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1 Introduction

Understanding the phases of Quantum Chromodynamics (QCD) is crucial for describing a
wide variety of physical phenomena, ranging from quark-gluon plasma dynamics in heavy-ion
collisions to the cosmological evolution of the early universe, and the physics of neutron stars,
including their mergers. Ideally, we would like to have control over the thermodynamics
of QCD in a large — and multi-dimensional — parameter space. Of particular interest
are baryon and isospin chemical potentials and the temperature (other possible variables
are the magnetic field and a strangeness chemical potential). As a computational tool for
describing strong interactions, QCD is, however, notoriously difficult to handle away from
the perturbative regime at ultra-high temperatures and/or densities. The so-called sign
problem further renders the possibility of simulating baryonic matter on the lattice extremely
challenging. Hence, one must often resort either to an appropriate effective field theory
description, for example chiral perturbation theory (χPT) [1, 2], or to phenomenological
models, such as the linear sigma model [3, 4] or the Nambu-Jona-Lasinio model [5, 6],
or to the gauge-gravity duality (“holography”) [7–9]. Holography provides results for the
strong-coupling limit of a gauge theory via classical gravity in a higher-dimensional curved
space. Since the gravity dual of QCD is not known, this gauge theory is different from,
but ideally as close as possible to, QCD.

Here we employ the holographic Witten-Sakai-Sugimoto (WSS) model [10–12], which,
in a certain — albeit inaccessible — limit is dual to QCD at a large number of colors
Nc. We focus on two-flavor matter, Nf = 2, at nonzero temperature and isospin chemical
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potential, but at vanishing baryon chemical potential. In this scenario [13–15], comparisons
to lattice QCD [16–23] are possible. Although without direct applications to the above
mentioned physical systems, isospin QCD has therefore become an ideal playground for
testing different theoretical approaches to dense QCD matter, most importantly in the
intermediate density regime, which lies outside the realm of applicability of both (leading-
order) χPT and perturbative QCD [24]. Additionally, there are interesting open questions in
isospin QCD itself. For instance, the precise way in which the mesonic degrees of freedom are
progressively replaced by those associated to deconfined quarks as the density increases is yet
to be fully understood. And, moreover, as exploited for instance in refs. [23, 25, 26], isospin
QCD can provide bounds on QCD with baryon chemical potential via general inequalities
for the QCD partition function [27].

The WSS model is a string-theoretic (“top-down”) holographic construction, in which
Nc D4-branes characterize the glue sector of the non-supersymmetric, non-conformal, and
thus QCD-like dual field theory. At large Nc, they backreact on the bulk ambient space, thus
generating a non-trivial gravitational background. Flavor physics are described in terms of Nf

pairs of D8- and D8-branes, accounting for left- and right-handed quarks and thus providing
a geometric realization of chiral symmetry and the spontaneous breaking thereof. Assuming
Nf ≪ Nc, the flavor branes can be studied in the probe limit, which is employed in the vast
majority of applications, including the present work. In the context of dense and/or hot matter
the model has been frequently used and improved over the years, see for instance refs. [28–40],
and we build upon various of these improvements, in particular those of refs. [41–44].

Meson condensation generated by an isospin chemical potential was first investigated in
this model in ref. [30]. Our study improves on this work in several ways. Firstly, we work
with a nonzero pion mass mπ. Compared to other holographic constructions, introducing a
pion mass is somewhat more complicated in the WSS model, and we do so with the help
of an effective mass term as in refs. [41, 42, 44], following the proposal of refs. [45–47]. An
alternative approach based on including a tachyonic mode was proposed and employed in
refs. [48–51]. In ref. [52] it was argued that both effective descriptions account for the same
open-string physics. Therefore, although a rigorous connection between the two approaches
has not been made, we expect them to lead to similar results, at least in the regime of small
(realistic) pion masses. Secondly, we consider a non-antipodal configuration of the flavor
branes. This renders their embedding dynamical, as it takes into account the backreaction of
the medium. This effect allows us to go beyond χPT, which emerges in the low-energy limit of
the model in the antipodal setting, where the flavor branes are fixed and follow geodesics [11].
We shall indeed see that close to the vacuum our results approach those of χPT, while in
general they capture effects beyond χPT. Thirdly, we assume the asymptotic separation of
the flavor branes L to be small compared to the inverse of the so-called Kaluza-Klein mass
MKK. In this “decompactified” limit, where we only work in the deconfined background
geometry, the thermodynamics depend nontrivially on temperature. The price we have to
pay is that we cannot describe the gluonic deconfinement phase transition. However, this
version of the model leads to a much richer phase structure, which otherwise would require us
to go beyond the probe brane approximation, which is very difficult.1 Setting Nc = 3 in our

1One solution to this problem is to work at large Nc and Nf , with Nf /Nc fixed, which is done in the
(somewhat more phenomenological) V-QCD model [53, 54].
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eventual results, there are only 3 relevant model parameters to be fixed, namely mπ, L, and
the ’t Hooft coupling of the boundary theory λ,2 in contrast to comparable field-theoretic
phenomenological models, which typically have a much larger number of parameters.

Our approach in particular generalizes our own previous work, where pion condensation
was considered in the deconfined geometry, but in the chiral limit [43] and in the presence of
a pion mass, but in the confined geometry with antipodal separation of the flavor branes [44].
For the main purpose of this paper — the comparison with lattice QCD — working with a
realistic pion mass and in the decompactified limit is crucial. Our results also improve other
holographic studies of pion condensation at nonzero isospin chemical potential, performed
in various “bottom-up” approaches [55–57].

Our paper is organized as follows. The model is introduced in section 2. The general
setup, in particular the mass term and the identification of the chiral and pion condensates,
are explained in section 2.1, while the relevant equations for the pion-condensed phase are
derived in section 2.2. (Phases where the pion condensate vanishes are straightforward
generalizations of previous works and are thus relegated to appendix A.) In section 3, we
explain our parameter fit, and the results, which require numerical evaluation, are presented
and discussed in section 4. We focus on zero temperature in section 4.1, before we analyze
temperature effects in section 4.2. The phase diagram in the plane of temperature and
isospin chemical potential is shown in section 4.3, including the identification of the regime
where the speed of sound is larger than its value in the conformal limit. We summarize
our findings and give an outlook in section 5.

2 Thermal pion condensation in holographic QCD

Here we introduce the holographic model employed in this paper, in a setup that allows us to
work at nonzero temperature T and isospin chemical potential µI , while the baryon chemical
potential is turned off throughout. In particular, we derive the holographic description
of thermal pion condensation at nonzero quark masses, and identify a medium-dependent
pion decay constant.

2.1 Setup

The WSS model is based on type-IIA superstring theory compactified on a circle, whose
coordinate is usually denoted by X4, with radius M−1

KK and periodicity conditions for the
fermions that break supersymmetry completely. The gravitational background is sourced by
Nc D4-branes and thus accounts for the gluonic sector of the dual field theory, with a Hawking-
Page phase transition at the Kaluza-Klein scale associated with deconfinement. Flavor is
added by means of Nf pairs of D8-D8-branes, which, in the probe brane approximation, do not
affect the background geometry (either confined or deconfined). The global chiral symmetry
group of the boundary field theory corresponds to a U(Nf )× U(Nf ) gauge symmetry on the
flavor branes. The branes are separated by a distance L at the holographic boundary. Whether
they connect in the bulk is a dynamical question. If they do, chiral symmetry is spontaneously
broken. In the original version of the model, where the branes are maximally separated,
L = πM−1

KK, chiral symmetry breaking is, within the probe brane approximation, locked
2In this version of the model, the value of MKK is irrelevant for all observables we consider.
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Figure 1. Bulk geometry of the most relevant phases. In the dimensionless units used in our
calculation, the flavor branes are asymptotically separated by a distance ℓ = LMKK in the compact
x4 = X4MKK direction. In the bulk, their embedding in the fixed background geometry is dynamically
computed, including the point uc where they connect if chiral symmetry is broken. The radial
(“holographic”) coordinate is denoted by u ∈ [uT ,∞], where uT depends on temperature and denotes
the location of the black hole horizon. Pion condensation is distinguished from the isospin vacuum by
a different gauge field configuration on the flavor branes, here simply indicated by a colored embedding.
We work with a nonzero quark mass mq, in which case the branes are non-straight even if they stretch
down all the way to the horizon in the high-temperature quark phase (HTQ). The low-temperature
quark phase (LTQ), which contains string sources, turns out to be energetically disfavored in the
phase diagram we consider and is thus not shown here.

to the deconfinement transition for all chemical potentials. Here we consider L ≪ πM−1
KK,

which unlocks deconfinement and chiral symmetry restoration. In this limit, it depends on
temperature and the chemical potentials whether the flavor branes remain separated in the
bulk or not. Additionally, pion condensation in the chirally broken phase is accounted for
by certain boundary conditions of the gauge fields on the flavor branes, as we shall explain
in detail. Therefore, we will dynamically account for a chirally broken phase without pion
condensation, the pion-condensed phase, and a chirally restored phase; see figure 1 for an
illustration of the corresponding geometries.

