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tation of nature-based solutions (NbS). Living organisms mediate biogeochemical
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cycles and greenhouse gas fluxes from land and sea, and provide NbS to both
climate change mitigation and adaptation. Plants, as the primary producers in
ecosystems, lie at the heart of NbS.

2. Plant ecology provides the foundation for developing and evaluating NbS based
on an understanding of the ecological processes that underlie ecosystem service
flow to people. In this Special Feature, we provide a collection of mini-reviews
that presents concise and focused analysis of the plant ecology of NbS. The mini-
reviews highlight key insights, challenges and opportunities for future research.

3. The development of NbS that target specific ecosystem functions (e.g. carbon
storage), or aim at increasing ecosystem resilience against perturbations (e.g.
those associated with climate change), requires unification of ecological theory
from areas such as biodiversity-ecosystem function, plant-animal interactions,
resilience and functional traits of organisms.

4. Synthesis. Plant ecology and nature-based solutions (NbS) research are com-
plementary. Plant ecology can inform the design and management of effective
NbS, and provide insights for the creation of novel ecosystems that provide
NbS; while learning from the implementation of NbS can progress theory. To
deploy NbS at the speed and scale needed to mitigate and adapt to climate
change, we must rapidly integrate ecological concepts into the design of NbS.
At the same time, the design and deployment of NbS in different ecological

contexts provides an unprecedented opportunity to learn how performances

of individual NbS sites can be explained in an integrated way, leading to the
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1 | INTRODUCTION

‘In short—our world needs climate action on all
fronts—everything, everywhere, all at once’ Anténio
Nations

Guterres,  United Secretary-General

(Guterrez, 2023).

Solutions to slow down, stop and ultimately reverse climate
change—together with solutions that address unsustainable use
of land and water bodies—are urgently needed at local and global
scales to enable people and nature to thrive on a changing planet
(Diaz et al., 2015; IPBES, 2019). Acceleration of climate action
is required to meet the ambitions of the Paris agreement (United
Nations, 2015), and biodiversity protection and restoration are
needed to meet the commitments of the Kunming-Montreal Global
Biodiversity Framework (Convention on Biological Diversity, 2022).
However, the climate and biodiversity crises are intimately linked
and cannot be tackled in isolation (InterAcademy Partnership, 2021;
Portner et al., 2021). Integrated solutions to the climate and bio-
diversity crises (Gorman et al., 2023), together with other global
sustainability challenges, include the identification, design and im-
plementation of nature-based solutions (NbS).

‘Nature-based solution’ is an umbrella term which includes
many existing applications of ecology (Cohen-Shacham et al., 2016;
Seddon et al., 2020). All definitions of NbS include the concept of
actions in natural and managed ecosystems to provide solutions
to global challenges like climate change, while benefitting people
and protecting and restoring biodiversity. NbS are fundamentally
about how people interact with biodiversity, both as ecosystem
managers and beneficiaries of the ecosystem services provided
(Figure 1). People are central to the NbS concept, as both stew-
ards and beneficiaries (Standish & Parkhurst, 2024). However, as
the primary producers in ecosystems and the dominant life form
on earth (Bar-On et al., 2018), plants lie at the heart of NbS, and
plant ecology, by extension, lies at the heart of understanding how
and why NbS work.

Plants provide solutions to both climate change mitigation and
adaptation; they regulate biogeochemical cycles, greenhouse gas
(GHG,) fluxes and the Earth system, and mediate the effects of cli-
mate on the functioning and resilience of ecosystems. There is a
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development of general concepts. Ultimately, a mechanistic understanding of
how plants and their functional traits contribute to ecosystem function and
service provision is critical for the design, verification of benefits from and

avoidance of adverse effects of NbS.

applied ecology, biodiversity, ecological theory, ecosystem function and services, ecosystem-
based approach, global change ecology, multi-trophic interactions, natural climate solution,
plant-climate interactions
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FIGURE 1 Nature-based solutions (NbS) are at the intersection
of climate, biodiversity and social systems. Successful NbS solve an
important problem (e.g. climate change mitigation or adaptation)
while providing benefits to people and to biodiversity.

long history of the application of plant ecology to various domains
relevant to NbS including ecosystem-based approaches, agroecol-
ogy, forestry, restoration, conservation and population ecology for
pest control. Plant ecology can provide the foundation for develop-
ing and evaluating NbS based on an understanding of the ecologi-
cal processes that underlie ecosystem service flow to people. What
distinguishes NbS from more general applications of ecology is that
NbS address a societal challenge that benefits both people and bio-
diversity (Figure 1). The deep connections of plants to other living
and non-living components of ecosystems, and with human systems,
underpin NbS.

