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ABSTRACT
Using the redshift-space distortions of void-galaxy cross-correlation function we analyse the
dynamics of voids embedded in different environments. We compute the void-galaxy cross-
correlation function in the Sloan Digital Sky Survey (SDSS)in terms of distances taken along
the line of sight and projected into the sky. We analyse the distortions on the cross-correlation
isodensity levels and we find anisotropic isocontours consistent with expansion for large voids
with smoothly rising density profiles and collapse for smallvoids with overdense shells sur-
rounding them. Based on the linear approach of gravitational collapse theory we developed a
parametric model of the void-galaxy redshift space cross-correlation function. We show that
this model can be used to successfully recover the underlying velocity and density profiles
of voids from redshift space samples. By applying this technique to real data, we confirm
the twofold nature of void dynamics: large voids typically are in an expansion phase whereas
small voids tend to be surrounded by overdense and collapsing regions. These results are
obtained from the SDSS spectroscopic galaxy catalogue and also from semi-analytic mock
galaxy catalogues, thus supporting the viability of the standardΛCDM model to reproduce
large scale structure and dynamics.

Key words: large-scale structure of the Universe – methods: data analysis, observational,
statistics

1 INTRODUCTION

Large scale underdensities naturally arise as the result ofstructure
growth. According to our current understanding, the structure of
matter evolves from small density fluctuations in the early uni-
verse to build up the present day distribution of matter. As the
universe evolves, galaxies dissipate from underdense regions and
progress towards matter concentrations by the action of gravity,
forming both voids and filaments in the process. The void distribu-
tion evolves as matter collapses to the structure and galaxies dissi-
pate from voids, making a supercluster-void network (Frisch et al.
1995; Einasto et al. 1997, 2012). This interplay in the formation of
voids and structures, allows to think of them as complementary,
both encoding useful information to place constraints on the pa-
rameters of cosmological models. Hence, while the predominant
objects of the large scale galaxy distribution are structures such as
groups, clusters, filaments or walls, voids emerge as the relevant
features that shape, along with filaments, the structure at the largest
scales.

⋆ E-mail: dpaz@oac.uncor.edu

Underdense regions have been identified and ana-
lyzed in numerical simulations (Hoffman & Shaham 1982;
Hausman, Olson & Roth 1983; Fillmore & Goldreich 1984;
Icke 1984; Bertschinger 1985; Aragon-Calvo et al. 2010;
Aragon-Calvo & Szalay 2013; Kauffmann & Fairall 1991)
and in galaxy catalogues (Pellegrini, da Costa & de Carvalho
1989; Slezak, de Lapparent & Bijaoui 1993; El-Ad & Piran 1997;
El-Ad, Piran & Dacosta 1997; El-Ad & Piran 2000; Mller et al.
2000; Plionis & Basilakos 2002; Hoyle & Vogeley 2002, 2004;
Ceccarelli et al. 2006; Patiri et al. 2006; Neyrinck 2008) showing
similar properties regardless of the details of the identification
methods (Colberg et al. 2008) and galaxy sample properties.

Padilla, Ceccarelli & Lambas (2005) show that voids defined
by the spatial distribution of haloes and galaxies have similar
statistical and dynamical properties. Moreover, the statistics of
void and matter distributions are strongly related (White 1979)
and therefore voids are a powerful tool to study the formation
and evolution of overdense structures. Since the void population
properties are sensitive to the details of structure formation,
they can be used to constrain cosmological models (e.g. Peebles
2001; Park et al. 2012; Kolokotronis, Basilakos & Plionis 2002;
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Colberg et al. 2005; Lavaux & Wandelt 2010; Bos et al. 2012a;
Biswas, Alizadeh & Wandelt 2010; Benson et al. 2003; Park et al.
2012; Bos et al. 2012b; Hernandez-Monteagudo & Smith 2012;
Clampitt, Cai & Li 2013). Also, due to the global low density
environment in which void galaxies are embedded, the galaxy
populations in or close to voids are valuable to shed light on
the mechanisms of galaxy evolution and its dependence on
the large scale environment (Lietzen et al. 2012; Hahn et al.
2007b,a; Ceccarelli et al. 2012; Ceccarelli, Padilla & Lambas
2008; González & Padilla 2009).

The simplest approach allows us to characterize in-
dividual voids as spherical regions with isotropic mo-
tions (Icke 1984; van de Weygaert & Bertschinger 1996;
Padilla, Ceccarelli & Lambas 2005; Ceccarelli et al. 2006).
However, more detailed analyses suggest that voids are not isolated
structures but form part of an intricate network which affects their
dynamical properties (Bertschinger 1985; Melott & Shandarin
1990; Mathis & White 2002; Colberg, Krughoff & Connolly 2005;
Shandarin et al. 2006; Platen, van de Weygaert & Jones 2008;
Aragon-Calvo & Szalay 2013; Patiri, Betancort-Rijo & Prada
2012).

In a previous work (Ceccarelli et al. 2013, hereafter Paper I),
we performed a statistical study of the void phenomenon focussing
on void environments. To that end, we examined the distribution
of galaxies around voids in the SDSS by computing their inte-
grated density contrast profile. By defining a separation criterion
to characterize voids according to their surrounding environment,
we obtained two characteristic void types, according to their large-
scale radial density profiles: (i) Voids with a density profile indicat-
ing an underdense region surrounded by an overdense shell, were
dubbed S-Type voids; (ii) voids showing a continuously rising den-
sity profiles were defined as R-Type voids. We also found that small
voids are more frequently surrounded by overdense shells, and thus
they are typically S-type. On the other hand, larger voids are more
likely classified as R-Types, i.e., with an increasing integrated den-
sity contrast profile, which smoothly rises towards the meangalaxy
density. Moreover, this behaviour of SDSS voids results in acorre-
lation between the fraction of voids surrounded by overdense shells
and their sizes. This fraction continuously decreases as the void size
increases, in a similar way for real, mock and direct numerical sim-
ulation samples.