We shall work with the following action for the embedding function of and gauge fields
on the flavor branes,

S = SDBI + Sq + Sm . (2.1)

Here, SDBI is the Dirac-Born-Infeld (DBI) action, Sq contains string sources [28], and Sm is
the effective mass term [41, 45, 46, 52]. We will now define and explain each term separately,
using the dimensionless coordinates and variables introduced in ref. [36].

2.1.1 DBI action

For our purposes, we may use the DBI action in the deconfined geometry from ref. [43], where
we drop the abelian gauge field and the non-abelian spatial components,

SDBI = NNf
V

T

∫ ∞

uc

duu5/2ζ(u) , (2.2)
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with
ζ(u) ≡

√
1 + u3fT (u)x′4(u)2 −K ′

a(u)K ′
a(u) , (2.3)

where Ka(u), a = 1, 2, 3, are the (dimensionless) temporal components of the non-abelian
SU(Nf ) gauge fields (following the notation of ref. [44]), x4(u) describes the probe brane
embedding, the prime denotes the derivative with respect to u, V is the three-volume, and
fT (u) is the blackening factor of the background metric,

fT (u) = 1− u3
T

u3 , (2.4)

where the location of the horizon uT is related to the temperature and its dimensionless
counterpart t as

t ≡ T

MKK
= 3

4π
√
uT . (2.5)

The (dimensionful) prefactor in the DBI action is

N = NcM
4
KKλ

3
0

6π2 , (2.6)

where
λ0 ≡ λ

4π . (2.7)

The isospin chemical potential will be encoded in the boundary conditions for the fields Ka(u).
We will thus work with a dimensionless isospin chemical potential µ̄I whose relation to its
physical counterpart is determined by the definition of the dimensionless gauge fields [36],

µI = λ0MKKµ̄I . (2.8)

In eq. (2.2) we have assumed the branes to be connected at u = uc (see left and middle
geometries in figure 1). The same form of the DBI action with uc replaced by uT is used if
the branes reach the horizon (see right geometry in figure 1). More details on the DBI action
can be found for instance in ref. [43], where additional gauge fields are included to account
for baryon number. On the other hand, this reference only included a single non-abelian
temporal component K3(u), which is sufficient in the chiral limit. In the presence of a pion
mass, as first discussed in ref. [44], all three components Ka(u) are necessary to implement
pion condensation, at least in the approach that makes use of a convenient chiral rotation
that is also explained in detail in ref. [44] and which will become clearer below when we
discuss the pion-condensed phase explicitly.

2.1.2 String sources

It is conceivable to include string sources in the case of connected flavor branes, stretching
from uT to the tip of the branes at uc, thus creating a cusp in the embedding. They give
rise to a contribution of deconfined quarks and anti-quarks to the isospin density. This is a
direct generalization of the string sources introduced in the context of baryon number. In
that case, the resulting configurations are unstable in the chiral limit [28], but do play a
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crucial role in the low-temperature regime of the phase diagram for nonzero pion mass [41].
The contribution to the action is (see also ref. [42])

Sq = NNf
V

T

∫ ∞

uc

du n̄I [u− uT −K3(u)]δ(u− uc) . (2.9)

We shall only consider string sources in the absence of pion condensation, such that the only
contribution to the isospin density comes from the strings. Therefore, here it is sufficient to
only include a single component K3(u), with the isospin chemical potential as a boundary
condition. We have introduced the dimensionless isospin density n̄I , which is related to
its dimensionful counterpart by

nI =
NcNfλ

2
0M

3
KK

6π2 n̄I . (2.10)

(This relation holds for all phases we consider, not only for the isospin density from string
sources.) We shall find that the phase with string sources — the isospin analogue of the
low-temperature quark phase (LTQ) of ref. [41] — is not preferred anywhere in the phase
diagram. Consequently, for our main results, Sq will play no direct role.

2.1.3 Mass contribution and condensates

We write the effective mass term in the action as

Sm =
∫ 1/T

0
dτ

∫
d3xLm = −NNf

V

T

A cos θ
2λ0

, (2.11)

where A is only nonzero in the presence of a pion mass, and where θ encodes the pion
condensate. The notation follows earlier works where a pion mass and/or a pion condensate
was included [41, 42, 44]. However, this work is the first that deals with the pion condensate
away from the chiral limit and a nontrivial embedding of the flavor branes that responds to
pion condensation. Therefore, let us explain in detail how the Lagrangian Lm comes about
and how we can extract medium-dependent chiral and pion condensates from it.

First we recall that massive quarks are difficult to implement in the WSS model mainly
because there is no spatial direction available for the usual geometric realization of the Higgs
mechanism by separating the flavor branes. Quark masses can nevertheless be included in
an effective way by an open Wilson line stretching between D8- and D8-branes [45, 46, 52].
In the strong coupling limit, the corresponding expectation value ⟨O⟩ must be proportional
to the exponential of the on-shell action SWS of the resulting worldsheet instanton between
the flavor branes, which receives contributions from the Nambu-Goto action SNG and from
a boundary term S∂ ,

⟨O⟩ = ce−SWS = ce−SNG+S∂ , (2.12)

where c is a constant, to be fixed below. The boundary term gives the chiral field

U = e−S∂ = exp
(
i

∫ +∞

−∞
dz az

)
, (2.13)

with the (dimensionless) gauge field az. Here, the radial coordinate z parameterizes both
halves of the connected flavor branes and is defined via u3 = u3

c+ucz2. In the DBI action (2.2),
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we have already set az = 0 as a particular gauge choice. This gives a trivial chiral field,
U = 1, and it appears we cannot describe pion condensation. However, there is nothing
wrong with a general, nontrivial chiral field in this subsection since the mass term Sm is
invariant under global chiral rotations (a transformation of U is undone by the transformation
of the mass matrix). Working later with az = 0 in the practical calculation is possible if
the chiral rotation that renders U trivial is taken into account in the boundary conditions
of the gauge fields Ka(u) [30, 31, 43, 44]. With this in mind we may temporarily keep az
nonzero and U nontrivial,

U = σ + iπaτa
fπ

= cosψ cos θ + i cosψ sin θ(τ1 cosφ+ τ2 sinφ) + iτ3 sinψ , (2.14)

where τa are the Pauli matrices, fπ is the pion decay constant, and σ2 ≡ f2
π − πaπa. We

will work with the parameterization (ψ, θ, φ), but have included in eq. (2.14) an alternative
parameterisation to make the connection to the usual pion fields πa explicit: ψ and θ are
nonzero for neutral and charged pion condensation, respectively, and φ can be understood as
the phase of the complex field associated with the charged pions. Our system is symmetric
with respect to φ and thus this angle will drop out of all physical results.

The Nambu-Goto action is [41]

SNG = −2λ0

[
ϕT (uc)x4(uc) +

∫ ∞

uc

duϕT (u)x′4(u)
]
, (2.15)

where

ϕT (u) ≡
∫

du√
fT (u)

= u√
fT (u)

{
1− 3u3

T

4u3f
1/6
T (u)

2F1

[
1
6 ,

2
3 ,

5
3 ,−

u3
T

u3fT (u)

]}
, (2.16)

with the hypergeometric function 2F1. This action can be used for connected branes [where
x4(uc) = 0] and for branes that reach the horizon [where uc needs to be replaced by uT
and x4(uT ) is a dynamical quantity]. The expression in eq. (2.15) is already renormalized
by subtracting the vacuum contribution [41].

The Lagrangian of the effective mass term is constructed by multiplying the expectation
value for the Wilson line with the quark mass mq = mu ≃ md,

Lm = −mq

2 Tr[⟨O⟩+ ⟨O†⟩] = −2mqce
−SNG cos θ , (2.17)

where we have used the parameterization (2.14) and set the neutral pion field to zero,
ψ = 0. This Lagrangian has the same form as the lowest-order mass term in χPT. However,
importantly, the Nambu-Goto action depends on temperature explicitly and is sensitive
to the shape of the flavor branes via the function x4(u), which in turn depends implicitly
on temperature and chemical potential as well as on the quark mass. In contrast, c must
not depend on the medium.

