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Thermal stress evaluation in the steel continuous casting process
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SUMMARY

Two numerical models for the thermal stress and plastic strain analysis in the solid shell at the initial
stage of a steel continuous casting process, are presented and their performances evaluated. First, a
numerical procedure based on a natural extension of the semi-analytical study proposed by Weiner
and Boley (J. Mech. Phys. Solids 1963; 11:145–154) is introduced and validated by comparison with
their semi-analytical 1-D solution. The basic hypotheses of this model, and particularly the extended
plane strain condition with uniform axial strain, are afterwards tested in more complex and realistic
situations by comparing results with those obtained by an alternative numerical scheme presented by
Fachinotti (Doctoral Thesis, Universidad Nac. Litoral, Argentina, 2001) and Fachinotti and Cardona
(Internal Report, CIMEC, sent to IJNME, 2002). Finally, results of a typical and representative 3D
simulation, corresponding to a slab continuous casting process, are shown. Copyright � 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Internal cracking of steel products obtained by the continuous casting process may occur quite
frequently, producing severe economic losses. Its prevention entails one of the most important
issues in the development of this process, and motivates a number of research works. Various
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interacting factors, including thermal, mechanical and metallurgical ones, are recognized to be
the cause of cracking.

Experimental works, such as Yamanaka et al. [1], Kim et al. [2], Won et al. [3, 4], noted the
existence of a correlation between internal cracking and a critical amount of strain developed
between the so-called zero strength and zero ductility temperatures. Bernard et al. [5] proposed
a criterion based on peak stresses, instead of strain values, to determine cracking susceptibility.
Clyne et al. [6] remarked the importance of alloy constitution and microsegregation of solute in
determining the susceptibility of steel to solidification cracking. Nakagawa et al. [7] presented
experimental results and proposed a numerical procedure to understand the influence of factors
such as strain rate, progress of solidification and chemical composition among others. It is
therefore observed that, regardless of criteria, cracking prediction models use the mechanical
stress–strain state at temperatures close to solidification as a fundamental input.

In this paper we analyse the stress–strain state of the solid shell formed in the early stage of
steel continuous casting processes, in which some types of cracks are believed to be produced,
by using specially developed finite element numerical methods.

Several methods for analysing this problem have been presented in the literature. Weiner
and Boley [8] developed a simplified semi-analytical procedure to give a rough approximation
of the evolution of stresses in this zone. Kristiansson [9] presented a finite element model in
which a strip of elements were used to model a slice of the casting. Boundary conditions were
imposed restricting axial displacements to be equal above (and below) the slice. This hypothesis
is similar to that adopted by Weiner and Boley in their semianalytical study. Two-dimensional
approaches based on a plane strain hypothesis perpendicular to the casting direction have been
used in the literature for thermal stress evaluation of continuous casting simulations [4, 10–13].
Nevertheless, these slice models are questionable to reproduce accurately the 3D mechanical
state at some critical zones, like the mould exit in slab continuous casting, where stress state
is clearly fully 3D. One of the main objectives of this work is to determine the magnitude of
these differences.

In Section 2.1 we develop an improved 2D formulation to solve the thermal-mechanical
problem using a hypothesis of plane strain normal to the direction of casting with uniform
(and nonzero) axial strain εz. This hypothesis is fully consistent with the original proposal
of Weiner and Boley and has also been followed by Thomas and coworkers [14–19], who
called it Generalized Plane Strain hypothesis. We propose instead the name two-dimensional
extended plane strain condition (EPSC) to avoid confusions with a kinematic hypothesis used
in plate analysis (see References [20, 21]) which has been given that name. In Section 3 we
compare the results obtained for the one-dimensional EPSC case, with those reported in the
above-mentioned studies.

In Section 2.2, we present an alternative Eulerian–Lagrangian procedure where no EPSC
condition is assumed (see References [22, 23]). Section 4 presents a comparative analysis of
results obtained with both models for the simulation of a billet continuous casting process. This
allows us to get an estimation of the error introduced by the EPSC assumption, particularly
in the region close to the mould exit. In both cases, the problem of thermal conduction with
phase change was solved following the procedure we previously proposed [24, 25].