Such a dichotomy in the behaviour of voids was first intro-
duced by Sheth & van de Weygaert (2004), based on an excursion
set formalism. The authors classify void profiles and relatethem to
one of two processes: The void-in-void process describes the evo-
lution of voids that are embedded in larger-scale underdensities.
This is the case when small voids merge at an early epoch with
other void to form a larger void at a later epoch. On the other hand,
underdense regions embedded within larger overdense regions un-
dergo a so-called void-in-cloud process. In a hierarchicalstructure
formation scenario, the filament network subtended by dark matter
halos is modified by halo merging. Eventually, some voids located
in the interstices of this network will shrink at later timesconstitut-
ing the void-in-cloud scenario. This last case seems to affect more
likely small rather than large voids.

Since the evolution of structure in the universe shapes the
large scale matter clumps and the voids at the same time, both
types of structures are responsive to the details of the con-
tents of the universe, and the equation of state of its constituent
species (Einasto et al. 2011). Furthermore, the physics of galax-
ies in voids is simpler since the non-linear effects of grav-
ity are less significant in regions of space devoid of galaxies.

The evolution of void galaxies is affected by the surrounding
environment when galaxies are located close to the void edge
(Lindner et al. 1996; Ceccarelli et al. 2012). Assuming spherical
symmetry, Fillmore & Goldreich (1984) derive similarity solutions
to describe the evolution of voids in a perturbed Einstein-de Sit-
ter universe filled with cold, collisionless matter. They suggest, for
this simplified model, that different void modes would arise de-
pending on the steepness of the initial density deficit. As a result,
the statistics of the void population has been used to constrain pa-
rameters of the standard cosmological model (Betancort-Rijo et al.
2009; Biswas, Alizadeh & Wandelt 2010; Bos et al. 2012a,b), and
void catalogues have been exploited to test alternative cosmologi-
cal models (Biswas & Notari 2008; Bolejko, KrasiÅski & Hellaby
2005; Clampitt, Cai & Li 2013).

Studies on the dynamics (and evolution) of regions around
cosmological voids have been implemented mainly in numerical
simulations and semi-analytical galaxies by several authors.
For instance, Regos & Geller (1991) have studied the evolu-
tion of voids in numerical simulations obtaining the peculiar
streaming velocities of void walls. Dubinski et al. (1993) and
Padilla, Ceccarelli & Lambas (2005) have analysed the pe-
culiar velocity field surrounding voids in simulations. Also,
Sheth & van de Weygaert (2004) and Paranjape, Lam & Sheth
(2012) studied the void size evolution in simulations.
Aragon-Calvo & Szalay (2013) examined the internal dynamics
of voids and their hierarchical features. Albeit, the dynamics of
voids have not been extensively studied on observational data.
Ceccarelli et al. (2006) used redshift space distortions, peculiar
velocities, and a non-linear approximation to determine properties
of the peculiar velocity field around voids in the 2dfGRS, including
the amplitude of the expansion of voids and the dispersion of
galaxies in the directions parallel and perpendicular to the void
walls. Patiri, Betancort-Rijo & Prada (2012) suggest the presence
of coherent outflows of galaxies in the vicinity of large voids in
SDSS.

This paper is organized as follows. In Section 2 we describe
the galaxy samples and the corresponding void catalogues. We also
describe the semi-analytic mock galaxy samples built from the sim-
ulation box. The redshift space distortions on the correlation func-
tion are analyzed in Section 3. In Section 4 we present the theoret-
ical approach adopted to model the redshift space distortions from
density profiles and velocity flows of galaxies around voids.A com-
parison of observational results to the numerical simulation and the
mock catalogue is given in Section 5, and the results obtained for
the observational data are shown in Section 6. Finally, we discuss
our results in Section 7.

2 DATA SETS

We use the Main Galaxy Sample (Strauss et al. 2002) from
the Sloan Digital Sky Survey data release 7 (SDSS-DR7,
Abazajian et al. 2009). SDSS photometric data provides CCD
imaging data in five photometric bands (UGRIZ, Fukugita et al.
1996; Smith et al. 2002). The SDSS-DR7 spectroscopic catalogue
comprises in this release 929,555 galaxies with a limiting magni-
tude ofr 6 17.77 mag.

We perform the identification of voids using the algorithm
presented by Padilla, Ceccarelli & Lambas (2005) and testedin
Ceccarelli et al. (2006). The general properties of the SDSSvoid
sample are introduced in Paper I. Voids in the galaxy distributions
are identified over three different volume complete samples, with
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Figure 1. Redshift space distortions of galaxies in the SDSS (upper panels) and the best fit models (bottom panels) for small S-typevoids in S1 (6<
Rvoid/h−1 Mpc< 8, left panels) and large R-type voids in S3 (10< Rvoid/h−1 Mpc< 20, right panels). The fractions of small R-type voids and large S-type
voids are 0.3 and 0.1, respectively. Notice that spatial andcolor scales change for small and large voids.

limiting redshift 0.08, 0.12 and 0.15, whereas corresponding max-
imum absolute magnitudes in ther − bandareMr = −19.2,−20.3
and−20.8, respectively. We denote these three samples as S1, S2
and S3 (see Table 1). In order to compute absolute magnitudes
needed in sample definitions, we use the same cosmological pa-
rameters than that of the simulation, described later on this Section.
The algorithm starts with the identification of the largest spherical
regions where the overall density contrast is at mostδ = −0.9.
The list is cleaned so that each resulting spherical region is not
contained in any other sphere satisfying the same condition. The
method also avoids the selection of spheres closer than two maxi-
mum void radii from the survey boundaries. The centres of under-
dense spheres are chosen as the locations of void centers, and the
scale assigned to each void is the radius of the underdense sphere.
It should be noticed that this procedure does not assume thatvoids
are spherical, but ensures that the void is surrounded by a spheri-
cal region with overall density below a threshold of 0.1 times the
mean density. Since the resulting void sample depends on thesam-
ple dilution (Padilla, Ceccarelli & Lambas 2005), we seek for the
best compromise between the void sample size and the identifi-
cation confidence, specially for the smallest voids. Therefore, the

limiting redshift of the sample is chosen so that a good quality of
the void sample is obtained, and also the number of voids remains
large enough to achieve statistically significant results.With these
criteria, voids down to 5 h−1 Mpc are well resolved in S1 sample of
the catalogue. We obtain 131 voids in this sample with radii ranging
from 5 h−1 Mpc to 22 h−1 Mpc. The smallest voids are identified in
S1, since it has the greater galaxy density. However, due to the lim-
ited volume, this sample is not suitable to perform statistical studies
of the largest voids, and for this we turn to the additional samples,
S2 and S3. The number of voids and the definition of each sam-
ple are indicated in Table 1. It can be noticed that the intermediate
redshift sample contains a mix of both small and large voids.