The (medium-dependent) chiral condensate ⟨ψ̄ψ⟩ is defined through the derivative of an
effective potential (here given by the on-shell action) with respect to the corresponding source,
the quark mass. Analogously, we can also introduce a source for the pion condensate ⟨π±⟩ [58].
These sources appear explicitly only in Lm, and we can ignore implicit dependencies since
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the total action will be minimized with respect to all quantities that depend implicitly on
the sources. Therefore, we obtain

⟨ψ̄ψ⟩ = −ce−SNG cos θ , (2.18a)

⟨π±⟩ = −ce−SNG sin θ . (2.18b)

We can now fix the proportionality constant c. To this end, we evaluate eq. (2.18a) in the
vacuum T = µI = 0 where there is no pion condensation, θ = 0,

⟨ψ̄ψ⟩0 = −ce−S0
NG . (2.19)

We insert this result into our mass term and expand in powers of the pion field from eq. (2.14)
to read off the vacuum mass of the pion from the quadratic term. This relates the chiral
condensate to the pion mass,

−mq⟨ψ̄ψ⟩0 = m2
πf

2
π

2 , (2.20)

which is the well-known Gell-Mann-Oakes-Renner relation [59]. We thus obtain

c = f2
πm

2
π

2mq

1
e−S

0
NG

. (2.21)

Assuming a homogeneous system, the integration in eq. (2.11) over imaginary time τ and
position space simply gives a factor V/T , and we can read off

A = 2α
λ2

0
e−SNG , (2.22)

where, following the notation of refs. [41, 42], we have introduced

α ≡ 3π2f2
πm

2
π

NcM4
KKe

−S0
NG

. (2.23)

The quantities A and α are a convenient way to deal with the mass effects self-consistently
in the practical calculation. While α will be considered as a model parameter (α = 0 in
the chiral limit), A will be used as a dynamical variable we have to solve for by coupling
the equations of motion with eq. (2.22).

In the deconfined geometry of the WSS model, the pion decay constant is

F 2
π ≡ N

2λ2
0M

2
KK

[∫ ∞

uc

du
ζ(u)
u5/2

]−1
, (2.24)

with ζ(u) from eq. (2.3). In this expression, we allow the integral to depend on the medium
and the pion mass. If ζ(u) is evaluated in the vacuum and at zero pion mass we recover
the known result [42, 60]

F 2
π (T = µI = mπ = 0) = 128λ0NcM

2
KK

3πℓ3
(Γ[9/16]
Γ[1/16]

)3 Γ[11/16]
Γ[3/16] , (2.25)
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where
ℓ ≡ LMKK . (2.26)

Importantly, the pion decay constant introduced in eq. (2.20) does depend on the pion mass,

fπ ≡ Fπ(T = µI = 0) . (2.27)

We emphasize that this is true for ⟨ψ̄ψ⟩0 and S0
NG as well, i.e., these are vacuum quantities

evaluated at nonzero pion mass.3 This is necessary to reproduce the correct zero-temperature
onset of pion condensation, as we shall see in section 2.2.

2.1.4 Possible phases

The setup explained in the previous subsections allows us to consider the following phases:

• Isospin vacuum. Here, pion condensate and isospin density are zero, and chiral symmetry
is spontaneously broken. This phase is identical to the phase termed mesonic in ref. [41],
which in turn is a generalization to nonzero pion mass of the chirally broken phase in the
deconfined geometry already discussed in early applications of the WSS model [61, 62].

• Low-temperature quark phase (LTQ). In this phase the pion condensate is zero, and
isospin density is generated solely by string sources. At nonzero pion mass, the LTQ
phase replaces (for low temperatures) the chirally restored phase with straight and
disconnected branes, which would be favored in the chiral limit. The LTQ phase was
discussed in ref. [41] in the context of a baryon chemical potential and the generalization
to isospin chemical potential is straightforward.

• High-temperature quark phase (HTQ). Here, the pion condensate also vanishes and
isospin number is created by quarks and anti-quarks because the flavor branes reach
the horizon, i.e., without explicit string sources. This phase was also first discussed
for nonzero baryon chemical potential [41] and reduces to the chirally restored phase
with straight branes if the pion mass goes to zero. It only exists for sufficiently
large temperatures.

• Pion-condensed phase. This phase, where the pion condensate and thus also the isospin
density are nonzero, is constructed for the first time in this paper, building on simpler
versions in the confined geometry and/or in the chiral limit [30, 31, 43, 44]. We set the
string sources to zero in this phase.

The treatment of the first three phases is straightforward. The isospin vacuum can be
directly taken from ref. [41], while the LTQ and HTQ phases are easily derived from their
analogues at nonzero baryon chemical potential. For the sake of a self-contained presentation
we briefly go through the main equations of all three phases, but defer them to appendix A.
The pion-condensed phase, however, will be discussed in detail in the next subsection.

One may ask whether it makes any sense to allow for string sources to coexist with pion
condensation, which would constitute a fifth phase in our list. Such a phase would presumably

3This is different from ref. [41], where S0
NG denotes the Nambu-Goto action in the vacuum and at zero

pion mass.
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contain isospin number from quarks as well as from the pion condensate, not unlike the
holographic quarkyonic phase, where baryon number is generated by quarks from string sources
as well as from baryons [42]. In fact, it is tempting to speculate whether such a phase allows
for a holographic realization of the so-called BEC-BCS crossover, where a phase of “molecules”,
the pions, forming a Bose-Einstein condensate (BEC), gradually transitions to a phase of
weakly coupled Cooper pairs according to the Bardeen-Cooper-Schrieffer (BCS) theory [63].

2.2 Pion condensation

2.2.1 Boundary conditions

The dynamical fields in the pion-condensed phase are x4(u) and Ka(u). Let us first discuss
their boundary conditions. Since the flavor branes join at uc, we may set x4(uc) = 0 and
x4(∞) = ℓ/2, or

ℓ

2 =
∫ ∞

uc

dux′4 . (2.28)

The isospin chemical potential might be straightforwardly implemented in the ultraviolet
boundary condition of K3. However, as already mentioned below eq. (2.13), pion condensation
is most conveniently discussed in the gauge az = 0, which requires a chiral rotation that affects
all components of the non-abelian gauge potentials. A suitable rotation for the case of a
nonzero pion mass was discussed in ref. [44] (the rotation applied in the chiral limit [30, 31, 43]
would lead to asymmetric gauge fields with respect to z → −z if the pion mass is nonzero,
which is less convenient). Since the arguments of ref. [44] regarding the chiral rotation are
obviously independent of the background geometry, we may impose the boundary conditions

K1(∞) = −µ̄I sin θ sinφ , (2.29a)

K2(∞) = µ̄I sin θ cosφ , (2.29b)

K3(∞) = µ̄I cos θ , (2.29c)

and
K1(uc) = K2(uc) = K ′

3(uc) = 0 . (2.30)
The infrared boundary value K3(uc) needs to be determined dynamically. In contrast to
ref. [44] (and in agreement with ref. [43]), our convention for the isospin chemical potential is
such that the zero-temperature onset of pion condensation is at µI = mπ/2, corresponding
to µI = (µu − µd)/2 in terms of quark chemical potentials. The angles in eq. (2.29) are the
ones from the chiral field (2.14). In the rotated frame, all fields are either even or odd in z

and we can restrict ourselves to one half of the connected flavor branes, working with the
holographic coordinate u (the factor 2 from the two halves is already taken into account
in the prefactor of the DBI action).