Here we provide a collection of nine mini-reviews that presents
focused analysis of the plant ecology of NbS and highlights key in-
sights, challenges and opportunities for future research. As illus-
trated in our overview below, the mini-reviews cover a wide range
of domains in which NbS are deployed: from multi-species pastures
and grasslands to forests and coastal wetland systems (Figure 2). In

this editorial, we identify three overarching themes, together with
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FIGURE 2 Contributions of plant ecology to Nature-based
Solutions (NbS) across the intervention and biodiversity axes.

NbS can be categorized as different intensities of interventions,
from protection of existing ecosystems to restoration of degraded
ecosystems, through to the assembly of synthetic ecosystems.

The biodiversity axis also varies within NbS from relatively low
biodiversity [e.g. synthetic multi-species swards in agroecosystems,
or urban rain gardens (Ishimatsu et al., 2017)] to those involving
high biodiversity (e.g. high diversity forests for carbon storage).
Different areas of plant ecology (coloured ellipses) can be applied
within the biodiversity-intervention intensity space. Three areas
are highlighted here but are not exclusive or confined to particular
areas of intervention intensity-biodiversity space: Functional traits,
biodiversity and ecosystem function, and resistance and resilience.

general challenges and opportunities that, we hope, will lead to new
directions in both plant ecology research and the further develop-
ment of NbS.

2 | THREE KEY THEMES CONNECTING
PLANT ECOLOGY AND NBS

2.1 | NbS enable development, and tests, of plant
ecology theory

For decades, ecologists have worked to understand the ecologi-
cal mechanisms that govern plant community assembly, structure
and functions (Ali, 2023; Lortie et al., 2004) and that drive plant
community resistance and resilience to perturbations (Smith &
Boers, 2023). Similarly, the use of plant communities for food,
shelter, fuel, medicine and coastal protection has long stimulated
research in plant ecology. As highlighted in this Special Feature,
the convergence of theoretical, empirical, observational and ap-
plied plant ecology has led to the development of ecological theo-
ries and concepts that have been tested through observation of
plant community responses to natural disturbances (Lovelock

et al., 2024), or through the manipulation of plant community di-
versity and composition (Finn et al., 2024) and the simulation of
biotic and abiotic perturbations. NbS have emerged by making
use of these theories and concepts, thereby helping to protect,
restore and assemble more resilient plant communities (Chausson
et al,, 2020; Malhi et al.,, 2020; Standish & Parkhurst, 2024)
(Figure 2). The development of NbS that target specific ecosystem
functions (e.g. carbon storage), or aim to increase ecosystem resil-
ience (Standish & Parkhurst, 2024), requires unification of multiple
ecological theories. This is leading to the development of exist-
ing or new ecological theories in a more applied context (e.g. for-
estry, agriculture). As illustrated by this collection of mini-reviews,
biodiversity-ecosystem function relationships (Finn et al., 2024),
trait-based approaches (Ramachandran et al., 2024; Standish &
Parkhurst, 2024; Wright & Francia, 2024) and plant-herbivore in-
teractions (Borer & Risch, 2024) are active areas of plant ecology
research with profound implications for the design, implementa-
tion and functioning of NbS.

The design of pasture systems to maximize productivity for
food production, while providing benefits for biodiversity, is a NbS.
Learning from the design of managed productive grasslands com-
munities, in their mini-review, Finn et al. (2024) applied a diversity-
interactions model that uses a multiple regression modelling
framework to separately quantify the effects of species identity,
species proportions and interspecific interactions on plant produc-
tivity in a designed pasture community. They conclude that plant
species richness does not necessarily improve productivity beyond a
small number of species and that the complementarity between dif-
ferent plant functional groups (e.g. grass-legumes) can have stron-
ger impacts than species richness. Their approach helps to validate,
and identify limitations to, the complementarity hypothesis of the
biodiversity-ecosystem function relationship.