In Section 5 we present detailed results of simulation of a slab continuous casting, obtained
by using the EPSC model. This final example illustrates the power of the developed EPSC
method to deal with large continuous casting simulations. We make also some estimations of
CPU time gains in Section 6.
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2. DESCRIPTION OF THE MECHANICAL PROBLEM

Thermal stresses in the solid shell result from a complex coupling of fluid flow, heat flow,
phase-change and solid deformation phenomena [26, 27]. Let us assume in a first approach
a stationarity condition for the thermal analysis with a strand average casting velocity vc
uncoupled from the mechanical variables. Those aspects introducing the mechanical coupling
into the energy equation are not addressed in this work, since they are not relevant for the
discussion (interested readers may look at Reference [28] where we presented a coupled thermal-
mechanical formulation of continuous casting problems). After determining the temperature field,
we make a stress analysis considering a nonlinear material behaviour with parameters strongly
dependent on temperature.

It is recognized that finite element techniques, with standard constitutive material modelling,
yield good solutions in thermal stress analysis even when the solid is subjected to tempera-
tures near the solidification ones. However, there are particular aspects in the formulation of
continuous casting problems that need to be carefully considered.

Let us assume a Lagrangian description for the mechanical simulation of this process
(Figure 1). We can consider three different configurations for every material point and its
neighbourhood:

(i) the reference configuration (B), in which the particle label is assigned;
(ii) the (intermediate) natural configuration (B0) which corresponds to that state where the

material point solidified just below the zero strength temperature (ZST), and started to
develop mechanical strength;

(iii) the current configuration (Bt ).

Note that, since the solidification time instant is not the same one for all points in the domain
of analysis, each material point has its own (intermediate) natural configuration. The ZST is
defined as the minimum temperature amongst those at which strength is zero [7]. Temperatures
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Figure 1. Reference (B), natural (B0) and current (Bt ) body configurations
in the continuous casting problem.
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corresponding to solid fraction values ranging from 0.65 to 0.80 are commonly used for this
parameter in the literature [1, 3, 15].

By denoting as uo the displacement from the reference to the natural configuration, ut the
displacement from the reference to the current configuration and u the displacement from the
natural to the current configuration, we can write:

ut = u + uo (1)

Usually, when a finite element procedure is used, the mesh is defined in the reference con-
figuration as depicted schematically in Figure 1(b). In this picture we represent the reference
domain B as the set of points at the top of the mould at time t = 0. The object of the analysis
is the determination of strains and stresses in this set of points as time proceeds.

Let us consider that X and xo are coordinate systems in the reference and natural configu-
rations, respectively. As a consequence of the assumption of small deformations we introduced
to describe motion, and by assuming the existence of the intermediate deformation gradient in
the neighbourhood of every point, we have:

∇Xxo ≈ 1

The same assumption allows us to evaluate the strain � = ∇sym
xo u, related to the motion from

the natural to the final configurations, by the following approximation:

� = ∇sym
xo u ≈ ∇sym

X u (2)

By taking gradients in Equation (1) and using the assumptions stated above, we can verify the
validity of the additive decomposition of strains:

�t = � + �o (3)

where �t = ∇sym
X ut is the strain tensor at the actual configuration (time t) with respect to the

reference configuration, and �o = ∇sym
X uo is the strain at the natural configuration with respect

to the reference one.
The mechanical strain �M is computed subtracting the thermal strain �� from the actual

strain �:

�M = � − ��, �� = �(�)1 (4)

with �(�) being the thermal expansion function. Stresses in the solid shell are directly related
to the mechanical strains, through the constitutive material law.

Since an objective of this work was the comparison between 2D EPSC and 3D formulations,
the solid shell material constitutive response was represented simply by using a standard
elastoplastic model. The use of more sophisticated laws, like viscoplastic ones [29, 30], would
not have changed the conclusions of this work (a full comparison between elastoplastic and
viscoplastic models for the continuous casting problem has been reported in References [22, 31]).