2.2.2 Equations of motion

We define an effective dimensionless potential, obtained from the DBI action and the
mass term,

Ω = T

V

S

NNf
=
∫ ∞

uc

duu5/2
√
1 + u3fTx′24 −K ′

aK
′
a −

A cos θ
2λ0

, (2.31)
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where
A = 2α

λ2
0
exp

(
2λ0

∫ ∞

uc

duϕTx
′
4

)
. (2.32)

The integrated equations of motion for Ka and x4 are

u5/2K ′
a√

1 + u3fTx′24 −K ′
bK

′
b

= κa , (2.33a)

u11/2fTx
′
4√

1 + u3fTx′24 −K ′
bK

′
b

= k +AϕT cos θ , (2.33b)

with integration constants κa, k. These equations can be algebraically solved for the derivatives
of the fields,

K ′
a =

κa
u5/2 ζ , (2.34a)

x′4 = k +AϕT cos θ
u11/2fT

ζ , (2.34b)

and ζ assumes the expression

ζ =
[
1− (k +AϕT cos θ)2

u8fT
+ κ2

u5

]−1/2

, (2.35)

where κ2 = κaκa. With ζ(u = ∞) = 1 we can extract the asymptotic behavior of the gauge
fields, (u5/2K ′

a)∞ = κa, which, according to the AdS/CFT dictionary should give the density
associated with the chemical potential at the boundary. Indeed, we shall see below that the
integration constants κa capture the different contributions to the isospin density.

2.2.3 Stationarity of the effective potential

Besides the integration constants k, κa, and the yet unknown boundary value K3(uc), the
effective potential also contains the parameters uc and θ. To compute all these unknowns we
first bring the effective potential into a convenient form. Using eq. (2.28) together with∫ ∞

uc

du
u5/2K ′

aK
′
a

ζ
= κa[Ka(∞)−Ka(uc)] , (2.36)

where partial integration has been employed, we compute

Ω =
∫ ∞

uc

du

(
u5/2

ζ
+AϕTx

′
4 cos θ

)
− A cos θ

2λ0
+ k

ℓ

2

− µ̄I
[
(−κ1 sinφ+ κ2 cosφ) sin θ + κ3 cos θ

]
+ κ3K3(uc) . (2.37)

The free parameters can now be straightforwardly computed by requiring the potential to
be stationary with respect to them. First, we find

0 = ∂Ω
∂uc

= − u
5/2
c

ζ(uc)
, (2.38)
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which can be solved for k,

k = u4
c

√
fT (uc)

(
1 + κ2

u5
c

)
−AϕT (uc) cos θ . (2.39)

This condition is equivalent to the smoothness of the flavor brane embedding at the tip of
the connected branes, x′4(u → uc) = ∞. Next, stationarity with respect to k turns out to
be equivalent to the boundary condition (2.28) and thus does not yield any new constraint.
Stationarity with respect to κa can be written as

0 = ∂Ω
∂κ1

= κ1

∫ ∞

uc

du
ζ

u5/2 + µ̄I sin θ sinφ , (2.40a)

0 = ∂Ω
∂κ2

= κ2

∫ ∞

uc

du
ζ

u5/2 − µ̄I sin θ cosφ , (2.40b)

0 = ∂Ω
∂κ3

= κ3

∫ ∞

uc

du
ζ

u5/2 − µ̄I cos θ +K3(uc) . (2.40c)

These equations can also be obtained more directly by inserting eq. (2.34a) into eq. (2.36) [or
simply by integrating eq. (2.34a)]. Stationarity with respect to K3(uc) yields

0 = ∂Ω
∂K3(uc)

= κ3 , (2.41)

which, combined with (2.40c), implies

K3(uc) = µ̄I cos θ , (2.42)

which shows that ultraviolet and infrared boundary values of K3 are the same. In fact, from
eqs. (2.34a) and (2.41) we conclude that K3(u) is constant in u. Therefore, it does not
contribute to the isospin density. The isospin density is entirely given by κ1 and κ2. More
precisely, only the modulus κ2 = κ2

1 + κ2
2 is relevant because the angle φ should play no role

in any physical observable. This becomes manifest by combining eqs. (2.40a) and (2.40b) to

κ

∫ ∞

uc

du
ζ

u5/2 = µ̄I sin θ . (2.43)

Using eqs. (2.37), (2.40a), (2.40b), we can compute the isospin density from its thermodynamic
definition,

n̄I = − ∂Ω
∂µ̄I

=
(∫ ∞

uc

du
ζ

u5/2

)−1
µ̄I sin2 θ . (2.44)

With eqs. (2.43) and (2.44) we have κ = n̄I/ sin θ, which can be used to eliminate κ from the
calculation. It is instructive to write the isospin density in terms of dimensionful quantities.
Employing eqs. (2.6), (2.8), (2.10), we write eq. (2.44) in the form

nI = 4F 2
πµI sin2 θ , (2.45)

with the pion decay constant defined in eq. (2.24). This is exactly the form of leading-order
chiral perturbation theory, but contains the effect of the medium in Fπ.
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Finally, we need to minimize the effective potential with respect to θ,

0 = ∂Ω
∂θ

= sin θ
(
A

2λ0
− µ̄I n̄I

cos θ
sin2 θ

)
. (2.46)

This equation is trivially fulfilled for vanishing pion condensate θ = 0. We also see from this
condition that, assuming κ ̸= 0, the condensate can only be zero or maximal (θ = π/2) if
A = 0, which corresponds to the chiral limit mπ = 0. For nonzero pion mass the condensate
can assume nontrivial values, which depend on temperature and isospin chemical potential.
Furthermore, eq. (2.46) can be used to derive a condition for the onset of pion condensation.
After dividing by sin θ we take the limit θ → 0 to derive the onset chemical potential

µ̄2
I,onset =

A

2λ0

∫ ∞

uc

du
ζ

u5/2 , (2.47)

where A, ζ, and uc are evaluated at vanishing pion condensate. This equation is useful because
it gives an expression of the onset that can be computed by solely working within the isospin
vacuum. For a more physical form of this condition, we use eqs. (2.18a), (2.19), (2.22), (2.23),
and (2.24) to obtain

µI,onset =
mπ

2
fπ
Fπ

(
⟨ψ̄ψ⟩
⟨ψ̄ψ⟩0

)1/2

. (2.48)

Since the isospin vacuum does not depend on µI , the right-hand side is a function of T only
(in general, Fπ and ⟨ψ̄ψ⟩ are functions of µI and T , here they are understood to be evaluated
at µI=0). We see that as T → 0, the onset chemical potential reduces to µI,onset = mπ/2,
in agreement with zero-temperature χPT.

To summarize, for given µ̄I and T we need to solve the coupled equations (2.28), (2.32),
(2.44), (2.46) for the variables A, n̄I , uc, θ. This has to be done numerically. The solution is
then inserted back into the effective potential to obtain the free energy,

Ω =
∫ ∞

uc

duu5/2(ζ − 1)− 2
7u

7/2
c − A cos θ

2λ0
+ A0

2λ0
. (2.49)

Here we have subtracted the (infinite) vacuum contribution, with A0 ≡ A(T = µI = 0) at
fixed nonzero pion mass. The integral that is left is finite.

2.2.4 Speed of sound

We will also be interested in computing the speed of sound. To this end, we need the
(dimensionless) entropy density,

s = −∂Ω
∂t

= −2uT
t

∂Ω
∂uT

. (2.50)

Starting from the free energy in the form (2.37), we compute

s = 2
t

∫ ∞

uc

dux′4(u)
[
3u3

T

2u3
k +AϕT (u) cos θ

fT (u)
+A cos θ

(
ϕT (u)−

u√
fT (u)

)]
, (2.51)
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where we have used

∂ϕT
∂uT

= 1
uT

[
ϕT (u)−

u√
fT (u)

]
. (2.52)

We then compute the dimensionless pressure and energy density, using the normalized free
energy (2.49),

P = −Ω , ϵ = Ω+ µ̄I n̄I + ts , (2.53)

and calculate the speed of sound via

c2
s =

∂P

∂ϵ

∣∣∣∣
s/n̄I

. (2.54)

We take this derivative numerically by solving the equations of motion at two different points,
for instance distinguished by two different densities n̄I and n̄I + δn̄I , where δn̄I is sufficiently
small and both points have the same entropy per particle s/n̄I .

3 Parameter fit

In this section we discuss our choice of the model parameters, which will be used for deriving
the results presented in section 4. With Nc = 3, the only model parameters are L, λ, and
mπ. Equivalently, and more conveniently, we will work instead with L, λ̃0 ≡ λ0/ℓ, and
α̃ = ℓ4α. We will choose these three parameters such that we reproduce the physical pion
mass, pion decay constant, and the critical temperature of the chiral transition at µI = 0.
The procedure for this fit is as follows.

