmX’). 
Users can alternatively define their own partitions (‘biomod2’, 
‘blockCV’, ‘ENMeval’) based on other blocking structures. 
Lastly, visualizations of blocked data partitions on maps can aid 
interpretation of evaluation results (‘blockCV’, ‘ENMeval’).

Modeling

Model building, evaluation and tuning
There are many decisions to make when modeling species' 
niches and distributions, including choice of algorithm(s), 
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model performance metrics, and methods for tuning model 
complexity. Several packages we highlight have model-build-
ing functions for one algorithm, but many are structured to 
build models with multiple algorithms. The packages ‘bio-
mod2’, ‘ENMeval’, ‘flexsdm’, ‘sdm’, and ‘SSDM’ addition-
ally have custom objects for user-specified algorithms and 
settings, which allow other package functions to use them in 
subsequent steps.

There is a wide variety of accuracy metrics used to evalu-
ate SDMs (Guisan et al. 2017), but two main categories are 
discrimination (how well the model distinguishes between 
occupied sites and background) and calibration (how well 
model predictions correlate with the observed proportions of 
occupied sites). Multiple discrimination metrics can be calcu-
lated by most packages that build models, and options exist 
to weight sites for biases in validation data (‘enmSdmX’). 
Calibration metrics include Miller's slope (‘modEvA’; Pearce 
and Ferrier 2000), the continuous Boyce index (‘biomod2’, 
‘ecospat’, ‘ENMeval’, ‘enmSdmX’, ‘ENMTools’, ‘modEvA’; 
Hirzel et al. 2006), and expected and maximum calibration 
error (ECE and MCE; ‘ENMTools’). Information criteria 
(typically AIC or BIC) are based on model likelihood val-
ues of the full dataset (not cross-validation) and include a 
penalty on the number of predictors to downweight over-
fit models (Warren and Seifert 2011) — some packages use 
these criteria as an option for model tuning, explained below 
(‘biomod2’, ‘ENMeval’, ‘ENMTools’, ‘enmSdmX’, ‘kuenm’, 
‘SDMtune’). The significance of accuracy metrics can also be 
determined by building null models and comparing empiri-
cal values to null distributions (Bohl et al. 2019) with ‘dismo’, 
‘ENMeval’, or ‘ENMTools’.

Many of the packages we assess here that build and evalu-
ate models contain functions for model tuning, or evaluat-
ing ranges of hyperparameters to achieve optimal model 
complexity for the training data (Merow et  al. 2014). This 
is implemented in various ways in multiple packages (‘bio-
mod2’, ‘ENMeval’, ‘enmSdmX’, ‘ENMTools’, ‘flexsdm’, 
‘kuenm’, ‘SDMtune’). ‘SDMtune’ additionally provides 
graphical tools to assess model performance using different 
tuning approaches: random, grid-based, or with a genetic 
algorithm. Alternatively, model ensembles can combine mul-
tiple algorithms to produce a single consensus prediction, 
which can be weighted by model performance, for example. 
Ensembles can be used to assess variance across algorithms 
(Thuiller et al. 2019) by quantifying and mapping algorithm 
uncertainty, and ensembling many bivariate models can 
increase performance when occurrence data are scarce (‘eco-
spat’, ‘flexsdm’; Breiner  et  al. 2015). Extensive options for 
ensemble modeling are available in ‘biomod’2 and ‘flexsdm’, 
but other packages also include ensemble options (‘ecospat’, 
‘ENMTML’, ‘fuzzySim’, ‘modleR’, ‘sdm’, ‘SSDM’).