By adopting the classical J2 theory with isotropic hardening, the stress–strain relation
results [32]:

� = Ce
(�) · (�M − �p

M) (5)
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where �p
M is the plastic mechanical strain and Ce

(�)
is the elastic constitutive tensor

Ce = E(�)

(1 + �(�))
I + �(�)E(�)

(1 + �(�))(1 − 2�(�))
(1 ⊗ 1)

with (E(�), �(�)) the (temperature dependent) Young modulus and Poisson coefficient and 1, I
the second and fourth order identity tensors. Isotropic strain hardening is described using a
scalar internal stress-like variable q, which is related to its conjugate internal variable � through
the plastic modulus H :

q̇ = −H(�)�̇ (6)

Classical associative flow laws define the evolution of the strain-like internal variables:

�̇p
M = �n, �̇ = �

√
2
3 (7)

where � is the plastic multiplier and n the direction of the plastic strain rate, defined by the
deviatoric stress �dev:

n = �dev

‖�dev‖ (8)

Finally, we have the consistency relations:

� � 0, �(�, q, �) � 0, �� = 0 (9)

with the yield criteria �(�, q, �), which in our case is von Mises yield surface:

�(�, q, �) = √
�dev · �dev −

√
2
3 (�y(�) − q) (10)

In this equation, �y(�) is the yield stress. We remark that for a correct representation of
the steel constitutive behaviour in the zone of interest, it is mandatory to account for the
strong dependence of the material parameters on temperature. The above equations make this
characteristic evident.

2.1. EPSC with uniform axial strain: pure Lagrangian description

The instantaneous velocity of a point in the solid shell u̇t can be seen as the result of the
addition of two terms: the average casting velocity vc in the direction of axis z, and a relative
velocity u̇r defined with respect to an observer moving with the velocity vc (see Figure 1):

u̇t = vc + u̇r , u̇r = (u̇r
x, u̇

r
y, u̇

r
z) (11)

The EPSC assumes that �̇z = �u̇r
z/�z does not depend on the coordinates (x, y), where

z coincides with the direction of casting (see Figure 2). Furthermore, it is assumed that
�̇xz ≈ �̇yz ≈ 0. Both restrictions impose that u̇r

x and u̇r
y must be independent of the coordinate z.

Note, however, that these assumptions are clearly not valid in some regions of the solid shell.
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Rigid bar with free
x-movement

One-dimensional
EPSC model

Two-dimensional
EPSC model

-x
y

z

-

Figure 2. EPSC: model of a slab continuous casting process.

The term �̇z can be implicitly treated in the analysis by considering the equilibrium equation
in the z direction. The upper section of the casting machine (pouring section) is modelled as
a traction free boundary. Frictional forces between solid shell and mould may be neglected,
since for normal casting speeds and continuous casting flux powders, shear stresses are smaller
than 0.02 MPa [33, 34]. Also, normal stresses �z generated by the weight of liquid and solid
shell are typically smaller than 0.02 MPa and may be neglected as well. Then, resultant forces
in every transversal section are:

∫
A

�z(x, y) dx dy ≈ 0 (12)

Using this assumption, we may project the 3-D model to a plane problem and afterwards treat
it numerically as if it were a pure 2-D mechanical state.

Note that the equations to be solved in this model result from the transformation of the
stationary advection hyperbolic problem to a parabolic one.

2.1.1. The two-dimensional EPSC finite element. We implement the two-dimensional EPSC
with uniform axial strain and with zero resultant transversal forces, by adopting a reference
domain lying on the plane (x, y) (Figure 2). The domain is discretized using standard bilinear
quadrilateral four-nodes finite elements, which include an additional degree-of-freedom (d.o.f.)
that accounts for the axial component of strain �z. We call this element the QUAD4_EPSC
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element. Its strain–displacement matrix B is written as

B4×9 =
(

Bqst
1 Bqst

2 Bqst
3 Bqst

4 0

0 0 0 0 1

)
(13)

where Bqst
i is the ith block of the standard strain–displacement matrix of the bilinear quadri-

lateral element:

