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In this paper we present results on prediction of elongation at break (target property) for a group of 77 amorphous
polymers of high molecular weight. Novel descriptors are proposed in order to better represent structural
features related to the target property. These proposed descriptors along with the classic ones, were calculated
for the set of polymers. The final descriptors of the predictive model were obtained by using a combination of var-
iable selection method and domain knowledge. The model consisted of three descriptors: Cross-head Speed
(CHS), Number Average Molecular Weight/Main Chain Surface Area ratio (Mn/SAc), and Normalized Main Chain
Mass (nMyc). By means of a multi-layer perceptron (MLP) neural network a good prediction model (R? = 0.88
and MAE = 1.89) was achieved, which was internally and externally validated. The model shows the advantages
of using well-known parameters in the field of polymers and of capturing the structural characteristics of the
main and side chains. Thus, more intelligent tools are developed for the design of new materials with a specific
application profile.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Any engineering activity is dependent on a careful and intelligent
selection of materials, including the extraction or preparation of raw
products, the design of manufacturing and consumer equipment, the
operation and maintenance of a plant, to name but a few. A selection
among materials must often be made in order to satisfy requirements
of performance and/or cost. In approaching a design problem, the engi-
neer will consider first the desired properties of a specific material. The
material performance requirements can be divided into five broad cate-
gories, namely functional requirements, processability requirements,
cost, reliability, and resistance to service conditions [1]. Although the
typical approach in the design of new materials has been empirical
(formulation, assembling, synthesis, processing and testing), at present
there has been much progress in the knowledge of relationships
between the molecular structure of a material and its properties [2].
These advances led to improve the ability to predict the material prop-
erties prior to synthesis, which in turn is translated into tremendous
savings in time and cost. Nevertheless, it is not easy to achieve these
predictions as the variables involved are very complex from a quantita-
tive and quality point of view. Subsequently, the design and synthesis of
new materials with specific and novel properties have resulted in one of
the most dynamic fields of the modern science [3].
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In the materials science, the plastics or polymers are everywhere and
their use has been increased almost 20-fold in the last 30 years [3]. Poly-
mers have been modified so as to improve their utility and consequently
synthetic polymers were developed. Plastics, fibers, elastomers, adhe-
sives, and coatings have come on the scene as a result of a continual
search for man-made substances that can either perform better or be
produced at lower cost than natural materials. As a consequence,
there was an extraordinary growth in the macromolecule field [4]. In
particular, thermoplastics are an interesting set of polymers that be-
come liquid when heated and return to the solid state when cooled.
This cycle of melting and freezing can be repeated, so that the plastic
can be reshaped by heating it. They are useful for a wide variety of appli-
cations, including consumer goods, machine parts, medical equipment,
packaging and storage materials. They can be classified as amorphous or
semicrystalline plastics, according to their molecular arrangement [5].
Even though amorphous polymers are hard and rigid below the glass
transition temperature (Tg), they become soft, flexible and can be
shaped above the T,. Thus, mechanical properties exhibit profound
changes in the temperature range where this transition occurs.
Semicrystalline polymers have melting points that are above their
glass transition temperature. The degree of crystallinity and the mor-
phology of the crystalline phase have an important effect on mechanical
properties. Semicrystalline plastics become less rigid above their glass
transition temperature yet do not flow until the temperature is above
the crystalline melting point. Therefore, when it is attempting to predict
the mechanical properties of polymers, it is reasonable to assume that
the amorphous polymers behave very differently from semicrystalline
ones.
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There are numerous mechanical properties that define the profile of
applicability of a polymer and, among them, the ability to resist break-
ing under tensile stress is one of the most important and widely mea-
sured of material properties used in structural applications [6]. For
polymers, the tensile test provides vital information related to the
ductility and strength through the modulus of elasticity, tensile strength
at break and elongation at break, among others. The latest is a measure
of material ductility. The elongation at break value for brittle materials
can be vanishingly small — typically is assumed to be zero. While rigid
plastics, especially fiber reinforced ones, often exhibit values fewer
than 5%, elastomers and some particularly soft thermoplastics tend to
have values above 100%. Materials with higher elongation than 100%
have a better capacity to handle an excessive load without failure. Fur-
thermore, not only the rate (cross-head speed), affects the final value
of elongation at break, but also the ambient temperature does [5]. Values
of elongation at break reported at specific temperatures and cross-head
speeds are typical for these test conditions.