Model prediction and transferability
Visualizing aspects of model prediction behavior through 
diagnostic plots can highlight issues that may not be readily 
discernible with evaluation metrics. Biological realism of cor-
relative model predictions can be evaluated with diagnostic 

plots of model responses along environmental gradients 
(‘biomod2’, ‘dismo’, ‘ENMTools’, ‘predicts’, or ‘SDMtune’) 
— this is especially important for visualizing how models 
transfer to non-analog conditions (Guevara  et  al. 2018). 
Other tools expand plotting flexibility and have other visual 
features, such as two- or three-dimensional response plots 
(‘biomod2’, ‘embarcadero’, ‘ENMTools’, ‘flexsdm’), which 
can help visualize interactions between variables. The ‘sdm’ 
and ‘SSDM’ packages also provide interactive plots to explore 
the outcomes of fitted models (e.g., metrics of performance 
and plots, response curves, and variable importance). Related 
to these visual tools, assessments of variable importance can 
inform selection of variables for modeling and inference 
into drivers of species’ niches and distributions (‘biomod2’, 
‘ENMTools’, ‘predicts’, ‘sdm’, ‘SDMtune’, ‘SSDM’; Smith 
and Santos 2020).

When models are transferred to other times and/or places, 
exploration of environmental similarity maps can highlight 
areas where predictions can be unreliable due to extrapolation. 
The multivariate environmental similarity surface (MESS; 
Elith et al. 2010) approach quantifies the ‘novelty’ of transfer 
conditions compared to reference conditions (e.g. the model 
training extent; ‘dismo’, ‘ENMeval’, ‘modEvA’, ‘predicts’, 
‘voluModel’), but this metric can be heavily influenced by 
individual variables with extreme values. Other variations use 
different definitions of novelty and thus measure the degree 
of extrapolation differently. Mobility-oriented parity (MOP) 
allows comparisons of reference and transfer conditions that 
are restricted to environmental ranges closer to those of the 
training extent (‘ENMTML’, ‘kuenm’; Owens et al. 2013). 
Extrapolation detection (ExDet) discriminates between 
extrapolation in univariate ranges and novel covariate combi-
nations (‘dsmextra’, ‘ecospat’; Mesgaran et al. 2014). Area of 
applicability (AOA) weights the multivariate predictor space 
by variable importance (‘CAST’; Meyer and Pebesma 2021). 
The Shape algorithm calculates the multivariate distance rela-
tive to the environmental dispersion of the training data and 
has an adjustable threshold to control binary discrimination 
between acceptable and unacceptable degrees of extrapola-
tion (‘flexsdm’; Velazco et al. 2024).

Analyses and simulations using distribution estimates as inputs
Geographic predictions of potential distribution can be used 
as inputs for analyses to refine range estimates or to simu-
late population dynamics or dispersal. For example, model 
recalibration, or rescaling continuous suitability predictions 
to better fit the observed frequency of occurrences given the 
environment, is available in ‘ENMTools’ via functions that 
use the ‘CalibratR’ package (Schwarz and Heider 2019). 
Model predictions outside a species’ dispersal capability can 
be interpreted as potential distribution, but if current species’ 
range delineations are the research objective, methods that 
use spatial variables as model predictors or as geographical 
constraints in post-processing can remove inaccessible areas 
(‘ENMTML’, ‘flexsdm’, ‘MSDM’; Mendes et al 2020). When 
projecting SDMs to past or future climate scenarios, spatial 
agreement between different scenarios can be calculated 
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(‘biomod2’, ‘kuenm’), as well as the speed and direction a spe-
cies tracking suitable environmental conditions must move in 
response to climate change (i.e., biotic velocity; ‘enmSdmX’). 
Model predictions for multiple species can be stacked in dif-
ferent ways to make estimates of biodiversity (‘fuzzySim’, 
‘SSDM’), and the resulting community composition esti-
mates per grid cell can be corrected with biotic filters to avoid 
overprediction of richness (i.e., SESAM approach in ‘ecospat’ 
and ‘SSDM’; D’Amen  et  al. 2015). Community proper-
ties (e.g., species richness, composition) of stacked SDMs 
can be evaluated without thresholding by comparing them 
directly to observed occurrence patterns (‘ecospat’, ‘SSDM’; 
Scherrer et al. 2020). Relatedly, geographic overlap between 
species can be calculated to delineate areas of potential sym-
patry (‘ENMeval’, ‘ENMTools’, ‘fuzzySim’, ‘SSDM’).