Bqst
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�Ni

�x
0

0
�Ni

�y

�Ni

�y

�Ni

�x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Ni(x, y) is the corresponding shape function of node i. The generalized displacements
elemental vector results:

q̂T = [u1
x u1

y . . . u4
x u4

y �̂z] (14)

The additional d.o.f. �̂z is shared by all elements in the mesh. It is numbered as the last
global d.o.f. in the system. In this way, the coupling introduced by the equilibrium equation (12)
does not substantially change the skyline of the structural stiffness matrix and therefore, the
computational cost remains equivalent to that of a 2-D analysis.

The strain �o is computed the first time that all nodal temperatures of the considered element
fall below the ZST, and is stored at the finite element Gauss point as an additional tensorial
internal variable.

In this model, the solid shell domain changes with time. This fact introduces some difficulties
concerning the mesh definition for the FE analysis. The procedure we have implemented consists
in defining a mesh that describes the complete domain, including the liquid and mushy zones.
Nodes with temperature above the ZST are initially fixed. In subsequent time steps, when the
nodal temperatures fall below the ZST, nodal d.o.f.s are freed and the stiffness contribution of
the solidified zone is taken into consideration (see Figure 3). This strategy was implemented
into the object-oriented finite element code Oofelie [35, 36]), taking advantage of its ability for
managing d.o.f.s.

Remarks

• The described numerical model does not predict the real displacement field inside the solid
shell, because the displacement field of the natural configuration is not known. However,
displacements in the natural configuration of the elements located on the shell surface
are known and equal to zero, so the real displacements of the shell surface are correctly
approximated. This is an important fact since this allows to verify the mould taper and
also to impose contact restrictions between the external face of the solid shell and the
mould.

• The technique of substraction of the strain term �o from the total strain �t must be
emphasized for its simplicity and accuracy. Stress computations based on total strain,
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Figure 3. EPSC model: managing the d.o.f.s and strains in the finite element mesh as time proceeds.

without substraction of the initial strain �o, give completely unrealistic results, a fact
that may be verified by comparison with results obtained by using the semi-analytical
formulation of Weiner and Boley. We note also that this approach is less expensive than
that used by other authors based on recording flow strain for liquid elements [37].

2.2. Mechanical model based on an Eulerian–Lagrangian description

In this section we describe an alternative model for analysing the mechanical stress state in
continuous casting problems. We have used it for the numerical simulation of continuous casting
billets, where symmetry of revolution in the thermal and mechanical problems is assumed. Its
generalization to 3D problems is straightforward.

This model removes the hypothesis of �̇z uniformity in z-constant planes, typical of the EPSC.
The reference configuration is a 2-D domain as shown in Figure 4, which only represents the
solid shell. The x coordinate represents the billet radial direction.

The analysis is performed at time t assuming, as previously done, stationary state. The
material rate of all variables (e.g. the plastic mechanical strain rate), can be determined by the
advection term:

�̇p
M = vc · ∇�p

M (15)

Let � be a streamline of the flow defined by the mean casting velocity vc, and let (x1, x0)
be two points lying along this curve which are related by: x1 = vc�t + x0. Let also P be a
material point staying at position x1 at time t . Note that the mechanical plastic strain at this
point at time t − �t is equal to the mechanical plastic strain at a point located at x0 at the
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Figure 4. Eulerian–Lagrangian model for simulating the continuous casting of round billets.

current time t :

�p
M(P,t−�t)

= �p
M(x0,t)

(16)

Then, the mechanical plastic strain rate �̇p
M (Equation (15)) can be approximated incrementally

by:

�̇p
M ≈ �p

M(P,t) − �p
M(P,t−�t)

�t
≈ ‖vc‖

�p
M(x1,t)

− �p
M(x0,t)

‖x1 − x0‖ (17)

which allows us to rewrite the elastoplastic material model equations (5)–(10) in incremental
form as follows:

�(x1) = Ce
(�) · (�M(x1) − �p

M(x1)
) (18)