We are interested in studying the possibility of estimating or
predicting the mechanical properties of a “virtual polymer” (designed
molecule) prior to synthesis. This domain has been little investigated
due to its complexity. However, it would be a very useful tool in order
to describe the application profile of the new polymer, thereby saving
time and cost. Many researchers have adopted computational ap-
proaches to predict material behaviors [7]. In particular, the QSPR
(quantitative structure-property relationship) technique relates specif-
ic parameters of molecule structure (descriptors) to the studied proper-
ty by using a dataset of molecules and experimental property values.
This technique began to be used to predict properties of materials in
the late 80s [7]. Since then, the study of materials has been very complex
as its properties depend not only on the intrinsic material properties,
but also on the history of the material (how it was synthesized, proc-
essed, and prepared for testing). Therefore it is important for developing
QSPR technique, to generate descriptors that take into account all these
aspects; that is, physicochemical property descriptors of materials and
descriptors related to the synthesis, processing, or sample preparation
to develop the most predictive and useful material property models
[7]. Furthermore, by addressing the problem of the synthetic polymers,
the difficulty of the molecular design occurs since the depiction of poly-
meric structures cannot be clearly defined in contrast to the small mol-
ecules. Among other factors to consider are: the structural (e.g., chain
length, tacticity, and monomer segments) and the composition ones
(monomer content, blends, and additives) [8]. For these reasons, it be-
comes a challenge to generate a reliable associated dataset too. One of
the earliest and most widely studied of polymer properties has been
the T, and good prediction results were obtained from synthetic models
[9-24]; in contrast, the mechanical properties of polymers have scarcely
been explored. Seitz [25] developed semi-empirical and empirical rela-
tionships so as to estimate the mechanical properties of polymeric ma-
terials from the molecular weight, van der Waals volume, the length
and number of rotational bonds in the repeat unit, besides the T, of
the polymer. Thus, he related the molecular properties of the repeating
unit to the properties of the polymer. Ulmer et al. [26] reported the use
of a combination of neural networks in the modeling process termed
“local property experts” for predicting T, and other physical and me-
chanical properties of polymeric materials. The researchers expressed
special interest to the design of bisphenol-A polycarbonate (BPAPC)
with improved impact resistance. An evaluation of nine BPAPC deriva-
tives by means of the trained neural networks delivered three lead
compounds. In a subsequent patent, they claimed that these materials
showed improved impact resistance [27]. Eslick and Camarda [28] de-
veloped in a preliminary work QSPRs for mechanical properties (tensile
strength, elongation at break and 300% modulus) of 35 polyurethane
elastomers, using topological descriptors. They utilized a stochastic op-
timization method to find novel polymers with physical and chemical
properties matching a given set of properties for electronic applications.
Nevertheless, authors did not present the dataset and detailed

explanations of results did not either. A similar work was carried on
by Eslick et al. [29], who used computational molecular design (CMD)
in cross-linked polymer networks in order to facilitate the development
of improved polymethacrylate dental materials. CMD employed QSPRs
and optimization techniques to design molecules possessing desired
properties, among others tensile strength and modulus of elasticity.
The authors used three types of graph to calculate the numerical de-
scriptors (topological) of the polymeric structures: monomer, polymer,
and full. Moreover, they computed the degree of conversion and the
crosslink density as structural descriptors but any dataset was present-
ed neither for target property nor for descriptors. Holder and Liu [30]
developed a quantum mechanically based QSPR model for polymer flex-
ural modulus from structural features of tetrameric oligomers of the
polymers. A four-descriptor correlation equation with R* = 0.91 was
achieved using a dataset of 25 polymers. The descriptors in the model
showed that rigidity of the monomer, electrostatic interactions and
branching were the most important contributors to the flexural modu-
lus value for a particular system. As may be seen, all works had a dataset
of very few molecules and most cases did not report the polymer molec-
ular weights and other important structural features for the target prop-
erty did not either. Nonetheless, these early studies formed the basis to
begin the exploration of this research field.

To the best of our knowledge, this is the one of the first attempts to
investigate the prediction of tensile properties for polymers by means of
the QSPR technique with a reasonable number of consistent and reliable
data. In this paper we present results about prediction of elongation at
break (target property) for a group of polymers. A dataset of 77 mole-
cules was built according to a criterion of common parameters for the
tensile test. Simplified molecular models (trimers) were designed so
as to depict the polymers and new descriptors were proposed. Then, a
combination of variable selection method and domain knowledge was
applied to choose the model descriptors. Finally, a QSPR model based
on neural networks was developed in order to predict the target prop-
erty and to provide reliability, interpretability and good performance.