In order to test the results, we will implement our method
on void samples extracted from a mock galaxy catalogue and
from a simulation box. We use galaxies from the semi-analytic
model of galaxy formation by Bower, McCarthy & Benson (2008)
run on top of the Millennium simulation (Springel et al. 2005;
Lemson & Virgo Consortium 2006). The Millennium cosmologi-
cal simulation adopts aΛCDM cosmological model and follows
the evolution of 21603 particles, each with 8.6× 108 h−1M⊙ in a co-
moving box of 500 Mpc a side. The parameters of the model, based
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on WMAP observations (Spergel et al. 2003) and the 2dF Galaxy
Redshift Survey (Colless et al. 2001), areΩΛ = 0.75,ΩM = 0.25,
Ωb = 0.045, h= 0.73, n= 1 andσ8 = 0.9. The semi-analytic model
of galaxy formation (GALFORM, Bower, McCarthy & Benson
2008), generates a population of galaxies within the simulation box,
by following the simulated growth of galaxies within dark matter
haloes in the simulation. We identified voids in the full simulation
box, taking into account the fact that the minimum size of voids that
the algorithm is capable of identifing depends on the mean galaxy
density (Padilla, Ceccarelli & Lambas 2005). Accordingly,we im-
posed a magnitude cut in the sample of semi-analytic galaxies di-
luting it so that the mean galaxy density is the same than thatof
the SDSS sample. The semi-analytic galaxy catalogue is found to
contain 2534 voids with sizes ranging from 5 to 22 h−1 Mpc (see
Table 1).

The mock catalogue is constructed by reproducing the selec-
tion function and angular mask of the SDSS. The resulting semi-
analytic galaxy catalogue has similar properties and observational
biases to those of the SDSS catalogue. We will use this catalogue
in order to calibrate our statistical methods, to interpretthe data,
and to detect any systematic biases in our procedure. Mainly, we
use positions in real space and peculiar velocities of galaxies to
test possible projection biases and to quantify the effects of redshift
space distortions. The semi-analytic galaxy dataset also provides
information on SDSS photometric magnitudes, star formation rates
and total stellar masses, based on computations from the semi–
analytic model of galaxy formation (Bower, McCarthy & Benson
2008). The details of the number of R and S-type voids are given
in Table 1. Following the same procedure carried out in the SDSS,
voids are identified on three volume limited samples, with the same
redshift and magnitude thresholds than the used on real data. (i.e.
maximum redshift of 0.08, 0.12 and 0.15 and maximumr − band
magnitude of−19.2, −20.3 and−20.8, respectively). We denote
these three samples as M1, M2 and M3, and comprise 113, 232 and
316 voids, respectively.

From pondering the void radii distributions obtained in each
sample we conclude that different samples are more suitable to
study voids of different sizes. In the samples with the smallest vol-
umes (S1 and M1) we do not find a significant number of voids
with radii larger than 12 h−1 Mpc. However, a significant number
of voids with radii smaller than about 10 h−1 Mpc are identified,
making those samples more suitable for analysing voids of radii
between 5 and 10 h−1 Mpc rather than larger voids. The intermedi-
ate volume samples (S2 and M2) reach the maximum number of
voids with radii in the range 12–15 h−1 Mpc. These samples are the
most appropriate for studying voids of intermediate size rather than
either smaller or larger voids. In the most extensive samples (S3 and
M3) we find the largest number of large voids (Rvoid > 15 h−1 Mpc)
whereas the number of small voids is not adequate for statistical
analyses. According to this, we prefer the small volume samples
for a detailed statistical study of small voids while large volume
samples are used to examine the properties of large voids.

3 SDSS VOID GALAXY CROSS-CORRELATION
FUNCTION

In modern spectroscopic galaxy catalogues, redshift measurements
are commonly used to estimate galaxy distances. However, these
quantities include a contribution from the peculiar velocity compo-
nent in the line of sight. While this is a drawback when tryingto
obtain an accurate three-dimensional map of the local universe, dy-

selection criteria
sample parent catalogue limiting magnitude zlim NS NR

S1 SDSS-DR7 -19.2 0.08 48 83
S2 SDSS-DR7 -20.3 0.10 73 174
S3 SDSS-DR7 -20.8 0.12 71 252

M1 mock -19.2 0.08 48 65
M2 mock -20.3 0.10 70 162
M3 mock -20.8 0.12 109 207

simulation box -15.9 - 1691 843

Table 1. Galaxy sample selection limits and their corresponding void samples.
In all cases we use in void identification volume limited samples, defined by a
maximum redshift (zlim) and a limiting absolute magnitude in the r-band. The
magnitude of galaxies in the mock and simulation box samplescorrespond to
that of the semi-analytic galaxy catalogue. The number of R-type voids (NR)
and S-type voids (NS) are also indicated.

namical studies can take advantage of the distortions imprinted in
redshift space to obtain information about the velocities.In Paper
I we have analyzed the large scale environment around voids.We
conclude that it is expected that the differences in the spatial distri-
bution of galaxies around voids also manifests as differences in the
dynamical properties. Consequently, it is natural to inferthat red-
shift space distortions on the correlation function will show these
differences. In this section we search for the dynamics of voids in
the redshift space distribution of galaxies around them.