An increasing number of packages enable dispersal sim-
ulations using SDM predictions as proxies for either dis-
persal potential or carrying capacity (Zurell  et al. 2016). If 
detailed data are available on species’ demography and dis-
persal, then population models (e.g., ‘RangeShiftR’) can be 
used to simulate complex population dynamics based on 
SDM predictions. When such data are scarce, models with 
fewer assumptions can conduct simple, stochastic simula-
tions of colonization and extinction (‘KISSMig’), integrate 
biotic and movement constraints (the BAM approach sensu 
Soberón and Peterson 2005) via cellular automata simula-
tions (‘bamm’, ‘MigClim’), or weight predictions by dispersal 
distance (‘megaSDM’).

Options for package integration and 
accessibility with graphical user interfaces

Graphical user interfaces (GUIs) composed with the R pack-
age ‘shiny’ (Chang et al. 2023) provide users an alternative 
to writing code, thus increasing accessibility to the tools we 
have discussed and providing real-time visualization. The 
package ‘ntbox’ implements a model-selection workflow for 
ellipsoid models and features tools for assessing extrapola-
tion risk, transforming environmental variables to principal 
components, performing geospatial operations, and making 
3D visualizations of ellipsoid niche estimates in environ-
mental space. The packages ‘ShinyBIOMOD’ and ‘SSDM’ 
offer graphical interfaces to run a range of modeling tools 
for building ensemble models, comparing their performance, 
and estimating uncertainties in their predictions. The package 
‘wallace’ runs the Wallace EcoMod application, which steps 
through a full SDM workflow and includes downloading 
and processing occurrence data and environmental rasters, 
model tuning, and transferring predictions to new loca-
tions and times (Kass et al. 2023). It also offers guidance text 
and references, metadata generation, and tools to download 
code that reproduces the analysis. These ‘shiny’ applications 
present solutions to integrate multiple packages and mobilize 
their tools within a single interactive workflow. For example, 
‘ShinyBIOMOD’ includes other R packages to address prob-
lems like multicollinearity among environmental predictors 

and spatial sampling biases in occurrence data. Wallace 
EcoMod 2.0 features a streamlined system for integrat-
ing user-authored ‘modules’ that expand functionality, and 
the application showcases modules from different research 
groups (Kass et al. 2023).

Analysis metadata

Although code and data are increasingly made available with 
published manuscripts, recording metadata about the model-
ing process is crucial because it facilitates reproducibility by 
documenting data sources and specifications, model param-
eterizations, and other details (‘ENMeval’, ‘ENMTML’, 
‘modleR’, ‘sdm’). To this end, the package ‘occCite’ returns 
documentation on original occurrence data providers served 
through data repositories such as GBIF, which can be time-
consuming to locate manually (Owens et al. 2021). Recently 
proposed metadata standards for SDMs (Merow et al. 2019, 
Zurell et al. 2020) help researchers follow best practices and 
guidelines for the field (Araújo et al. 2019) — these meta-
data can be documented via code-based and interactive tools. 
Range model metadata standards (RMMS) provides a meta-
data dictionary that can be populated using automated tools 
(’rangeModelMetadata’; Merow et al. 2019). RMMS objects 
are generated by ‘wallace’, and other packages can include 
wrapper functions to update them (‘ENMeval’). The over-
view, data, model, assessment and prediction (ODMAP) 
framework (Zurell  et  al. 2020) integrates RMMS; these 
metadata can be completed using a ‘shiny’ web application 
(https://odmap.wsl.ch/).

Use of multiple packages enhances breadth 
and robustness of analysis

Integrating tools from different packages helps researchers 
expand workflows to address more key methodological steps 
of SDM analyses. We developed the community-driven pack-
age ‘sdmverse’ to help researchers understand how different 
packages are related and what unique attributes they have. 
Package maintainers can upload their package’s metadata 
via the GitHub interface and contribute to ‘sdmverse’ after 
an open, web-based review process. The ‘sdmverse’ package 
allows users to explore package metadata dynamically via a 
‘shiny’ application, or to visualize their relationships graphi-
cally with tile plots or dendrograms. We used plotting tools 
in ‘sdmverse’ to categorize and cluster SDM packages into 
methodological groups based on their functions in order 
to map their relationships with one another, and we found 
they clustered into five easily interpretable groups (Fig. 2). 
Packages focused on modeling analyses represent the largest 
group, including those more specialized (e.g., for evaluation 
or model tuning) and those more general (e.g., with tools for 
more workflow steps, including GUIs). The smaller groups 
focus on post-processing of SDM results, data processing, 
data partitioning, and analysis metadata.