2. Experimental section

In this section experimental aspects are explained in detail according
to the usual generation process of a QSPR model: (2.1) Dataset genera-
tion, (2.2) Structure entry and optimization, (2.3) Molecular descriptors
generation, (2.4) Model development and (2.5) Applicability domain.
Below a scheme (Fig. 1) is presented as a guide to the reader with the
aim of simplifying and summarizing the entire work.

2.1. Dataset generation

Although our original intention was to work with a dataset from
the literature, as usual, we had to deal with the fact that there was
none for properties derived from tensile test. Therefore, we began the
task of obtaining a reliable and consistent dataset. This was built from
information provided by PolyInfo [31]. The dataset polymers and their
corresponding observed (experimental) and predicted (calculated)
elongation at break (%) values are shown in Table 1. Several criteria for
selection and creation of dataset were used. Next, a cleaning of dataset
was applied. The criteria for selecting, cleaning and a description of
dataset are presented below.

2.1.1. Criteria for data selection

The influence of average molecular weights on the behavior of the
mechanical properties of polymers is well-known. Furthermore, it is
known how important are cross-head speed and temperature in the
tensile test on the final value of elongation at break of polymers [5].
For these reasons, the following polymer parameters were considered
with the aim of building the dataset: number and weight average
molecular weight (Mn and Mw, respectively) and polydispersity index
(PDI); and as regards tensile test parameters, the following ones
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Fig. 1. Scheme of methodology.

were taken into account: cross-head speed and temperature, as well as
international standards.

In order to download polymer data from PolyInfo, a script was made.
Neat resins (i.e., polymers containing no additives other than an initia-
tion system), average molecular weight and tensile test temperature be-
tween 20 and 25 °C were considered. Then, among the polymer data
downloaded, only those with Mn, Mw, and PDI data were selected.

2.1.2. Dataset cleaning

All Mn, Mw, PDI, T,, cross-head speed, and tensile test temperature
values for each polymer of the dataset were checked against the original
reference. It was confirmed that different values of elongation at break
from different samples in the same work were due to differences in
the average molecular weights of polymers and were not due to another
causes, e.g. addition of additives. Likewise, it was corroborated that all
dataset polymers have T, greater than the tensile test temperature
(20-25 °C). Furthermore, all semicrystalline, branched, cross-linked,
and elastomer polymers were not taken into account, so that the dataset
encompassed only amorphous, linear, non-cross-linked and non-
elastomer polymers.

2.1.3. Dataset description

The dataset includes: polystyrenes, polyoxides/ethers/acetals,
polyesters/thioesters, polyvinyls, polyamides/thioamides, polyimides/
thioimides, polyketones/thioketones, polyphenylenes, polysulfides,
and polysulfones/sulfoxides/sufonates/sulfonamides. It comprises the
following polymer characteristics: linear, thermoplastic, amorphous,
flame-retardant, thermally stable, hydrolytically stable, hydrolytically
degradable, low toxic, and electroconductive.

The dataset polymer properties have the following ranges of
values: Mn = 4700-765,000 g/mol, Mw = 19,500-2,200,000 g/mol,
Mw/Mn = 1.15-5.6, Cross-head Speed = 1-100 mm/min and elonga-
tion at break = 0.4-39.1%.

Concerning international norms, there are dataset polymers that
meet the following ones: ASTM D638, ASTM D882-83, and DIN
53504.53A. With reference to polymerization information, they came
from the next types of mechanisms: addition, polycondensation,
polyaddition and polymer reaction, polyaddition and polycondensa-
tion; and to processing information from: solvent casting, compression,

and injection. Finally, regarding shapes of test piece, the following ones
were used: film, sheet, dogbone-shaped, and dumb-bell type specimen.