To this end, we measure the void-galaxy cross-correlation
functionξ(σ, π) as a function of the projected (σ) and line of sight
(π) distances to the void centre. Theξ(σ, π) function is the excess
in the probability of having a galaxy around a given void centre.
The standard method to estimate such probability is by counting
void-galaxy pairs and normalising by the expected number ofpairs
for a homogeneous distribution. To compute this normalization it is
necessary to produce a random distribution of points with the sur-
vey selection function. There are several estimators basedon this
counting procedure. In this work we have evaluated two of them,
the classic estimator (Davis & Peebles 1983)ξ = DD/DR − 1,
where DD and DR are the numbers ofvoid-galaxy and void-
random tracerpair counts respectively, and a symmetric version
of the Landy & Szalay (1993) estimator. The latter is computed as
ξ = (DD − DR− RD+ RR)/RR, where in addition toDD andDR,
we need to calculateRRandRD, the numbers ofrandom centre-
random tracerandrandom centre-galaxypair counts respectively.
Since we use volume limited samples of voids the random centre
distribution is uniform. We found negligible differences between
these two estimators for all void samples. Thus for the sake of sim-
plicity, we perform all the analysis using the Davis & Peebles es-
timator. The random sample of tracers needed for this estimator
was generated following the same procedure described in Pazet al.
(2011). Briefly, the expected numerical density of galaxiesat a
given redshift, with a magnitude below the limit of the survey, is
computed from a Schechter luminosity distribution with parame-
tersφ∗ = 0.0149 ,M∗ = −20.44 , α = −1.05 (Blanton et al. 2003).
The angular selection of the random points consists of a pixel mask
based on the SDSSPix software (Swanson et al. 2008). This ran-
dom catalogue contains about 2× 107 random points (see Paz et al.
2011, for more details).

Without redshift space distortions,ξ(σ, π) would be isotropic
as a function ofπ andσ. Therefore, any observed anisotropy in the
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measuredξ function would be evidence of the presence of line-of-
sight velocities. Given that these velocities only affect theπ scale,ξ
as a function ofσ, at lowπ values, resembles the real space correla-
tion function. On the other hand, the behaviour ofξ as a function of
π, for low σ values, is fully affected by redshift space distortions.

We have defined two types of centre voids depending on their
density profiles. Hereby we briefly describe the procedure carried
out to define the centre samples; more details can be found in Paper
I. The mean integrated density contrast profiles can be defined for
Rvoid intervals. As shown in Paper I, these average curves have a
well defined maximum at a distance dmax from the void centre, ex-
cept for the largest voids that exhibit an asymptotically increasing
profile. We classify voids into two subsamples according to positive
or negative values of the integrated density contrast at dmax. Voids
surrounded by an overdense shell are dubbed S-Type voids, and
satisfy∆(dmax) > 0. On the other hand R-Type voids are defined
as those that satisfy the condition∆(dmax) < 0, which corresponds
to voids with continuously rising density profiles. This scheme is
applied for voids in each of the three volume limited subsamples of
the SDSS and mock catalogues, as defined in Section 2, as well as
in the semi-analytic sample of galaxies in the simulation box.

In the upper panels of Fig. 1 we show the void-galaxy cross-
correlation function of voids in the SDSS. The upper left panel
shows the correlation function for the sample of small S-type voids
in sample S1. This is representative of small voids since thesam-
ple of voids with Rvoid in the range 6–8 h−1 Mpcis dominated by
S-type voids (80%). As can be seen in this panel, there is a clear
excess in the number counts of void-galaxy pairs at distances larger
than Rvoid = 8 h−1 Mpc(red colours), produced by the characteris-
tic shell of these samples of voids. It can be noticed that there is a
compression of the isocorrelation curves in theπ direction. This is
an indication of the mean flow of galaxies towards the void centre.

In the upper right panel we show the correlation function for
the sample of large R-type voids in S3. Notice that the spatial and
color scales are not the same in each panel to make the variations
between each case more clearly visible. As can be seen, the ex-
cess of void-galaxy pair counts in the case of small voids at scales
10–15 h−1 Mpc is not present in the sample of larger voids. Given
the trend in the fraction of S-type voids as a function of voidradius
(reported in Paper I), the sample of large voids is dominatedby R-
type voids. A continuously rising profile is expected in thiscase,
and indeed it is observed in theσ axis at lowπ values. However, as
it can be seen in the upper right panel of this figure, an asymmet-
ric structure appears, which is clearly originated on redshift space
distortions.

We also show, in the bottom panels of Fig. 1, the synthetic
ξ(σ, π) functions obtained after the application of a model to the
corresponding observed functions in the upper panels. We present
and describe this model in the following section, where it isused to
analyse in more detail the dynamics obtained from redshift distor-
tions.

4 MODEL FOR ξ(σ, π)

In the previous section we presented the correlation function ob-
tained from two particularly interesting samples of voids.As has
been shown, these samples exhibit different distortion maps. In
order to go deeper in the interpretation of such anisotropies, we
have implemented a model of the redshift space distortions on the
void-galaxy cross-correlation function. Following Peebles (1979)

we compute theξ(σ, π) function as the convolution of the real space
correlation,ξ(r), and the pairwise velocity distribution,g(r,w):

1+ ξ(σ, π) =
∫

d3w g(r,w)
[

1+ ξ(r)
]

, (1)

wherer ≡ (r1, r2, r3) is the real space position of the tracer galaxy
with respect to the centre void andw = ∆v is the velocity of the
tracer in the rest frame of the centre object (pairwise velocity). Sub-
scripts denote each of the Cartesian coordinates: the thirdaxis is
taken along the line of sight whereasr1 andr2 are coordinates in the
plane of the sky. The redshift space separations of the void-galaxy
pair are:

σ =

√

r2
1 + r2

2 and π = r3 + w3/H,

which are parallel and perpendicular to plane of the sky, respec-
tively (as defined in the previous section). As mentioned before,
the third component of the pairwise velocity (w3/H in scale units,
where H is the Hubble parameter at present time) is the sourceof
the difference between real and redshift space line of sight separa-
tions (r3 andπ).