 16000587, 0, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.07346, W

iley O
nline L

ibrary on [19/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://odmap.wsl.ch/)


Page 8 of 14

To showcase the utility of pluralistic use of R packages 
for SDMs, we provide three comprehensive analysis vignettes 
representing frequently researched topics in the field (code: 
https://doi.org/10.5281/zenodo.14044044, pdf: https://doi.
org/10.6084/m9.figshare.27312903). The first vignette pre-
dicts future distributional shifts due to climate change for 
the moose Alces alces in North America. The second mod-
els native and potentially invasive global distributions of the 

small Indian mongoose Urva auropunctata. The third esti-
mates the distribution of a poorly known plant species with 
few known occurrence records, Asclepias scaposa, and calcu-
lates conservation range metrics based on potential distribu-
tion maps.

To assess how use of pluralistic workflows helps achieve 
SDM standards, we scored each analysis vignette based on the 
standards from Araújo et al. (2019), who grade achievements 

Figure 2 Visualizations of characteristics for R packages that focus on species distribution models (SDMs) and the relationships between 
them, made with the ‘sdmverse’ package (downloaded August 2023). A) Tile plot of R packages and the methodological categories for 
SDMs discussed in this manuscript that their tools address. B) Dendrogram showing hierarchical clusters for these packages. Colors cor-
respond to five binary (Jaccard) clusters displayed in B) based on package characteristics in A). Cluster number was chosen to best represent 
broad groupings of package types: from bottom, metadata (teal), data partitioning (brown), data processing (purple), post-processing 
(pink), and modeling analyses (green). The largest group, modeling analyses, includes packages with more comprehensive toolsets (a subset 
being GUIs) and those more focused on model evaluation and tuning. Future work should focus on the production of more packages and/
or supplemental functions for smaller clusters to expand available tools.
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into four classes: gold (‘aspirational’), silver (‘cutting-edge 
approaches’ that involve ‘imperfect (but best available) data’ 
and address uncertainty and bias), bronze (‘minimum cur-
rently acceptable practices’), and deficient. For each meth-
odological standard category, we summarize which packages 
contributed to achieving the score and the reasoning behind 
these decisions, and we display the results graphically 
(Supporting information). These vignettes were created solely 
for demonstration and are not meant to represent comprehen-
sive analyses, so some categories we did not directly address 
were rated as ‘deficient’. However, in spite of this, all vignettes 
were able to achieve at least bronze (and often silver) for most 
categories due to the use of multiple packages.

Future directions

The tremendous gains in SDM software achieved over the 
past two decades have opened new avenues for improvement 
and innovation. Below, we discuss some outstanding chal-
lenges for existing software and suggest future directions for 
tool development.

Methodological uncertainty

As the diversity of software presents many choices that are 
equally defensible, exploration, quantification, and map-
ping of methodological uncertainty remain key, cross-cutting 
needs (Jansen et al. 2022). Among the categories we used to 
assess package functionality (Fig. 2), the median number of 
packages covering any one task was 14.5 (min: 5, max: 21). 
As each package implements these tasks in different ways, 
users with the same overall goal (e.g., modeling a particular 
invasive species) can produce different outputs. We covered 
tools that quantify uncertainty from georeferencing of occur-
rence data, algorithms (with ensemble models), and model 
transfer (with environmental similarity metrics), but we lack 
tools to help us jointly consider different sources of SDM 
uncertainty. In general, more packages dedicated to method-
ological uncertainty for SDMs are needed, ideally those that 
can combine different kinds of uncertainty to produce maps 
or other visualizations of aggregated model confidence.