2.2. Structure entry and optimization

Polymers are particularly problematic materials to model since it is
clearly not possible to represent (drawing and optimizing) an entire
polymer chain in terms of mathematical descriptors [7] because of all
polymers' molecular weights are too high. Furthermore, a single mole-
cule is not representative of the whole polymeric material due to the
fact that it does not show the weight distribution (typical of these mate-
rials). For these reasons, each polymer was modeled using a trimeric
structure end-capped by hydrogens where each repeating unit was
tail-head bonded. All structures were drawn using HyperChem 8.0.7
[32] and an example is shown in Fig. 2. In turn, two fragments were
selected from the middle repeating unit: main chain (MC) and side
chain (SC), which were used to generate new descriptors further
explained in the next section. The molecules were optimized by using
the same software, in order to find energetically stable conformations
(those with the lowest energy) that emulate the geometry adopted
by a polymer's part owing to intramolecular forces. The structures
were optimized with the Force Field Molecular Mechanics (MM +)
procedure by using Polak-Ribiere's algorithm and a gradient norm
limit of 0.08 kcal/(A mol).

2.3. Generation of the molecular descriptors

Atotal of 1041 descriptors were calculated, 51 of them were descrip-
tors proposed by us and the remaining belonged to the classic ones
(0D, 1D, and 2D). Then, the whole pool of descriptors was subjected to
a combined selection process (domain knowledge and variable selec-
tion technique), explained in Section 2.4.1. The most important aspects
of the generation of both types of descriptors are described below.

2.3.1. Calculation of proposed descriptors

In a previous paper [33] we introduced descriptors derived from the
main and side chains of the middle repeating unit of a trimer (chain
descriptors), so as to represent features associated with the structure
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Dataset polymers including observed (exp.) elongation at break (%) and their corresponding predicted (calc.) values.

Sample Polymer name Elongation at break  Elongation at break

number (%) (exp.) (%) (calc.)

1 Polystyrene 0.4 0.90

2 Polystyrene 2.04 0.77

3 Polystyrene 1.99 0.90

4 Polystyrene 1.95 0.41

5 Polystyrene 14 2.65

6 Polystyrene 14 0.51

7 Polystyrene 0.9 1.78

8 Poly((4,4’-oxydianiline)-alt-{alpha,alpha’-bis[4-(4-carboxyphenoxy)phenyl]-1,4-diisopropylbenzene}) 8 5.68

9 Poly((3,4’-oxydianiline)-alt-{alpha,alpha’-bis[4-(4-carboxyphenoxy)phenyl]-1,4-diisopropylbenzene}) 5 5.68

10 Poly((4,4’-methylenedianiline)-alt-{alpha,alpha’-bis[4-(4-carboxyphenoxy)phenyl]-1,4-diisopropylbenzene}) 6 5.81

11 Poly([4,4’-(1,4-phenylenedioxy)dianiline]-alt-{alpha,alpha’-bis[4-(4-carboxyphenoxy)phenyl]- 7 5.73
1,4-diisopropylbenzene})

12 Poly({4,4’-[1-methylethane-1,1-diylbis(4,1-phenyleneoxy)]dianiline}-alt- 7 6.48
{alpha,alpha’-bis[4-(4-carboxyphenoxy)phenyl]-1,4-diisopropylbenzene})

13 Poly([4,4’-(biphenyl-4,4’-diyldioxy)dianiline]-alt-{alpha,alpha’-bis[4-(4-carboxyphenoxy)phenyl]- 7 5.52
1,4-diisopropylbenzene})

14 Poly({4,4’-[sulfonylbis(4,1-phenyleneoxy)]dianiline}-alt-{alpha,alpha’-bis[4-(4-carboxyphenoxy)phenyl]- 6 6.11
1,4-diisopropylbenzene})

15 Poly({4,4’-[1-(trifluoromethyl)-2,2,2-trifluoroethane-1,1-diylbis(4,1-phenyleneoxy)]dianiline}-alt- 7 5.81
{alpha,alpha’-bis[4-(4-carboxyphenoxy)phenyl]-1,4-diisopropylbenzene})

16 Poly((m-phenylenediamine)-alt-{alpha,alpha’-bis[4-(4-carboxyphenoxy)phenyl]-1,3-diisopropylbenzene}) 4 6.47

17 Poly((4,4’-oxydianiline)-alt-{alpha,alpha’-bis[4-(4-carboxyphenoxy)phenyl]-1,3-diisopropylbenzene}) 6 6.47

18 Poly((3,4’-oxydianiline)-alt-{alpha,alpha’-bis[4-(4-carboxyphenoxy)phenyl]-1,3-diisopropylbenzene}) 5 6.47

19 Poly((4,4’-methylenedianiline)-alt-{alpha,alpha’-bis[4-(4-carboxyphenoxy)phenyl]-1,3-diisopropylbenzene}) 6 5.52

20 Poly([4,4’-(1,4-phenylenedioxy)dianiline]-alt-{alpha,alpha’-bis[4-(4-carboxyphenoxy)phenyl]- 5 5.52
1,3-diisopropylbenzene})