In order to compute the redshift space correlation functionit is
necessary to adopt some prescription for the pairwise velocity dis-
tribution,g. We assume that this function can be approximated as a
Maxwell-Boltzmann distribution centered on a mean velocity field.
The latter is a bulk flow given by linear theory, where the meanve-
locity of the distribution is a function of the density (Peebles 1976).
Since the velocities over the plane of the sky,w1 andw2, do not af-
fect σ or π coordinates, the model only requires the definition of
the marginal distributionf :

f
(

w3 −
r3

r
v(r)

)

=

"
dw1 dw2 g
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r
r
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=
1

√
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Finally, the correlation function in redshift space is obtained from

1+ ξ(σ, π) =
∫

dw3
1

√
2πσv

exp


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
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
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
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
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



[

1+ ξ(r)
]

, (2)

wherer3 = π − w3/H andr2 = σ2 +
(

π2 − w3
H

)2
.

We denote the mass density contrast within a sphere of radius
r as∆(r). Following Peebles (1976), the mean radial velocityv(r)
is related to∆(r) by the linear approximation:

v(r) ≈ −Hr∆(r)
Ω0.6

m

3
. (3)

We have tested other non-linear prescriptions relating∆ and v,
given by Yahil (1985) and Croft, Dalton & Efstathiou (1999).How-
ever we have not found any significant difference with the linear
treatment. This resides in the fact that the density contrast remains
small up to large scales in areas around voids.

The integrated density contrast∆(r) in a void centered sphere
of radiusr and volumeV, is:

∆(r) =
1
V

∫

V

ρ(r)
ρ̄

dV− 1

=
3
r3

∫ r

0
ξ(r)r2dr,
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Figure 2. Projections of the Likelihood function for the model applied to intermediate size voids in the mock catalogue. Voids have been identified in the M2
sample of the mock catalogue with radii in the range of 10–12 h−1 Mpc. The upper-right panel schematically shows the model for the density profiles with a
representation of the meaning of each of the parameters in our model.

where we have used thatξ(r) = ρ/ρ̄ − 1, for a cross–correlation
function ξ(r). Then, the real space void-galaxy cross correlation
function is related to the density contrast by:

ξ(r) =
1

3r2

d
dr

(

r3∆(r)
)

. (4)

In this framework, given a profile∆(r) we can compute the corre-
sponding model for theξ(σ, π). However, the estimate of the corre-
lation function using real data (see Section 3) involves theuse of a
centre void sample. Thus, the profile∆(r) should be understood as
the mean density profile of the void sample. In order to implement
our model on observational data, it is important to select samples
of voids which share a similar profile, well represented by the av-
eraged one. In the following subsection, we define a parametric
model for this density profile.

4.1 Velocity and density profile model

In order to model the integrated density profiles of voids, weintro-
duce a simple empirical model that contains all the necessary fea-
tures. The R-type voids (as defined in Section 3) have the simplest
profile shapes, a continuously rising curve from zero to the mean

density of the universe around the void radius. The error function
erf(x), behaves similarly, therefore we choose this functional form
to model such profiles,

∆R(r) =
1
2

[

erf
(

S log(r/R)
)

− 1
]

. (5)

This model depends on two parameters, the void radius R and a
steepnesscoefficient S. On the other hand, the profiles of S-type
voids are a bit more complex and require two additional parameters
in order to account for the overdensity shell surrounding the void.
We add to the rising term in Eq. 5, an additional term representing
the peak on density due to this shell. Thus, the overdensity model
for S-type void profiles is given by:

∆S(r) =
1
2

[

erf
(

S log(r/R)
)

− 1
]

+ P exp

(

−
log2(r/R)

2Θ2(r)

)

(6)

where the Gaussian peak has an asymmetric width,

Θ(r) =

{

1/
√

2 S r < R
1/
√

2 W r > R
(7)

As can be seen, such asymmetry is obtained by placing two semi-
gaussians instead of just one. This allows us to modify the size
of the shell, through the W parameter, without changing the inner
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shape of the profile, related to S. Therefore, an S-type integrated
overdensity profile requires the use of four parameters, namely R,
S, P and W. With this profile in equations 3 and 4 it is possible to
compute the integral in Eq. 2. In order to perform this integration
we use a Runge-Kutta method of sixth order. This allows a robust
estimation of the integral avoiding numerical issues related with
the rapid variation of the argument function. A schematic view of
the role of the parameters on the model is shown in the upper right
panel of Fig. 2. The S-type profile (solid line in the upper right
panel of Fig. 2) is obtained from the expression 6. The risingterm is
shown as a long-dashed line, whereas the peak term is represented
as short-dashed lines.

4.2 Likelihood sampling and confidence intervals

In the previous subsection we have presented the procedure to com-
pute the model for the redshift space correlation function.In the
current subsection we will describe the methods employed tode-
termine the best set of parameters which reproduce a given ob-
served correlation function on real or mock data. To this endwe
have implemented a Markov Chain Monte Carlo method (hereafter
MCMC) to map the likelihood function of theξ model given the
corresponding measurements in a void sample.