Trait-based ecology links plant traits with emergent functions
at the population, community and ecosystem scales. Wright and
Francia (2024) provide a trait-based framework that can be used to
assess the influence of traits on microclimate temperature and hu-
midity under vegetation. Described in their mini-review, this frame-
work includes two classes of plant traits, that is the sensible heat flux
traits related to the physical structures of the plants (e.g. leaf area
index, canopy height) that can increase or decrease the rate of heat
exchange between the atmosphere and vegetation, and the latent
heat flux traits (e.g. stomatal density, rooting depth, transpiration
rate) that can modify the microclimate through evaporative cooling.
While they identify important plant traits that can have a cooling
effect, such as high canopy, high stomatal conductance, high albedo
or deep rooting, they also emphasize gaps in knowledge for the im-
pact of plant traits on microclimate and propose new avenues for
the development of ecological theories. For example, investigating
the relative importance of latent versus sensible heat flux traits on
microclimate effects could shed light on important mechanisms un-
derlying ecological resilience to climate change.

In their mini-review, Borer and Risch (2024) summarize the
role that vertebrate and invertebrate herbivores can play in NbS,
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especially for the maintenance of grassland biodiversity and carbon
storage. They identify multiple gaps in ecological research and em-
phasize the need to better understand the role of invertebrate diver-
sity and interactions on plants and larger herbivores, especially due
to the recent, widespread and rapid declines in invertebrate popula-
tions (Wagner et al., 2021). Furthermore, they suggest considering
the interacting role of grazing type and intensity with spatial, cli-
matic and edaphic conditions in future plant-herbivore interactions
research to identify management practices (e.g. grazing intensity)

that are best suited to site conditions.

2.2 | Plant ecology informs the design and
implementation of NbS and helps avoid unintended
consequences

Nature-based solutions provide ecosystem services to people. There
are clear links between the characteristics of the ecosystem, the
traits of plants within that ecosystem and the supply of ecosystem
services. Moreover, failure to include ecological knowledge in the
design of NbS can lead to poor functionality (Lovelock et al., 2024)
and unintended consequences—for instance in the case of tree
planting for climate mitigation, which can have negative impacts on
native biodiversity and ecosystem functioning when done inappro-
priately (Moyano et al., 2024). Therefore, a mechanistic understand-
ing of how plants and their functional traits contribute to function
and service provision is critical for the design of, verification of ben-
efits from, and avoidance of adverse effects of, NbS. As exemplified
in this Special Feature, current knowledge on the impact of some
plant functional traits on microclimate can be used to create plant
communities that are more resistant and resilient to climate change
(Wright & Francia, 2024). Similarly, knowledge on forest canopy
attributes that determine the microclimate experienced by organ-
isms in the understory can also mitigate impacts of global change
(Verheyen et al., 2024).

There is now strong empirical and theoretical support that plant
functional traits mechanistically underpin the ecosystem services
that NbS aim to enhance. Yet, as emphasized by Ramachandran
et al. (2024), functional traits are rarely considered in the design of
NbS. These authors highlight the rich literature that has identified
linkages between traits and ecosystem services and provide a frame-
work for applying trait-based approaches in the design of different
types of NbS with differing management objectives. They also out-
line a research agenda for greater integration between functional
traits and NbS; for instance, the need for improved understanding of
the trait compositions that best confer resilience of ecosystem ser-
vices to perturbations, which could inform species selection and in-
terventions. Trait-based approaches are also considered by Rafferty
and Cosma (2024), who argue that incorporating knowledge on the
traits of keystone plants and pollinators into the design of NbS could
enhance the resilience of pollination services under future climate

change.
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erate disturbance without switching to a different state (sensu
Holling, 1973), is important for the persistence of ecosystem ser-
vices provided by NbS under future global change. While there are
examples of ecological resilience being used in the NbS literature,
it is generally limited, especially for resilience mechanisms that op-
erate at the genetic and landscape levels of biological organization
(Moyano et al., 2024; Standish & Parkhurst, 2024). Nevertheless,
Standish and Parkhurst (2024) identify several ecological resilience
mechanisms, including both stress tolerance and recovery potential,
from the wider literature that can inform the design and implemen-
tation of NbS. These include the incorporation of a sufficient range
of species' responses (i.e. response diversity) in NbS, this is import-
ant for maintaining ecosystem function in the face of disturbances
(Mori et al., 2013) and ensuring connectivity and modularity in the
landscape, which contributes to landscape-scale ecosystem resil-
ience (Oliver et al., 2015). Moreover, the temporal scale over which
NbS are expected to operate is important, but rarely considered; as
stressed by Standish and Parkhurst (2024), ‘quick fixes’ may not be
resilient or persistent in the longer term.