In the dimensionless form in which the stationarity and self-consistency equations of all
our phases are written, the only model parameters that appear are ℓ and α. Following earlier
works in the deconfined, decompactified limit of the WSS model [36, 41, 42], we observe
that ℓ can be eliminated from these equations by a rescaling with a suitable power of ℓ of
all variables and the holographic coordinate. Denoting the rescaled quantities by a tilde,
we have Ã = ℓ6A, ũ = ℓ2u, ñI = ℓ5n̄I , µ̃I = ℓ2µ̄I , t̃ = ℓt. In the vacuum, we can write the
pion decay constant, see eqs. (2.24) and (2.27), as

f2
π = λ̃0

4π2L2

(∫ ∞

ũc

dũ
ζ

ũ5/2

)−1
, (3.1)

and we use the definition of α (2.23) in the form

α̃ = π2f2
πm

2
πL

4

e−S
0
NG

. (3.2)

To determine the model parameters, these equations must be coupled with the equations
for the vacuum (A.4),

1
2 =

∫ ∞

ũc

dũ x̃′4 , (3.3a)

Ã = m2
π

8π2f2
π

(∫ ∞

ũc

dũ
ζ

ũ5/2

)−2
. (3.3b)
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Here we have used eqs. (3.1) and (3.2) to rewrite eq. (A.4b) in the form (3.3b). The advantage
is that now the system of equations (3.3) does not depend on any model parameters and
can be solved numerically for Ã and ũc for given fπ and mπ. The results give α̃ (3.2) and
λ̃0 as functions of L, where the latter can for instance be obtained by combining eqs. (2.22)
and (2.23),

λ̃0 =
√

2
Ã
πfπmπL

2 . (3.4)

It remains to fix the length scale L. While reproducing the physical values of fπ and mπ

seems very natural in our context, there are different possibilities to choose the third physical
quantity for our parameter fit. Our choice is motivated by the T -µI phase diagram: since
mπ determines the phase transition on the µI axis, we decide to reproduce the location of
the real-world phase transition on the T axis as well. Then, our phase structure is “anchored”
by these two points. As we shall see, and as is already known from previous studies, the
phase transition at vanishing chemical potentials in the WSS model is of first order. In the
real world, however, it is a crossover, and thus we are matching the critical temperature
of our holographic first-order transition (= coexistence of isospin vacuum and HTQ phase
at µI = 0) to the pseudo-critical temperature of QCD.

With the help of eq. (2.5) we write the critical temperature as

Tc =
3√ũTc

4πL . (3.5)

This equation has to be coupled to the equations that determine the critical temperature
in our model. These are the two equations (A.4) for the isospin vacuum, eq. (A.13) for the
HTQ phase at nI = 0, and the condition that the two free energies (A.5) and (A.15) be
the same. Inserting λ̃0 and α̃ from above, these are 5 equations in total to be solved for
ũc and Ã of the isospin vacuum, Ã of the HTQ phase, as well as ũTc and L. For a given
numerical value of Tc, this fixes the remaining parameter L.

With mπ = 140MeV, fπ = 92MeV, Tc = 160MeV, this calculation yields

λ̃0 ≃ 0.6856 , α̃ ≃ 1.005× 10−3 , L ≃ 0.1950 fm . (3.6)

Since using the critical temperature for our fit is somewhat arbitrary, we show the dependence
of our model parameters as a function of Tc in the left panel of figure 2.

It is instructive to compare our parameter set (3.6) with previous parameter choices
in the WSS model. The ’t Hooft coupling can be inferred from our numerical values via
λ = 4πλ̃0LMKK, which requires a choice of the Kaluza-Klein scale. The fit to rho meson mass
and pion decay constant used in the original works [11, 12] gives λ ≃ 16 and MKK ≃ 949MeV
(however, in the confined geometry, i.e., this comparison is mainly of illustrative nature).
Using this value of MKK, our fit yields the smaller value λ ≃ 8.1. We also get a smaller value
of λ̃ = 4πλ̃0 ≃ 8.6 compared to the somewhat arbitrarily chosen λ̃ = 15 of refs. [41, 42] and
λ̃ = 20, 40 of ref. [43] (which all consider the same decompactified limit as the present work).
Interestingly, our value for λ is closer to the one that reproduces properties of nuclear matter
at saturation, as discussed in the context of holographic neutron stars [38, 44, 64]. Our value
for the “mass parameter” α̃ is similar to the physical value identified in refs. [41, 42], where,
however, α̃ was varied as a free parameter to explore “heavy holographic QCD”.
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Figure 2. Left panel: model parameters α̃, λ̃0, L for fixed mπ = 140MeV, fπ = 92MeV as a
function of the critical temperature Tc at µI = 0. The main results in section 4 are obtained by
choosing the physical value Tc = 160MeV (dashed vertical line). Right panel: pion decay constant
as a function of the pion mass, with λ̃0 and L fixed as in eq. (3.6), compared to the result from
next-to-next-to-leading-order χPT of ref. [65].

To get an idea of the mπ dependence of our results we keep the model parameters λ̃0 and
L fixed as in eq. (3.6) and re-calculate α̃ as a function of mπ. (As a consequence, fπ and Tc
will become functions of mπ as well.) To this end, we insert eq. (3.1) into eq. (3.3b) to obtain

2λ̃0Ã

m2
πL

2 =
(∫ ∞

ũc

dũ
ζ0
ũ5/2

)−1
. (3.7)

This equation can now be solved together with eq. (3.3a) for Ã and ũc without having to
make a choice for fπ. Then, the mπ-dependent pion decay constant is

f2
π = λ̃2

0Ã

2π2m2
πL

4 , (3.8)

and the corresponding α̃ can be computed from eq. (3.2). We show the pion decay constant
as a function of mπ in the right panel of figure 2 and compare it to the result obtained in
next-to-next-to-leading-order χPT. We see that our mass dependence is milder than from that
calculation. The two results coincide at the physical point, as it should be by construction.

In section 4 we shall compare our results to some lattice results obtained at mπ = 170MeV.
For a meaningful comparison, we use the calculation just explained to adjust our model
parameters to this case and find α̃ ≃ 1.496×10−3, with a pion decay constant fπ ≃ 92.68MeV.
This comparison will not show any inconsistencies caused by the mildness of the mπ dependence
in our pion decay constant compared to χPT. Therefore, this discrepancy — possibly related to
the fact that our effective mass term is constructed only from the lowest-order mass correction

— is of minor significance for our main conclusions. We will also vary the pion mass at the end
of section 4 in the phase diagram of figure 9, where the pion masses mπ = (10, 70, 280)MeV
require the use of the parameters α̃ = (5.018× 10−6, 2.472× 10−4, 4.243× 10−3), together
with the fixed values of λ0 and L.
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4 Results

We are now prepared for the numerical evaluation. For given model parameters (3.6) and
values of the thermodynamic variables µI and T , we solve the relevant equations for each
phase numerically and insert the results back into the effective potential to obtain the free
energy. We can thus determine the energetically preferred phase for any (µI , T ) and compute
the resulting phase transitions. In the following, when we present various thermodynamic
observables we always show the corresponding value in the favored phase.

4.1 Zero temperature

We first focus on zero temperature and discuss the behavior of our system as a function of
µI . It is useful to define the normalized chiral and pion condensates by dividing those in
eq. (2.18) by the chiral condensate in the vacuum (at the physical pion mass),

Σψ̄ψ ≡ ⟨ψ̄ψ⟩
⟨ψ̄ψ⟩0

= NA

λ0m2
πf

2
π

cos θ , (4.1a)

Σπ ≡ ⟨π±⟩
⟨ψ̄ψ⟩0

= NA

λ0m2
πf

2
π

sin θ . (4.1b)

In leading-order χPT, these two condensates form a vector with unit length, Σ2
ψ̄ψ

+Σ2
π = 1.

This is not true in general, as results from χPT beyond leading order [66] and on the
lattice [21] show. Our holographic model also violates this constraint,

Σ2 ≡ Σ2
ψ̄ψ

+Σ2
π =

( NA

λ0m2
πf

2
π

)2
. (4.2)

In figure 3 we show both condensates and the “total condensate” Σ as a function of µI . As
expected from the results in section 2.2, we find that the onset of pion condensation is at
µI = mπ/2, the free energy of this phase is indeed lower than that of the isospin vacuum
as soon as it exists. Close to the onset, our results agree with leading-order χPT, while
they deviate for larger values of µI . This is expected due to the non-antipodal separation of
the flavor branes and the resulting backreaction of the pion condensate on the embedding
function. Our results agree with next-to-leading order χPT qualitatively in the sense that Σπ
and thus also Σ can become greater than 1. However, our holographic calculation is obviously
not performed at a fixed order of χPT and thus it is no surprise that, quantitatively, we do
not obtain a precise match with next-to-leading order χPT.