�p
M(x1)

= �p
M(x0)

+ ��p
M(x1)

(19)

��p
M = ��n, n = �dev(x1)

‖�dev(x1)‖
(20)

q(x1) = q(x0) + �q(x1), �q(x1) = −H(�)��(x1) (21)

��(x1) = ��
√

2
3 (22)

�� � 0, �(�(x1),q(x1),�) � 0, ��� = 0 (23)

The mechanical strain �M is determined by using Equation (4), where � can be computed from
the total displacement field (see Equation (2)).
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The arbitrary choice of point x0 determines the incremental variable ��. If a viscous material
model were considered, the incremental time �t would be explicitly included in the above
equation, but the basic assumptions would still remain valid.

2.2.1. Implementation of the Eulerian–Lagrangian axisymmetric 2-D model. From the numerical
point of view, this model is easily implemented in a standard elasto-plastic finite element code
when structured meshes are used. For this purpose it is just necessary to include a pointer to the
preceding element along the same streamline � for every element in the mesh. In this way, a
one-to-one relation is defined between every Gauss point of the mesh with another Gauss point
belonging to the preceding element. The constitutive equations ((18)–(23)) use this relation to
obtain the historical variables at the previous time, as pointed out by Equation (17).

The finite element mesh only describes the solid shell domain, i.e. the points with temperature
below the ZST, which in the mechanical analysis are known beforehand from the thermal
analysis.

The discrete equilibrium equations are solved by using a standard Newton method. The
Jacobian matrix corresponds to that obtained from an equivalent purely Lagrangian elastoplastic
quasi-static incremental problem (see for instance Reference [32]).

3. VALIDATION OF THE NUMERICAL MODEL

Let us consider the early stage of a slab continuous casting process (Figure 2), and particularly
the region corresponding to the central part of the wide face in the solid shell. Thermal stresses
arising there can be evaluated by imposing the EPSC to the z and x directions, because there
exists a traction free condition on all vertical slab sides. Of course, this hypothesis neglects
any effect of shell curvature on strains.

Following this particular assumption, Weiner and Boley [8] calculated a simplified one-
dimensional semi-analytical solution. The thermal problem they solved corresponds to the Neu-
mann’s classical one, a phase change 1D problem with uniform initial temperature � l (the
liquidus temperature) and fixed temperature �o<� l on one end (which corresponds to the shell
surface in Figure 2). They took an elastic-perfectly plastic material model for the mechan-
ical problem, with a constant Young modulus E and yield stress �y varying linearly with
temperature:

�y(�) = �o
y

� l − �

�o , � � � l (24)

where �o
y is the yield stress at temperature �o and �o = �1 − �o.

The Neumann’s solution introduces a characteristic length ȳ = p
√

t , where t denotes time
and the parameter p is given by

p = 2
√

Ks	, Ks = �


Cp

, 	 ≈
√

�oCp

2L
(	2 � 1) (25)

The thermal diffusivity Ks is the ratio of conductivity � to density 
 and specific heat Cp,
while L is the latent heat.
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Figure 5. Finite element model for the 1-D numerical validation test (see Figure 2).

Figure 6. Stress distribution along the ŷ coordinate, 1-D problem [8]. Comparison
of semianalytical and numerical solutions.

Weiner and Boley introduced also the dimensionless quantities:

ŷ = y

ȳ
, �̂ = � − � l

�o

�̂ = (1 − �)�

�E�o , �̂y = (1 − �)�y

�E�o = −m�̂, m = (1 − �)�o
y

�E�o

where � is the thermal expansion coefficient and � the Poisson’s ratio.
We have solved this problem with the finite element procedure described in Subsection 2.1.1

by assuming one-dimensional EPSC conditions along directions z and x. The FE mesh consists
of 100 QUAD4_EPSC elements, as shown in Figure 5. The EPSC condition in the x direction
(�x = constant) is imposed via Lagrange multipliers (elements called EPSC3 in the figure)
placed on the bottom side and constraining all nodal x-displacements to be identical.