The sustained function of NbS also depends on species interac-
tions with herbivores, pollinators and microbes. There is extensive
literature on the impact of herbivores, such as wild and domestic
livestock and invertebrates, on plant diversity and on the impact of
herbivory on soil carbon storage (Borer & Risch, 2024). Knowledge
on the impact of livestock management on ecosystem processes
can inform the design of grazing systems that promote ecosystem
service multifunctionality and the sustainability of NbS (Borer &
Risch, 2024). Also highlighted in this Special Feature is a general lack
of recognition for the utility of considering species interactions in
NbS literature, and very few papers consider pollination, with the
exception of agro-ecosystem solutions. However, as Rafferty and
Cosma (2024) point out, conserving and restoring species interac-
tions is critical for NbS. The stable provision of pollination services
will contribute to the long-term success of NbS under future climate
change.

2.3 | Plant ecology can inform synthetic NbS

Some NbS are so different from anything that has been previously
observed in nature that they fall into the category of ‘synthetic
ecosystems’. A subset of novel (or non-analogue) ecosystems
(Hobbs et al., 2006), a synthetic ecosystem is intentionally created
by humans and often combines biodiversity with technology to
result in an ecosystem with little to no historical precedent (re-
viewed in Hammond et al., 2023). Synthetic ecosystems, there-
fore, move past restoration, management and reclamation, into
the territory of creating novel ecosystems that are explicitly de-
signed for human benefit, through the provision of ecosystem
services (Palmer et al., 2004; Ross et al., 2015). An historic exam-

ple is ‘The Three Sisters’, a polyculture of squash, beans and corn
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that increases the yields of all three crops when grown together
compared to when they are grown separately (Zhang et al., 2014).
Some modern examples include multispecies wastewater treat-
ment plants (Todd et al., 2003) and algae cultivators that interface
with computers (Blersch et al., 2013).

This Special Feature highlights three examples of how plant
ecology can inform these synthetic ecosystems to create NbS.
Finn et al. (2024) show how synthetic plant communities can
enhance ecosystem services or productivity. They use the
diversity-interactions modelling framework to determine the op-
timal abundance and identity of plant species to maximize NbS in
productive grasslands (grasslands that are typically of relatively
low diversity and are intensively managed to maximize particu-
lar ecosystem services, such as food for grazers or livestock,
carbon sequestration, or biodiversity maintenance). Rafferty
and Cosma (2024) highlight the extent to which pollination mu-
tualisms have yet to be included in synthetic NbS. Specifically,
they demonstrate how phylogenetic signal can be used to de-
sign species mixes and to engineer redundancy for traits that are
phylogenetically conserved (e.g. several related species could be
used to provide a similar service). Keystone species (and their in-
teractions) that contribute the most to biodiversity, stability and
function would be good candidates to prioritize in NbS aiming to
create synthetic plant and pollinator communities that maximize
ecosystem function (plant reproduction) and services (pollination).
Their approach is applicable beyond plant-pollinator interactions.
Finally, Verheyen et al. (2024) demonstrate how tree canopies can
be managed for NbS pertaining to processes that occur under-
neath the canopy and organisms that live under the canopy, in-
cluding humans. Different management interventions, like altering
species composition and vertical and horizontal canopy structure,
can influence tree canopy attributes that subsequently affect eco-
system processes and services. Indeed, Guo et al. (2022) point out
that size-related trait variation in horizontal and vertical ecosys-
tem dimensions contributes to ecosystem multifunctionality. For
example, the identity, spatial configuration and canopy density of
urban trees can be optimized to improve air quality. Plant ecology
has much to offer when designing synthetic plant communities for
NbS.

3 | KEY CHALLENGES AND
OPPORTUNITIES FOR INTEGRATING PLANT
ECOLOGY INTO NBS

As a collection, and building on the wider literature, the mini-
reviews in this Special Feature reveal some generalities that should
apply broadly to NbS. Intensive production systems often focus on
monocultures but usually at the cost of high inputs of fertilizers,
herbicides and pesticides, and with loss of long-term soil health and
the risk of disease and pest outbreaks. Diversification provides an
effective NbS if practical limitations around cultivation and scale
of production can be overcome. However, diversification must

be done with consideration of which species and mixtures are
most appropriate for delivering a particular ecosystem outcome.
Diverse systems are often more productive and stable than low
diversity systems (Craven et al., 2018; Hautier et al., 2018; Hooper
et al.,, 2005), albeit dependent on context (Dee et al., 2023).
Diversification also has implications for ecosystem resilience but
the mechanisms underlying diversity effects on resilience (both
stress tolerance or resistance effects and recovery) are rarely
reported in NbS literature (Standish & Parkhurst, 2024). Explicit
consideration of resilience is needed to design NbS that will persist
through changing conditions.