It is therefore interesting to compare our results to lattice QCD data. In figure 4 we
superpose our results for the isospin density and the energy density with the results of
ref. [22].4 (See ref. [67] for a comparison of the quark-meson model with the same lattice
results.) This reference uses a convention of the isospin chemical, and hence also the isospin
density, which differs by a factor 2 from ours. We have taken this into account by using half
of our isospin density nI and twice our chemical potential µI in the horizontal logarithmic

4In the right panel, the (blue dashed) χPT curve of ref. [22] is incorrect by a factor 2, hence the discrepancy
to our red dashed curve; we thank Ryan Abbott, co-author of ref. [22], for confirming this error, which does
not affect the lattice results.
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Figure 3. Normalized pion and chiral condensates Σπ and Σψ̄ψ, defined in eq. (4.1), as a function of
µI at T = 0, compared to the leading-order (LO) and next-to-leading order (NLO) χPT results from
ref. [66]. The “total condensate” Σ deviates from 1 in the presence of pion condensation, as expected
from χPT beyond leading order.
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Figure 4. Left panel: isospin chemical potential as a function of (half of the) isospin density at T = 0
for two values of the pion mass, compared to the lattice results of ref. [22], where mπ = 170MeV
was used (red and blue bands for two different lattice configurations). Right panel: energy density
normalized by the Stefan-Boltzmann limit as a function of (twice the) isospin chemical potential,
for the same two pion masses and compared to the same lattice calculation as in the left panel,
with perturbative data from ref. [68] added. The dashed red and black lines are the corresponding
leading-order χPT results.

scales. Moreover, in the right panel, we have normalized the energy density by that of a
free Fermi gas with Nf = 2, Nc = 3, the Stefan-Boltzmann limit ϵSB = 3µ4

I/(2π2). We show
the results for both mπ = 170MeV, which was used in ref. [22], and the physical pion mass
mπ = 140MeV. The former requires an adjustment of our model parameters as explained at
the end of section 3. (This adjustment results in a slightly different value for the pion decay
constant compared to that used in ref. [22], which however is negligible for our purpose.)

Remarkably, isospin density and energy density are in excellent agreement with the lattice
results for isospin chemical potentials up to µI ∼ 3mπ. In the region where our results deviate,
the lattice results are already close to being well approximated by the Stefan-Boltzmann limit.
This is an indication that, at least with respect to the observables considered in this figure,
QCD already behaves similar to a weakly coupled system. It is therefore not surprising that
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Figure 5. Speed of sound squared at T = 0 as a function of µI , compared to the lattice results
(red band) of ref. [23]. The holographic result asymptotes to c2

s = 2/5, in contrast to QCD, where
c2
s → 1/3 (dashed line) due to asymptotic freedom.

our holographic results are no longer valid in this regime; our classical gravity approximation
in the bulk is expected to work well in the strong-coupling regime of the dual field theory
and in particular does not exhibit asymptotic freedom. We should also mention that we
have not taken into account the possibility of rho meson condensation. Previous works in
the WSS model — albeit in the confined, antipodal version — predict condensation to set
in at around µI ≃ 4.7mπ [30, 44] (at 1.7mρ ≃ 9.3mπ in these works due to the difference
in the convention for the isospin chemical potential). It is therefore conceivable that our
results at these very large isospin densities can be further improved by allowing for a more
general ansatz for the gauge fields in the bulk.

In figure 5 we compare the speed of sound with the very recent lattice results of ref. [23].
Our result includes the isospin vacuum, where, in the limit T → 0, we obtain c2

s = 1/5,
which is independent of mπ and thus the same as in the chiral limit [37]. (One can check
numerically that in the isospin vacuum the entropy goes like T 5 for small temperatures, with
a prefactor that does depend on mπ.) This gives rise to a discontinuity at the onset of pion
condensation. Since the speed of sound involves second derivatives of the free energy with
respect to µI and T , the discontinuity is a sign of a second-order transition. Like the result
from the lattice, our curve exceeds the conformal value c2

s = 1/3 and has a maximum around
µI ≃ 1.28mπ.5 Our speed of sound deviates from the lattice results already at smaller values
of µI compared to the deviation of isospin density and energy density in figure 4. This
observation emphasizes that the accuracy of our model strongly depends on the observable
under consideration. While the speed of sound must approach the conformal limit 1/3 at
asymptotically large µI in QCD, we find by extending the calculation of figure 5 that our
result in the pion-condensed phase asymptotes to c2

s = 2/5. Interestingly, this is the same
value found in the massless limit of the chirally symmetric phase [37].

5Such a maximum above the conformal limit was also conjectured in QCD at nonzero baryon densities [69],
where lattice results are unavailable. The WSS model supports this conjecture for baryonic [37, 38] and
quarkyonic [42] matter, albeit with a somewhat less pronounced maximum compared to the present result at
nonzero isospin densities.
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4.2 Nonzero temperature

Next, we evaluate our holographic model at nonzero temperatures. For all results in this
section, the physical pion mass, i.e., the parameter set (3.6), is used because now the
comparison with lattice QCD will be done with refs. [18, 21], where the physical pion mass
was used as well.

We start with the condensates, i.e., the counterpart of figure 3. We fix µI = 0.76mπ, as
in the corresponding plot of ref. [18], and show the condensates in the vicinity of the chiral
phase transition, see figure 6. For the chosen isospin chemical potential, the pion-condensed
phase is preferred at low temperatures. We see that both condensates Σπ and Σψ̄ψ are in
very good agreement with the lattice results at (and thus presumably for all temperatures
up to) T ≃ 115MeV.

The behavior in the vicinity of the chiral phase transition, however, is very different.
The lattice results suggest a continuous melting of the pion condensate until a second-order
transition is reached. While the pion condensate starts melting, the chiral condensate first
increases slightly. As already pointed out in ref. [18], this might be a “remnant” of the
constraint Σ = 1 of leading-order χPT. Only after this increase, the chiral condensate
decreases, showing the expected chiral crossover, at a temperature comparable to the critical
temperature of pion condensation. In our holographic results it is, in contrast, the pion
condensate that (very slightly) increases, while the chiral condensate decreases to maintain
a roughly constant Σ > 1. Then, there is a single critical temperature of a first-order
transition at which both condensates are discontinuous. At this critical temperature, we
find that the HTQ phase becomes the energetically preferred phase, taking over from the
pion-condensed phase. We see that the critical temperature itself is in good agreement with
the lattice, sitting at the lower end of the error bar for the pseudo-critical temperature of
the chiral transition (see also the phase diagram in the next subsection). As expected, the
pion condensate vanishes above the transition.

The chiral condensate, however, assumes a larger value compared to temperatures below
the critical one, although the “total condensate” Σ decreases. As the temperature further
increases, we even see a slight further increase of the chiral condensate, now identical to Σ.
Most of this behavior can be traced back to known shortcomings of the model, unrelated to
pion condensation. In particular, the unphysical order of the chiral phase transition in the
WSS model (and in other top-down holographic models [70]) was observed in many studies
before,6 and the issues with the definition of the chiral condensate based on the open Wilson
line have been discussed for instance in ref. [41], see also refs. [45–47, 52].