The likelihood function compares the modelled correlation
functions obtained from different sets of parameters to the mea-
sured correlation functions of a given data set, by quantifying the
difference between them. The MCMC method samples the poste-
rior probability distribution of the model given the data through a
set of markov chains, which traverse the parameter space until they
reach the equilibrium distribution. To explore this space,we em-
ploy the Metropolis-Hastings algorithm to obtain a random sample
of estimates of the model probability. In this process, the likeli-
hood function allows to decide when a given set of parametersis
better at describing the observed correlations than a previous set.
To properly quantify these model-data distances, we estimate the
covariance matrix of the observed correlation function. This matrix
plays the role of a metric in the model parameter space. Theξ(σ, π)
function is measured at 15× 15 logarithmic bins over the scale in-
tervals used for each sample. Thus, the covariance matrix between
each pair of bins in the correlation matrix, hereafter denoted asC,
is a squared matrix of 152 × 152 elements. Each element Ci j is the
estimator of the variance, computed on the data by jacknife resam-
pling (Tukey 1958) using the multivariate generalization given by
Efron (1987):

Ci j =
n− 1

n

n
∑

k=1

[

ξ(k) − ξ(.)
]

i

[

ξ(k) − ξ(.)
]

j , (8)

wheren is the number of jackknife realizations,ξ(k) is the correla-
tion function for thekth jackknife realization andξ(.) is the average
of ξ(k) over then realizations. The matrixC is not diagonal, since
the independence of the correlation values at bins in different scales
can not be guaranteed. The probabilityL that a given model repro-
duces the data results is then given by

Ln(L ) = −∆ξ · C−1
∆ξ + const, (9)

where∆ξ is a vector containing the differences between the data
and modelled correlation functions.

The computation of the likelihood depends on the inverse of
the covariance matrix. However, instead of computingC−1 it is
more accurate to solve the systemCa = ∆ξ for the vectora, ob-
taining L as the inner producta · ∆ξ. Another numerical issue

arises from the fact that the adopted estimator for the covariance
gives by definition a positive semidefinite matrix. The covariance
matrix takes the form of a sparse matrix, due to fact that the co-
variance of bin pairs at increasing separations approacheszero, but
fluctuates due to the noise introduced by the covariance estimator.
This leads, in some cases, to a solution which can be dominated by
numerical noise or may even not exist. This issues can be overcome
by ”tapering” the covariance matrix, i.e. nullifying the covariance
elements at large separations. Following Kaufman (2008), we mul-
tiply element-wise the covariance matrix estimated with a correla-
tion matrix, defined to force null values for elements with pair bin
distances (calculated in the two dimensions, parallel and perpen-
dicular to the line of sight) larger than 4 bins. The taperinginterval
of 4 bins is large enough to leave unaltered the principal features of
the covariance matrix, ensuring at the same time a positive-definite
system. We then compute the probability for any given model in
the parameter space using the tapered covariance matrix. This pro-
cedure allows us to obtain an estimate of the parameters thatmax-
imizes the Likelihood function and its corresponding confidence
intervals. We use flat priors for all the parameters in the model, re-
stricting the search in the parameter space to a region wherethe
model gives meaningful profiles.

We show in Fig. 2 an example of the fitting procedure used
on a sample of S-type voids taken from the mock catalogue. These
voids were identified over the M2 sample of the mock catalogue,
with radii ranging from 10 to 12 h−1 Mpc. Theξ(σ, π) function was
estimated following the methodology described in section 3. In the
upper right panel, we schematically represent the parameters in-
volved in the model of the integrated density void profiles∆(r), as it
is described in the subsection 4.1. We run 40 independent chains to
explore this parameter space. The convergence criterion isbased on
Gelman & Rubin (1992), which compares the spread in the means
between chains to the variance of the target distribution. Once a
given chain satisfies this criterion, we split it in two parts, discard
the first half (ordered by step), and use the rest to map the likelihood
function. With this procedure we avoid the early stages of the ran-
dom walk, where the distribution of points in the parameter space
does not necessarily follow the equilibrium distribution.In the di-
agonal panels of Fig. 2 we show the one-dimensional marginal-
ized constraints over each one of the four parameters (R, S, P, W).
We also show the constraints on all pairs of parameters, indicat-
ing the 68.3%, 95.5% and 99.7% confidence intervals. As can be
seen the marginal distributions for each parameter resemble Gaus-
sian probability densities, thus the uncertainties for each parame-
ter are nearly symmetric. The two dimensional projections of the
likelihood function exhibit a well defined maximum, whereasits
isoprobability contours indicate that there are not significant de-
generacies.

In the bottom panels of Fig. 1, we show two examples of cor-
relation function models obtained from fits run over SDSS results
(upper panels). Theseξ(σ, π) functions are obtained from the model
with the set of parameters for which the likelihood, with thecorre-
sponding correlation measurements, reaches its maximum. As can
be seen in a comparison between the upper and lower panels of
this figure, the proposed model seems to reproduce the more im-
portant features observed in the measured correlations. Moreover,
in the lower left panel the white solid line shows two isocorrela-
tion levels (ξ ≈ 0.5, −0.2) which clearly manifest the expected
dynamics for small voids. For instance, the contour corresponding
to ξ ≈ −0.2 reaches the abscissa axis atσ ≈ 7 h−1 Mpc, whereas
along theπ direction the contour seems to elongate up to around
8 h−1 Mpc. This can be thought as a distortion produced in the in-
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ner scales of voids by outflow velocities of about 100 km s−1 h−1.
The opposite behaviour can be seen at the inner part of the iso-
contour level ofξ ≈ 0.5. This contour starts atσ ≈ 11 h−1 Mpc
and reaches theπ axis at less than 9 h−1 Mpc. This can be inter-
preted as a contraction in the correlation function contours due to
the presence of redshift distortions, in this case originated by infall
velocities around -100 km s−1 h−1. This kind of velocity profiles of
outflowing velocities inside the void region and infalling velocities
at the outskirts, are expected in smaller voids. This is in qualitative
agreement withΛCDM predictions (see section 1). On the other
hand for larger voids, as shown in the lower right panel of Fig. 1,
the model exhibits elongated contours in the inner region. More
precisely, the inner contour starts atσ ≈ 15 h−1 Mpcand reaches
theπ axis around 16 h−1 Mpc. Although the profiles of R-type voids
do not reach a maximum at any scales, the modelledξ(σ, π) func-
tion for this sample exhibits a clear maximum located along the
ordinate axis atπ ≈ 27 h−1 Mpc. This maximum is surrounded by
the ξ ≈ 0.15 contour which encircles a postive correlation region
breaking the isotropy of the correlation map. As discussed in sec-
tion 3 in the case of the observed correlation function (upper right
panel in Fig. 1) such anisotropy could be thought as evidenceof
redshift space distortions at the void outskirts.