Figure 6 compares the semi-analytical results with the numerical ones. The curves plot the
nondimensional stress component �̂xx( = �̂zz) along the nondimensional ŷ-line (surface shell
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depth) for different values of parameters m and 	. The agreement of the numerical FE solution
with the semi-analytical one is evident from the figure.

It should be noted that this semi-analytical solution gives a maximum tensile (compressive)
stress which is constant in time. Therefore, these values do not change with the axial coordinate.
This behaviour is due to the particular thermal boundary conditions adopted (which correspond
to a similarity solution) in the mentioned semi-analytical study. However, as Weiner and Boley
pointed out, the stress distribution trend is similar to that observed in more complex solidification
problems.

4. ANALYSIS OF CONTINUOUS CASTING OF ROUND BILLETS

In this section, we analyse the early stage in the process of continuous casting of a round
billet, including the mould exit zone. We compare FE results obtained using an EPSC model
with those we got using the Eulerian–Lagrangian axisymmetric one of Section 2.2. Tests were
made using a 0.3% C carbon steel.

Figure 7(a) gives a schematic diagram of the problem geometry while Figure 7(b) displays
the material parameters as a function of temperature. In the present simulation we have not
included the effect due to the solid–solid phase transformation volumetric change. However, it
can be taken into account implicitly in the curve �(�) [28, 38]. The material parameters for
the thermal problem are specified in Table I (taken from Reference [39]).

The liquid conductivity �l is larger than the solid conductivity �s to take into account
turbulence in the liquid pool, as proposed in Reference [38]. The casting speed vc was assumed
to be 1.6 m/s, and the boundary thermal conditions were:

(a) prescribed flux in the mould–slab interface (using Savage–Pritchard law [40, 41]):

q(MW/m2) = −
⎛
⎝3.071 − 0.361

√
�z

vc

⎞
⎠ (26)

where �z(m) is the z-distance from the meniscus;

Table I. Material and problem data for the round billet
continuous casting process.

Parameter Symbol Value

Density 
 7200 kg/m3

Specific heat Cp 680 J/(kg ◦C)
Latent heat L 272 000 J/kg
Conductivity (solid) �s 34 W/(m ◦C)
Conductivity (liquid) �l 68 W/(m ◦C)
Solidus temp. �s 1490◦C
Liquidus temp. � l 1501◦C
Zero strength temp. ZST 1495◦C
Pouring temp. �p 1530◦C
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EPSC FE model

75 QUAD4 elements

EPSC3 elements

y

(a) (b)

Figure 7. Round billet continuous casting simulation: (a) geometry and EPSC model (lengths are
expressed in mm); and (b) temperature-dependent material parameters; E: Young’s modulus, �: Poisson’s

ratio, H : Hardening modulus, �Y : yield stress and �: thermal expansion function.

(b) convective flux, due to sprays below the mould exit [42] (using a convection coefficient
hs = 0.5 MW/(m2 ◦C) and �spray = 40◦C):

q = hs(�surface − �spray) (27)

A J2 plasticity material model with isotropic hardening [31] is again used for the mechanical
analysis of the solid shell.

Meshes for both models were designed in such a way that they have similar time–space
discretizations:

• The EPSC model was solved by using a finite element mesh of 75 standard QUAD4
axisymmetric elements, as shown in Figure 7. The mesh was refined close to the billet
surface. The extended plane strain condition was imposed using Lagrange multipliers
(elements EPSC3 in the figure).
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(a) (b)

Figure 8. Round billet continuous casting simulation: (a) evolution of temperatures across
radial axis R; and (b) temperature profiles in the solid shell.

• The Eulerian–Lagrangian model used a 2D mesh with the same radial distribution of
elements as in the EPSC model mesh. The axial direction was discretized with 100
elements. The incremental time step in the EPSC model was defined to match the axial
discretization of the Eulerian–Lagrangian scheme.

Figure 8(a) shows the temperature distribution across the billet radius in different positions,
obtained with two different thermal models:

• The first model is a parabolized one-dimensional procedure, in which heat conduction in
the z direction is neglected.