Data curation

Even with existing tools, data cleaning often necessitates a 
considerable amount of manual checking, as automated 
solutions based on heuristic rulesets can be too conservative 
or liberal in their filtering. Further, species records lacking 
coordinate information (or those with unacceptable spatial 
uncertainty) cannot be used in modeling unless geocoding 
based on ancillary locality information is employed, which 
can be a labor-intensive process (Kass et al. 2022). With the 
advent of AI-based large language models that can perform 
georeferencing and geocoding tasks (Gougherty and Clipp 
2024), we foresee great potential for the development of 
automated tools for the curation and generation of species 
occurrence data. For example, such models could also help 

flag potentially erroneous records based on general queries 
(e.g., ‘Show me specimens that may be cultivated.’).

Bias correction

Approaches to bias correction would benefit from translat-
ing cutting-edge methods into more accessible software solu-
tions. For example, data integration approaches that combine 
systematically sampled, ‘structured’ data (which are expen-
sive to acquire, so limited in extent) with widely available 
opportunistic, ‘unstructured’ data can reduce sampling biases 
(Isaac  et  al. 2020). Likewise, biases arise from decisions of 
individual collectors and observers, so accounting for collec-
tor identity can correct for bias (Erickson and Smith 2021), 
but this is hindered by the challenge of parsing the differ-
ent ways collectors’ names can be reported in biodiversity 
databases.

Model evaluation and transfer

Current solutions for SDM validation typically employ cross-
validation averages, which may be insufficient for under-
standing final model performance. Especially regarding block 
cross-validation for model transfer applications, we may be 
more interested in the withheld validation group that per-
forms most poorly and what these particular conditions are. 
Interactive tools to examine cross-validation results in more 
depth with exploratory visualizations would help us better 
assess confidence in model transfers. Further, model perfor-
mance against present-day data may not correspond to per-
formance in different times or places (Santini  et  al. 2021). 
Software solutions that enlist different data types reflecting 
different aspects of distributions (e.g., genetic, dendroeco-
logical, fossil) could provide alternative assessments of model 
accuracy and thus more confidence in model predictions 
(Fordham et al 2014).

Post-modeling steps

Most existing simulation software that uses SDM predictions 
emphasizes dispersal constraints on potential distributions, 
but biotic interactions and adaptive evolution also constrain 
species’ responses to environmental change. Likewise, species’ 
phenotypes and genotypes vary through time, and can inter-
act to influence distributions (Bocedi et al. 2022). Software 
for incorporating these processes are needed.

Package redundancy and maintenance

With the incipient recognition of software products as key 
research outputs, package development increasingly accom-
panies research, and this can result in functional redundancy. 
While ample opportunities exist for creation of new software, 
we recommend first assessing if there are existing solutions 
or if they can be improved via collaborative platforms like 
GitHub or with the ‘sdmverse’ package. As package devel-
opers, we acknowledge our own efforts could be improved 
in this light, but we also appreciate that some replication 
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can avoid dependencies on other packages that may not be 
maintained in the future. After all, varying funding oppor-
tunities and competing priorities mean that continuous 
maintenance is not always guaranteed. To enable better inte-
gration across packages to reduce redundancy, an obvious 
need is for tools that enable coercion of package-specific R 
objects to other types.

Conclusions

The burgeoning array of software packages developed for 
SDMs can be daunting, but integrating different tools can 
make analyses more robust by addressing data errors, biases, 
and uncertainty in various ways; more interpretable by 
employing different visualization tools; and better at achiev-
ing methodological standards. In our collective experience, 
we are often asked, ‘Which package should I use for my SDM 
analysis?’ Here, we show that relying on any one package 
considerably limits the breadth of analyses available, and that 
integrating multiple tools in a single script is not only trac-
table but recommended. Above all, we encourage developers 
who adhere to their own software to broaden their toolboxes 
and seek synergies in analysis. A commitment to plurality can 
help us bound methodological uncertainty and ultimately 
answer pivotal questions in ecology and evolution.

To cite ‘sdmverse’ or acknowledge its use, cite this Software 
note as follows, substituting the version of the application 
that you used for ‘version 1.0’:
Kass, J. M. et al. 2024. Achieving higher standards in species dis-

tribution modeling by leveraging the diversity of available soft-
ware. – Ecography 2024: e07346 (ver. 1.0).
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