In figure 7 we show the isospin density at fixed values of T as a function of µI (left) and
vice versa (right). As in ref. [21], whose results are shown in the background for comparison,
we show nI in units of T 3. In the left panel, three of the temperatures, T = (123, 137, 147)MeV
are below the critical temperature of the chiral transition, such that, upon increasing µI ,
the system transitions from the isospin vacuum to the pion-condensed phase. The fourth,
T = 163MeV, is above the critical temperature, such that the system is in the HTQ phase
for all µI in the shown range. In sharp contrast with lattice QCD simulations, our system
remains — even at nonzero T — in the isospin vacuum with nI being strictly zero until
pion condensation sets in (or until the temperature is sufficiently large for the HTQ phase

6A chiral crossover can be implemented — by construction — in bottom-up holographic models [71],
including the V-QCD model [54].
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Figure 6. Normalized pion and chiral condensates (4.1) as a function of T at µI = 0.76mπ, compared
to the lattice results of ref. [18]. The black curve Σ (4.2) indicates the deviation from leading-order
χPT, where this quantity is 1 (which we have indicated by the dashed line for comparison). After the
chiral phase transition, where Σπ = 0, red and black lines coincide with each other.
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Figure 7. Isospin density (divided by T 3) as a function of isospin chemical potential for four different
temperatures (left), and as a function of temperature for four different isospin chemical potentials
(right). The results are compared with (and values of T and µI chosen as in) figure 18 of ref. [21].
The dashed lines in the right panel correspond to the analytical result (A.21), valid in the chiral limit
and small µI/T .

to be preferred). Using a weak-coupling formulation, our calculation does not account for
a pion gas in this regime. This property is known from many previous holographic studies,
mostly in the context of nonzero baryon chemical potential. It prevents the chiral transition
from being a smooth crossover and is thus related to the above discussion of the order of
the chiral transition. On the lattice, nI is already nonzero for small µI , and the onset of
pion condensation yields an additional increase of nI which is more and more cusp-like if
the temperature is lowered. In contrast, the holographic results show this cusp for any
temperature below the critical one. After the cusp, in the presence of a pion condensate,
the holographic results seem to overestimate the isospin density, while in the HTQ phase nI
is smaller compared to the lattice calculation. We should point out that ref. [21] includes
strange quarks, which may account for parts of the quantitative discrepancy, at least for
temperatures larger than the strange quark mass.
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Figure 8. Speed of sound squared as a function of isospin chemical potential at temperatures
T = (50, 120, 150, 165)MeV compared to the lattice results of ref. [21]. The same colors (blue, purple,
brown) have been chosen for the three curves with identical temperatures compared to the lattice bands.

In the right panel of figure 7, the two lowest chemical potentials, µI = (0.13, 0.38)mπ,
correspond to cases where there is no pion condensation at zero temperature. As in the left
panel, we see that the isospin density in these cases is zero, this time up to the chiral phase
transition. For the other two chemical potentials, µI = (0.50, 0.76)mπ, the first part of the
curves corresponds to the pion-condensed phase. Interestingly, in our model, nI/T 3 jumps
up at the phase transition as the temperature is increased for values of µI either below or
close to and above the pion onset, while it jumps down for larger isospin chemical potentials.
At high temperatures, in the HTQ phase, our curves for nI/T 3 are nearly flat, in qualitative,
although not quantitative, agreement with the lattice. This behavior can be understood
analytically. As explained in appendix A.3, in the chiral limit and to leading order in µI/T ,
the isospin density goes like µIT 3. This is different from a naive dimensional analysis, which
would suggest µIT 2. In the holographic result, the “missing” dimension is provided by L, see
eq. (A.21). We have included this analytical result (dashed lines) in comparison to the full
numerical results. It turns out to be a very good approximation, even though the numerical
results are obtained for the physical pion mass and for sizable values of µI/T (for instance,
µI/T ≃ 0.67 for µI = 0.76mπ and T = 160MeV).

We show the speed of sound at nonzero temperatures in figure 8, again compared to
lattice results of ref. [21]. We have added a curve at T = 50MeV (red), not present in ref. [21],
to illustrate how the discontinuity at zero temperature, see figure 5, turns into a cusp that
becomes less and less pronounced as the temperature is increased. Conversely, to avoid too
much cluttering, we have not included the T = 145MeV curve, as, in any case, it would have
been very similar to the one for T = 150MeV. As in the left panel of figure 7, at the largest
temperature shown here the system is in the HTQ phase, and thus the cusp from the onset
of pion condensation is gone. We see that the conformal limit is exceeded also at nonzero

— not too large — temperatures for sufficiently large µI . The entire regime where c2
s > 1/3

is best illustrated with the help of the phase diagram, which we discuss now.

4.3 Phase diagram

The phase diagram in the T -µI plane is shown in the left panel of figure 9, in comparison with
the phase diagram based on lattice QCD, taken from ref. [21]. Three out of our four possible
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Figure 9. Left panel: phase diagram in the plane of isospin chemical potential and temperature. The
holographic results (black and blue curves) are compared to lattice QCD results [21] (background).
Black lines are first-order (solid) and second-order (dashed) phase transitions, the blue line is defined
by c2

s = 1/3. The phase transition lines separate the HTQ phase (above the first-order line), the
isospin vacuum (small µI) and the pion-condensed phase (large µI). Right panel: change of the phase
transitions as the pion mass is varied.

phases populate the holographic phase diagram: the isospin vacuum, pion condensation,
and the HTQ phase. The LTQ phase is always disfavored energetically. (If we were to
ignore pion condensation, LTQ and HTQ phases would both account for the phases with
nonzero nI , analogous to the phase structure in the plane of temperature and baryon chemical
potential of ref. [41].)

The onset of pion condensation from the isospin vacuum is a second-order transition
that ends in a tricritical point located at (µI , T ) ≃ (0.47mπ, 154MeV). Its T dependence
is remarkably mild, but for large temperatures we see that the critical chemical potential
decreases slightly, thereby increasing the region of pion condensation. This is somewhat
surprising since temperature effects typically act against condensation (which, eventually,
they also do here). It is less surprising, however, if we recall figure 6, where we have already
observed that the pion condensate can slightly increase with temperature, counteracting
the tendency of the chiral condensate.

The first-order transition where the pion onset curve terminates separates the HTQ
phase from the isospin vacuum and from the pion-condensed phase and is thus interpreted as
the chiral transition. (This is most obvious in the chiral limit, where the HTQ phase contains
straight, disconnected flavor branes and describes chirally symmetric, massless quarks.) The
details of this transition were already discussed with the help of figures 6 and 7. Here, in
the phase diagram, we see that the variation of this curve with µI is very mild, at least in
the range shown here, showing a shallow minimum just after the onset of pion condensation.
Extending the range to (much) larger values of µI , we find that the transition temperature
increases until it appears to saturate at about Tc ∼ 300MeV. This is in accordance with
earlier results in the WSS model [43], where the chiral limit was considered, which is a good
approximation for µI ≫ mπ. In any case, as already discussed above, we do not trust the
model to give much insight into QCD at these ultra-high isospin densities.

Our phase diagram also includes an additional curve (blue), which is not a phase transition
but is defined by c2

s = 1/3. To the right of the curve, i.e., for larger chemical potentials,

– 23 –



J
H
E
P
1
0
(
2
0
2
4
)
1
3
3

the speed of sound exceeds the conformal limit, see also figures 5 and 8. This curve, while
also almost vertical for small T , does show a stronger temperature sensitivity compared
to the onset of pion condensation.

Let us comment on the comparison with the lattice results. We have already mentioned
the difference compared to lattice QCD in the nature of our phase transitions and in some of
our observables at large temperatures. The overall phase structure, however, including the
region of the super-conformal speed of sound, is in remarkably good agreement with lattice
QCD. We recall that our 3 model parameters are chosen to reproduce, besides the pion decay
constant, the two points where the phase transition lines meet the axes. Thus, the nontrivial
agreement with lattice QCD is mainly manifest in the T-shaped form of the phase structure
and the resulting location of our tricritial point. In particular, the nearly vertical pion onset
is difficult to reproduce in χPT [58] and previous holographic studies [57]. It has also been
observed in a Polyakov-loop quark-meson model [72, 73], which, however, has many more
knobs to turn in the form of model parameters (in that model, the pion onset curve tends
to bend slightly to larger µI at large T , in contrast to our results).

In the right panel of figure 9 we show our phase transition lines for half and twice the
physical pion mass and a very small pion mass of 10MeV. This plot shows that while the
phase transition at µI = 0 decreases with mπ, the temperature of the tricritical point increases,
rendering the phase transition lines more and more straight as we approach the chiral limit.
It would be interesting to see if this prediction is borne out in future lattice calculations.

5 Summary and outlook

We have studied pion condensation at nonzero temperature and isospin chemical potential
in the holographic WSS model. More precisely, we have worked in the decompactified limit
of the model, where the geometry of the flavor branes is dynamically computed in the
presence of the thermal medium and the pion condensate. This calculation is done for the
first time in the presence of an effective mass term in the action, which has allowed us to
work with the physical pion mass.

We have presented a detailed comparison of our results for chiral and pion condensates,
thermodynamic quantities, and the speed of sound with χPT and, more importantly, with
recent results from lattice QCD. We have shown that our model reproduces leading-order
χPT for small isospin densities and temperatures. In comparison to lattice QCD, we have
pointed out very good agreement of the low-temperature thermodynamics, including the
speed of sound, and also of the overall phase structure in the T -µI plane. This is remarkable
in view of the small number of model parameters: the ’t Hooft coupling, the pion mass, and
the length scale for the asymptotic separation of the flavor branes.