• The second model is a fixed domain method, that corresponds to an Eulerian (hyperbolic)
two-dimensional description [25].

We remark the natural identification of these two methods with the mechanical EPSC and
Eulerian–Lagrangian models, respectively. Both results are in a very good agreement, predicting
a severe reheating in the surface shell at the mould exit zone.

When comparing the axial (or circumferential) stresses (Figure 9(a)), we find again a good
agreement between both results, except in those sections placed near the mould exit. There,
a slightly incorrect stress prediction of the EPSC model is produced because of the abrupt
change of the thermal boundary conditions.

The same behaviour is found for the radial stresses (even considering that radial stresses
are one order of magnitude lower than axial or circumferential stresses). Figure 9(b) shows a
noticeable difference in the predicted tensile peak stress in the zone close to the mould exit.
However, this peak stress is developed in a very thin superficial region.
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Figure 9. Round billet continuous casting simulation. Comparison of
computed: (a) axial; and (b) radial stresses.

: Eulerian-Lagrangian model

A: 0.3 m below meniscus
B: 0.6 m below meniscus (mould exit)
C: 0.9 m below meniscus

p

: EPSC model

Figure 10. Round billet continuous casting simulation. Comparison
of computed equivalent plastic strains.

Figure 10 shows good agreement between solutions for the predictions of equivalent plastic
strains. This observation has important consequences when the crack criterion is based on the
total applied strain (see Reference [1]).
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5. ANALYSIS OF CONTINUOUS CASTING OF SLABS

A thermomechanical analysis of a slab continuous casting process is presented. Figure 11
displays the schematic diagram and geometrical data of the simulated problem. The cast material
is a low carbon steel [43]. Figure 11 gives a schematic diagram of the problem geometry.
Table II specifies the main material parameters for the modelling of the thermal problem.

-x

y

z

Figure 11. Slab continuous casting process. Schematic diagram (lengths are expressed in mm).

Table II. Material and problem data of the slab
continuous casting simulation.

Parameter Symbol Value

Density 
 7200 kg/m3

Specific heat Cp 680 J/(kg ◦C)
Latent heat L 272 000 J/kg
Conductivity (solid) �s 34 W/(m ◦C)
Conductivity (liquid) �l 68 W/(m ◦C)
Solidus temp. �s 1518◦C
Liquidus temp. � l 1532◦C
Zero Strength temp. ZST 1518◦C
Pouring temp. �p 1562◦C
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(a) (b)

Figure 12. Slab continuous casting problem. Temperatures in the slab wide face mid-section:
(a) temperatures along axis y at different times; and (b) temperature profiles.

The casting speed is 1.0 m/s and the thermal boundary conditions are:

(a) Prescribed flow in the mould–slab interface (using Savage–Pritchard law [40, 43], �z(m))

q(MW/m2) = −(2.68 − 2.58
√

�z) (28)

By following Thomas et al. [43], we decreased this flow value by a factor 0.67 in a
vertical band of 31 mm wide starting from the slab corner, because in this zone the air
gap grows causing a diminution of the slab-to-mould heat conduction.

(b) Convective flux due to sprays [42] (using hs = 0.5 MW/(m2 ◦C) and �spray = 40◦C):

q = hs(�surface − �spray) (29)

An elastoplastic material model, with temperature-dependent parameters as shown in
Figure 7(b), is used for the mechanical simulation. The solution was computed using the
two-dimensional QUAD4_EPSC finite element of Section 2.1.

Figure 12 displays plots of the computed temperature distribution in the slab. Again, we
compare solutions obtained using a parabolized 2D procedure, in which heat conduction in
the z direction is neglected, and using a fixed domain method with an Eulerian (hyperbolic)
3D description [25]. We can see good agreement between both solutions.