In Section 6 we provide an analysis of these results based on
the modelled velocity curves, in particular we show in Fig. 4the
corresponding profiles of these two void samples among others.
The downward triangles in the left panels of this figure (S-type la-
beled) correspond to the small S-type voids in the left panels of Fig.
1). The upward triangles in the right panels of Fig. 4 are the derived
velocity (upper panel) and density curves (lower panel) from the
large R-type voids in the right panels of Fig. 1). For furthercom-
ments and a more detailed analysis please refer to section 6,where
we also analyse the other SDSS void samples shown in the figure.

In this section we have presented an analytic model for red-
shift space distortions on the void-galaxy cross-correlation func-
tion. We showed in this subsection how the parameters of this
model can be obtained from fitting the redshift space correlation
function. The likelihood and confidence intervals shown in Fig. 2
are a representative example of the results obtained for thedifferent
samples used in this work. In the following section we provide an
analysis of how well this technique can be used to recover thereal
velocity and density profile of voids from redshift-space data.

5 TESTING THE METHOD ON SIMULATIONS

In the previous section we have presented a parametric modelfor
the ξ(σ, π) function. We showed the corresponding model results
for large and small voids in the SDSS, corresponding to R- and
S-types respectively. The model reproduces the main features of
the observed redshift space correlation functions for bothsamples.
Also, the model is characterized by a well behaved likelihood func-
tion, with not appreciable degeneracies in the parameter space. This
suggests that our model not only reproduces the observablesbut
also gives a meaningful set of best-fitting parameters. Given that
the model is physically motivated, its results can be used toget in-
sights about the dynamics of the large scale structure around voids.
In this section we study the capacity of our model to recover the un-
derlying velocity and density profiles. This analysis is performed by
comparing the model results obtained in the mock catalogue with
direct measurements of velocity and density profiles in the corre-
sponding simulation. It will also allow us to quantify the effects of
observational biases in the results.

In the Fig. 3 we show the results of the proposed test for voids
with radii between 10 and 16 h−1 Mpc. Centre voids have been
identified in real space and separated into S (left panels) and R-
type (right panels) samples. For each void in the simulationbox
we measured its radial velocity,v(r), and integrated density pro-
files,∆(r), in spherical shells. We adopt negative values for inward
radial velocities, whereas positive values indicate outflowing ve-
locities. In the upper panels of the figure we display the number
of radial velocity curves overlapping a given bin in radial distance
and radial velocity respecting to the void centre. The spread in ra-
dial velocity from void to void at fixed radial distance can beseen
from the color map, where redder colours indicate larger number of
curves (up to 40). The red solid lines represent the mean velocity
profiles for each sample, which are close to the larger concentra-
tion of curves, indicating a nearly symmetric spread. We also show,
in the bottom panels, the results for the integrated radial density
profiles. Here again the color map indicate the number of curves,
in this case integrated density profiles, in radial distanceand den-
sity bins. Red solid lines display the mean density curves for each
sample (S and R-type voids at left and right panels, respectively).
Finally, we compare these simulation results with those estimated
by using our model in redshift space data. We show, with dashed
black lines, the velocity and density profile estimates obtained by
applying our model in the mock catalogue, following the proce-
dure described in Section 4. In synthesis, for S and R-type voids
in the M2, we compute the redshift space void-galaxy correlation
function,ξ(σ, π), and its corresponding model fits.

As can be seen, for both velocity and density profiles the fitting
procedure is successful in recovering the underlying behaviour in
the simulation. Some differences can be seen at separations larger
than the void radius and are due to the limitation of the modelfor
the density profile to reproduce the detailed shape of the actual pro-
file. This of course translates into some difficulty in reproducing the
velocity profiles. However, the overdensity values and the mean ve-
locity differences are smaller than 0.3 and 100 km s−1 respectively,
and the model successfully recovers the S- or R-type nature of the
profiles in both density and velocity. In the following section we
will apply this procedure to SDSS voids.

6 SDSS RESULTS

The large–scale region around voids determines two different popu-
lations of voids. This was predicted from theoretical considerations
in Sheth & van de Weygaert (2004), who also found that void envi-
ronments are a key factor in their dynamical behaviour. In Paper I
we found that small voids are likely to be surrounded by overdense
shells, whereas larger voids tend to show smoothly rising profiles.
According to the previously mentioned results, a different dynami-
cal behaviour of S and R-type voids is expected. This has beenstud-
ied for samples of voids derived from numerical simulations, both
in the full simulation box and in mock catalogues (includingPaper
I). However, the corresponding analysis in observational samples
has not yet been carried out, and this paper aims at confronting the
observations to the theoretical model expectations. Thus,we have
applied the methods described in Section 3 to our void catalogues
in SDSS.

In the lower panels of Fig. 4 we show the resulting void–
centric radial galaxy density profiles,∆(r), for S-type (left) and
R-type (right) voids in sample S1. The upper panels show the cor-
responding void–centric radial galaxy velocity profiles. As is in-
dicated in the figure, the different symbols correspond to differ-
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Figure 3. Two–dimensional histograms (color map) of distance-velocity (upper panels) and distance-density (lower panels) void profiles in the semi-analytic
sample of galaxies of the simulation box. The color scale displays the number of profiles (integrated density and radial velocity, at lower and upper panels,
respectively) overlapping at a given bin in radial distanceand velocity or density. Centre voids have been identified inreal space with radii in the range
10–12 h−1 Mpc and separated into S (left) and R-type (right) samples. On each panel, the red solid line shows the averaged values on distance bins of velocity
and density. For comparison, we also show the recovered velocity and density curves from theξ(σ, π) model in an equivalent mock sample (black dashed line).
In this case, voids have been identified in the M2 sample of themock catalogue with radii in the same range (10–12 h−1 Mpc).