One of the key challenges for integrating plant ecology into
NbS is the high degree of context dependency in ecological
systems (Catford et al., 2022; Dee et al., 2023). There are few
ecological generalities that apply across all ecosystems and loca-
tions. Instead, NbS, developed using general ecological concepts,
need to be tailored to local systems and situations (e.g. Molloy
et al,, 2024). Controversy surrounding regenerative agriculture
and afforestation as NbS highlight the importance of ecological
context. ‘Right tree, right place’, as the guide for afforestation ef-
forts to sequester carbon and avoid unintended consequences,
such as soil carbon loss, explicitly calls out the need for sensitivity
to context when assessing impacts (Moyano et al., 2024). Yet our
understanding of the role of plant-soil interactions, as a driver of
soil carbon sequestration and stabilization, is far from complete
and is crucial for ensuring the effectiveness of NbS aimed at cli-
mate mitigation. The current interest in ‘regenerative agriculture’
and related concepts (European Academies Science Advisory
Council, 2022) aims to develop agricultural systems, and particu-
larly livestock production systems, that are better for biodiversity
and soil health. However, whether regenerative agriculture can be
done at a scale that reduces greenhouse gas emissions, while also
being productive and economically viable, is unclear. The evidence
base for regenerative livestock systems will involve complex life-
cycle analyses that consider local to landscape scale impacts on
biodiversity, greenhouse gas emissions and soil carbon sequestra-
tion within the livestock supply chain.

Some forestry efforts have been unsuccessful due to an empha-
sis on which timber species were economically or environmentally
successful in other contexts rather than on consideration of what
species are appropriate for the local ecological conditions. There is
potential for better outcomes from more careful consideration of
matching of species to location. Increasingly, given ongoing climate
change, strategies for restoration (especially for long lived organisms
like trees) need to account for the likely future changes in climate
when selecting species. Designing for future climates, and climate
variation through time, will involve a wide range of species traits
including persistent traits of the organism (e.g. architecture, leaf
traits) and traits that are only evident at certain times (e.g. reproduc-
tive traits of trees). The optimal forest structure and composition
for mitigation of extreme droughts depends on the relative impor-
tance of different drivers of drought stress (Verheyen et al., 2024). A
better understanding of the mechanistic drivers of plant responses
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to climatic stressors, and their relative importance, trade-offs and
synergies, is urgently needed so that site specific advice for locally
effective solutions can be provided (Verheyen et al., 2024).

Ultimately, NbS involve a complex compromise between plant
ecology theory and the management system setting (e.g. agro-
nomic and forestry systems often prioritize high yields with the
lowest number of species as possible), within the social context of
stakeholder preferences and economic forces. In other cases, pro-
tection or restoration of natural (or semi-natural) systems provide
solutions. For example, coastal mangrove forests are of high value
for disaster risk reduction (Lovelock et al., 2024), and restoration of
peatlands can reduce GHG emissions and sequester carbon (Renou-
Wilson et al., 2019). In all cases given the complexity of the problem,
the interaction of social, economic and ecological systems (Farrell
et al., 2024) and the need to understand the context dependence
of solutions, embedding plant ecology within transdisciplinary re-
search systems will be needed.

4 | CONCLUSIONS

Learning from the implementation of NbS can enable the develop-
ment of plant ecology theory, while plant ecology can inform the
design and management of successful NbS, and provide insights
for new synthetic ecosystems delivering NbS. To deploy NbS at the
speed and at the scale needed, we must integrate plant ecological
concepts rapidly and meaningfully into the design and implementa-
tion of NbS. At the same time, the design and deployment of NbS in
many different ecological contexts provides an unprecedented op-
portunity to learn how local performance can be integrated with, and
lead to the further development of, general concepts. Ultimately, a
mechanistic understanding of how plants and their functional traits
contribute to ecosystem function and service provision is critical for
the design, verification of benefits and avoidance of adverse effects
of NbS.
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