We also have pointed out discrepancies to the lattice results, which are difficult to avoid
in an approximation that relies on infinite Nc and λ before the results are extrapolated to
Nc = 3 and finite coupling strength. These discrepancies concern for instance the order of
the chiral phase transition and the chiral condensate itself, as well as the behavior of certain
thermodynamic quantities at large temperatures. These discrepancies serve as a guidance for
future studies regarding the improvement of the model. For instance, the renormalization of
the Nambu-Goto action in the effective mass term could be revisited to obtain a more realistic
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definition of the chiral condensate. Another interesting question is whether the model can
be improved to allow for a chiral crossover instead of a first-order phase transition without
including full-fledged string corrections or a completely dynamical geometry, which is difficult.

The WSS model was already employed in numerous studies in the context of QCD
thermodynamics and phase structure, including applications to neutron stars. Our work
has been the first to perform a systematic comparison with lattice calculations, and the
encouraging agreement with the phase diagram can be viewed as an a posteriori validation
of these earlier works, keeping in mind the shortcomings just mentioned. One should also
keep in mind that applications to dense matter in neutron stars requires an approximation
for nuclear matter, and a realistic T -µI phase diagram does of course not guarantee that
these baryonic approximations are realistic as well.

One natural question raised by our study is whether we can use our setup to make
predictions for isospin QCD itself that have not been settled or even been addressed by
lattice calculations (besides applying the model to experimentally accessible regimes that
usually involve baryon density). An interesting problem is the conjectured existence of a
BEC-BCS crossover in the T -µI plane. While we do not expect our model to go all the way
to the weakly coupled BCS regime, we have pointed out a conceivable configuration that
allows for the coexistence of the pion condensate with quark degrees of freedom. It would be
interesting to investigate whether this configuration is indeed relevant for the phase structure
and whether it gives us a prediction for the location of the BEC-BCS crossover region [63].
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A Phases without pion condensation

In this appendix, we briefly discuss the phases without pion condensation, θ = 0, and collect
the relevant equations needed for our main results. All these phases were either discussed
already in the previous literature or are isospin analogues of phases discussed previously with
nonzero baryon chemical potential. Without pion condensation, we have for all phases in
this appendix K1(u) = K2(u) = 0, and the boundary condition K3(∞) = µ̄I .

A.1 Isospin vacuum

This phase is identical to the mesonic phase of refs. [41, 42]. One can obtain this phase by
taking the limit θ = n̄I = 0 in the pion-condensed phase of section 2.2. More explicitly, the
gauge potential is constant, K3(u) = µ̄I , and the embedding function is given by

x′4 = k +AϕT
u11/2fT

ζ , (A.1)

with

ζ =
√
1 + u3fTx′24 =

[
1− (k +AϕT )2

u8fT

]−1/2

, (A.2)
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and
k = u4

c

√
fT (uc)−AϕT (uc) . (A.3)

For the numerical evaluation, we need to solve the coupled equations coming from the
boundary condition of x4 and the self-consistency condition for A,

ℓ

2 =
∫ ∞

uc

dux′4 , (A.4a)

A = 2α
λ2

0
exp

(
2λ0

∫ ∞

uc

duϕTx
′
4

)
, (A.4b)

for the variables A and uc. String sources are absent in this phase, hence the free energy
is independent of µI and can be written as

Ω =
∫ ∞

uc

duu5/2ζ − A

2λ0
. (A.5)

The speed of sound is computed as explained in section 2.2.4, where, in the isospin vacuum,
the entropy density assumes the form

s = 2
t

∫ ∞

uc

dux′4

[
3u3

T

2u3
k +AϕT

fT
+A

(
ϕT − u√

fT

)]
. (A.6)

A.2 Low-temperature quark phase (LTQ)

In this phase, the flavor branes also join at the point denoted by uc. At this point, strings
are attached and a cusp develops in the embedding. The (integrated) equations of motion
can be written as

K ′
3 = n̄I

u5/2 ζ , x′4 = AϕT + k

u11/2fT
ζ , (A.7)

with

ζ =
√
1 + u3fTx′24 −K ′2

3 =
[
1− (k +AϕT )2

u8fT
+ n̄2

I

u5

]−1/2

. (A.8)

The free energy becomes

Ω =
∫ ∞

uc

duu5/2ζ + n̄I [uc − uT −K3(uc)]−
A

2λ0

=
∫ ∞

uc

du

(
u5/2

ζ
+AϕTx

′
4

)
− µ̄I n̄I + k

ℓ

2 + n̄I(uc − uT )−
A

2λ0
. (A.9)

We find k = u4
c

√
fT (uc)−AϕT (uc) from the minimization with respect to uc, the same result

as in the isospin vacuum. We also obtain

0 = ∂Ω
∂n̄I

= uc − uT −K3(uc) . (A.10)
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Hence, for given µI and T we need to solve the coupled equations

ℓ

2 =
∫ ∞

uc

dux′4 , A = 2α
λ2

0
exp

(
2λ0

∫ ∞

uc

duϕTx
′
4

)
, µ̄I =

∫ ∞

uc

duK ′
3 + uc − uT ,

(A.11)
for the variables A, uc, n̄I and insert the results back into eq. (A.9) to obtain the free energy.
Again, one can write down a semi-analytical expression for the entropy density, in order
to calculate the speed of sound,

s = 2
t

{
n̄IuT +

∫ ∞

uc

dux′4

[
3u3

T

2u3
AϕT + k

fT
+A

(
ϕT − u√

fT

)]}
. (A.12)

A.3 High-temperature quark phase (HTQ)

If the strings of the LTQ phase are hidden behind the horizon, they pull the flavor branes all
the way down to uT , hence separating them (they become straight in the chiral limit). This
leads to the HTQ phase, with the boundary condition K3(uT ) = 0, and where the integrated
equations of motion can be written in exactly the same form as for the LTQ phase, i.e., we
may use eqs. (A.7) and (A.8). However, the expression of the Nambu-Goto action in A is
different due to the different shape of the embedding,

A = 2α
λ2

0
exp

{
2λ0

[
ϕT (uT )x4(uT ) +

∫ ∞

uT

duϕTx
′
4

]}
, (A.13)

where
ϕT (uT ) =

3
√
π Γ[5/3]

2Γ[1/6] uT . (A.14)

The free energy can be written as

Ω =
∫ ∞

uT

duu5/2ζ − A

2λ0

=
∫ ∞

uT

du

(
u5/2

ζ
+AϕTx

′
4

)
− A

2λ0
− µ̄I n̄I + k

[
ℓ

2 − x4(uT )
]
. (A.15)

Stationarity of Ω with respect to k and x4(uT ) give, respectively, the boundary condition

ℓ

2 =
∫ ∞

uT

dux′4 + x4(uT ) , (A.16)

and the value of k,

k = −AϕT (uT ) . (A.17)

For the numerical evaluation, we need to solve eq. (A.13) together with

µ̄I =
∫ ∞

uT

duK ′
3 , (A.18)
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for n̄I and A. One can then compute x4(uT ) from (A.16) if needed. Of course, only solutions
where x4(uT ) ≥ 0 are physical. In particular, for x4(uT ) = 0, the HTQ configuration connects
to that of the LTQ phase. The entropy density, needed for the speed of sound, becomes

s = 2
t

{
AϕT (uT )x4(uT ) + u

7/2
T

√
1 + n̄2

I

u5
T

− 4A2

9u6
T

+
∫ ∞

uT

dux′4

[
3u3

T

2u3
AϕT + k

fT
+A

(
ϕT − u√

fT

)]}
. (A.19)

In the massless limit, the HTQ phase simplifies drastically [41, 43, 62] because the
embedding function becomes constant, x4(u) = ℓ/2. In that case, the relation between isospin
density, isospin chemical potential, and temperature is [43]

µ̄I =
Γ[3/10]Γ[6/5]√

π
n̄

2/5
I − uT 2F1

[
1
5 ,

1
2 ,

6
5 ,−

u5
T

n̄2
I

]
. (A.20)

In general, this equation needs to be solved numerically. Here we are interested in an
analytical result for small chemical potentials. To this end, we may solve eq. (A.20) for
n̄

2/5
I /uT in a series expansion in µ̄I/uT . After reinstating all constants to obtain dimensionful

quantities, the leading term for the isospin density is

nI =
32πλ̃0L

9 µIT
3 + . . . . (A.21)

This expression turns out to be a good approximation for the results discussed in section 4.2.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
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