sample rmin rmax type R S P W

S1 6 8 R 10.06± 0.06 5.1± 0.3 - -
S 11.0± 0.3 5.7± 0.3 0.42± 0.03 1.77± 0.09

8 9 R 12.8± 0.3 3.9± 0.3 - -
S 13.4± 0.4 5.5± 0.3 0.46± 0.04 2.0± 0.1

10 14 R 15.0± 0.2 4.6± 0.2 - -
S 18.5± 0.9 4.8± 0.4 0.58± 0.04 2.7± 0.1

S2 9 12 R 13.5± 0.2 5.0± 0.2 - -
S 15.1± 0.4 4.9± 0.2 0.39± 0.03 1.83± 0.09

12 15 R 16.5± 0.2 4.8± 0.1 - -
S 17.7± 0.4 6.1± 0.3 0.32± 0.03 1.7± 0.1

15 25 R 22.4± 0.3 4.0± 0.1 - -
S3 11 14 R 14.5± 0.1 4.9± 0.1 - -

S 17.0± 0.2 5.4± 0.2 0.43± 0.02 2.05± 0.07
14 19 R 17.6± 0.1 4.3± 0.1 - -
19 26 R 25.5± 0.1 4.01± 0.09 - -

Table 2. Model parameters (see Eqs. 5, 6 and 7) obtained for the different subsamples of SDSS voids. Minimum and maximum radii (rmin and
rmax, respectively) are expressed in units of h−1 Mpc.
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Figure 4. Void–centric radial galaxy density profiles∆(r) (lower panels) and void–centric radial galaxy velocity profiles (upper panels) for S-type (left) and
R-type (right) voids in the S1 sample. Different void radii ranges are indicated with downward triangles (6–8 h−1 Mpc), circles (8–9 h−1 Mpc) and upward
triangles (10–14 h−1 Mpc). Error bars indicate the region enclosing all curves within 68.3% uncertainty in parameter space.

ent ranges in void sizes. We indicate with downward triangles the
void radii in the range 6–8 h−1 Mpc, with circles voids with radii
in the range 8–9 h−1 Mpc; and with triangles voids with radii in
the range 10–14 h−1 Mpc. The error bars in Fig. 4 represent the
68.3% uncertainties resulting from the MCMC likelihood map-
ping. As it can be seen in the figure the modelled profiles of S
and R-type voids are satisfactorily recovered and describethe typ-
ical behaviour of the two types of voids. Indeed, the observed den-
sity profiles are consistent with the modelled profiles within un-
certainties (not shown for the sake of simplicity). Regarding the
velocity profiles (upper panels of Fig. 4), it can be seen thatthe
S-type voids show two different dynamical regimes. While inner
regions are in expansion, the large–scale void walls are collapsing.
This is in agreement with the void–in–cloud scenario introduced
by Sheth & van de Weygaert (2004) and the direct measurements
in our numerical simulations presented in Paper I. On the other
hand, the fitted velocity profiles of R-type voids never exhibit in-
fall velocities as can be seen in the bottom-right panel if this figure.
This behaviour fits well with the void-in-void scheme, whichindi-
cates that voids embedded in low density large–scale regions are
likely to be expanding. These results provide the first observational
evidence of the two processes involved in void evolution. Wealso
find that the behaviour of these profiles are different as the void size
increases. Where voids surrounded by overdense large–scale shells
are under contraction, voids laking this outer overdensityare usu-
ally expanding. In this scenario, voids embedded in overdense en-

vironments are dominated by gravitational collapse ratherthan by
expansion. Consequently, it is likely that many of the smallvoids
with a surrounding overdense shell have sank inward by the present
epoch. Larger voids, on the other hand, are probably expanding in
concordance with the formation of the large structures thatshape
them.

We applied this procedure to the R and S-type subsamples in
SDSS and mock catalogues described in Table 1. In the Table 2
we show the resulting model parameter fits, along with their uncer-
tainties, derived from each subsample. The radii ranges have been
chosen taken into account the distribution of void radii, sothat the
sample is in each case divided into three subsamples with nearly
the same number of voids each. As can be appreciated in this table,
the parameter values support the scenario of a dichotomy in void
evolution.

7 SUMMARY AND CONCLUSIONS

We have performed a statistical study of the void phenomenonfo-
cussing on the dynamics of the surrounding regions of voids.We
used samples of voids identified following the procedure described
in Padilla, Ceccarelli & Lambas (2005). We constructed catalogues
of voids in the SDSS-DR7, as well as in mock catalogues and in the
parent simulation box to test the effects of observational biases.

We analyze the dynamics of voids with and without a sur-
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rounding overdense shell in the SDSS, dubbed R-type and S-type
respectively, following Paper I. We find that small voids, which are
more frequently surrounded by overdense shells (see Paper I), are
likely to be in a collapse stage. On the other hand larger voids are in
expansion, due to they have a large fraction of R-type profiles (Pa-
per I). Using a model based on the linear theory of gravitational col-
lapse, we model the void-galaxy cross-correlation function in red-
shift space to take advantage of the redshift-space distortions to ob-
tain the dynamical properties of galaxies around voids. Theanalysis
of the mock catalogues shows that the model successfully recovers
the underlying velocity and density profiles of voids from redshift
space samples. When applying this procedure to SDSS data, we
obtained evidence of a twofold population of voids according to
their dynamical properties as suggested on previous observational
studies (Paper I) and as predicted by theoretical considerations by
Sheth & van de Weygaert (2004). According to this, some voids
show a continuously rising profile fitting within the void-in-void
scheme proposed by Sheth & van de Weygaert (2004). Our redshift
space-distortion studies indicate that this type of voids are likely
to be expanding. Small voids, on the other hand, are tipically sur-
rounded by an overdense shell and their redshift space distortions
indicate that they are more likely to be collapsing.

We test and interpret our results by comparing SDSS results
to a semi-analytic mock galaxy catalogue extracted from theMil-
lennium simulation. Both the mock catalog and the observational
results are in very good agreement, providing additional support to
the viability of aΛCDM model to reproduce the large scale struc-
ture of the Universe as defined by the void network and their dy-
namics.
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