As seen in Figure 13(a), the evolution of the stress component �x in the upper zone of
the mould is different from that predicted by Weiner’s model. This can be explained consid-
ering that in the present model we use a more realistic thermal boundary condition based on
Savage–Pritchard law, while Weiner and Boley used a constant surface temperature. The differ-
ence is less important in zones near and below the mould exit, where surface temperatures are
more uniform.
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(a) (b)

Figure 13. Slab continuous casting problem: (a) evolution of �x stress component
in the wide face mid-section (every 0.1 m); and (b) comparison of �x and �z stress

components in the wide face mid-section.

Calculated values of �x and �z in the wide face mid-section are very similar, as seen in
Figure 13(b).

Figure 14 shows a detail of the distribution of axial stresses �z in three different sections
of the corner slab along the strand. A careful analysis of them is mandatory because the
largest values of stress appear in this zone. Furthermore, we note that tensile stresses appear
on the shell surface at the corner of the slab, while in the remaining parts of the slab surface
compressive stresses develop.

The analysis of equivalent plastic strains in Figures 15 and 16 shows values which are two
times larger in the corner zones than in the face mid-section. Moreover, we see equivalent
plastic strain peaks appearing in two bands, parallel to the corner’s edge. Industrial experience
tells us that this zone is prone to imperfections.

6. COMPARISON OF COMPUTATIONAL COST

In order to compare the computational costs of 2D EPSC and 3D formulations, similar analyses
were conducted in a 1.6 MHz Pentium IV computer with 1 Gb of RAM memory, using Linux
operating system. The comparison was made using a small model in order to avoid memory
pagination in the 3D model: 30 time-steps with a mesh of 740 nodes for the 2D analysis, and
a structured mesh of 30 layers by 740 nodes for the 3D analysis. The elapsed time to complete
the test was 4 min for the 2D analysis and 78 min for the 3D analysis. The maximum usage
of memory was 50 Mb for the 2D model and 850 Mb for the 3D model.
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Figure 14. Slab continuous casting problem. Evolution of �z stresses during solidification.
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Figure 15. Slab continuous casting problem. Evolution of the wide
face mid-section equivalent plastic strains.

Figure 16. Slab continuous casting problem. Evolution of equivalent
plastic strains close to the slab corner.
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Such difference is very important in terms of application of these models to solve industrial
problems. The 2D EPSC model allowed us to perform a complete thermomechanical simulation
of 1 m of slab casting (including mould and primary sprays zone), by solving 100 steps with
a mesh of 2622 nodes in 63 min and using only 179 Mb of memory on the same computer.
Industrial cases of square billet casting, simulating the first 10 m of the strand (metallurgical
length), were solved in 12 h doing 750 steps with a mesh of 2600 nodes.

7. CONCLUDING REMARKS

Two models for thermomechanical analysis of continuous casting processes have been pre-
sented and discussed. Comparisons of results were made for different industrial cases of steel
continuous casting.

The following conclusions are drawn from the study:

(a) The semi-analytical solution of Weiner and Boley describes a correct trend in the dis-
tribution of stresses, in the centre of casting of round billets and at the centre of the
wide side in the casting of slabs. However, the peak stresses in different sections along
the strand, a fundamental result for crack analysis, are predicted incorrectly by this
semi-analytical analysis essentially due to the oversimplified boundary conditions of the
thermal problem.

(b) The numerical solution obtained with the EPSC model imposing a Savage–Pritchard law
in the thermal problem boundary, and using realistic temperature-dependent mechanical
parameters, represents well the round billet continuous casting results obtained with the
Eulerian–Lagrangian model. The thermal results match well, and there is no observable
difference when the time–space discretizations are similar. The mechanical results show
good agreement, except in the mould exit region where stress state is fully 3D. The
fields of equivalent plastic strain compare well, and the difference in stresses does not
invalidate its application for its use in a subsequent crack analysis determination.

The degree of agreement between the mechanical EPSC model results and the Eulerian–
Lagrangian one in the simulation of round billet continuous casting, gives us a good basis to
justify its application to the simulation of slab continuous casting processes.

A remarkable characteristic of the EPSC model is its low computational cost. This makes
the EPSC model suitable for future research work involving determination of parameters for
cracking susceptibility.
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