21 Poly({4,4’-[1-methylethane-1,1-diylbis(4,1-phenyleneoxy)]dianiline}-alt-{alpha,alpha’-bis[4-(4-carboxyphenoxy) 6 5.81
phenyl]-1,3-diisopropylbenzene})

22 Poly({4,4'-[1-(trifluoromethyl)-2,2,2-trifluoroethane-1,1-diylbis(4,1-phenyleneoxy)]dianiline}- 6 5.69
alt-{alpha,alpha’-bis[4-(4-carboxyphenoxy)phenyl]-1,3-diisopropylbenzene})

23 Poly({4,4’-[1-(trifluoromethyl)-2,2,2-trifluoroethane-1,1-diylbis(4,1-phenyleneoxy)]dianiline}-alt- 8 9.68
(5-tert-butylisophthalic acid))

24 Poly{[2-(trifluoromethyl)phenyl]acetylene} 1.7 0.93

25 Poly{[o-(trimethylsilyl)phenyl]acetylene} 43 5.51

26 Poly[(2-ethynylphenyl)(trimethyl)germane] 1.6 3.87

27 Poly(1-{2-[(trimethylsilyl)methyl]phenyl}ethene-1,2-diyl) 24 5.51

28 Poly[(4-butyl-2,3,5,6-tetrafluorophenyl)acetylene] 8.1 3.51

29 Poly[1-(4-butylphenyl)-2-phenylacetylene] 6.6 1.16

30 Poly{1-phenyl-2-[4-(trimethylsilyl)phenyl]acetylene} 1.5 4.89

31 Poly{1-phenyl-2-[3-(trimethylsilyl)phenyl]acetylene} 2.1 1.29

32 Poly[1-(hexylsulfanyl)prop-1-yne] 20 17.93

33 Poly[1-(decylsulfanyl)prop-1-yne] 21 17.23

34 Poly{(1,1,1,3,3,3-hexafluoro-2,2-diphenyl-propane)-alt-[ bis(4-fluorophenyl)methylphosphine oxide]} 26 27.18

35 Poly{hydroquinone-alt-[bis(4-fluorophenyl)methylphosphine oxide]} 38 31.07

36 Poly[(desaminotyrosyl-L-tyrosine hexyl ester)-alt-(succinic acid)] 9 5.52

37 Poly({4,4’-[bis(2-oxodibenzo|c,e][1,2]Joxaphoshinin-2-yl)methylene]dianiline}-alt-(terephthalic acid)) 3.72 5.81

38 Poly{[4,4'-(9H-fluorene-9,9-diyl)dianiline]-alt-[5,5’-carbonylbis(isobenzofuran-1,3-dione)]} 3.93 1.73

39 Poly{[4,4’-(9H-fluorene-9,9-diyl)dianiline]-alt-[5,5’-carbonylbis(isobenzofuran-1,3-dione) |} 491 0.95

40 Poly({0,0’-[1-methylethane-1,1-diylbis(2,6-dimethyl-4,1-phenylene) |dihydroxylamine}-alt- 8 11.18
{5,5'-[4-tert-butylcyclohexane-1,1-diylbis(4,1-phenyleneoxy) |diisobenzofuran-1,3-dione})

41 Poly({4,4’-[1-(trifluoromethyl)-2,2,2-trifluoroethane-1,1-diylbis(4,1-phenyleneoxy)]dianiline}- 6 6.43
alt-{5,5’-[4-tert-butylcyclohexane-1,1-diylbis(4,1-phenyleneoxy)]diisobenzofuran-1,3-dione})

42 Poly([4,4’-(2-tert-butyl-1,4-phenylenedioxy)dianiline]-alt-{5,5'-[4-tert- 9 6.48
butylcyclohexane-1,1-diylbis(4,1-phenyleneoxy)]diisobenzofuran-1,3-dione})

43 Poly([4,4’-(2,2’-dimethylbiphenyl-4,4’-diyldioxy)dianiline]-alt-{5,5'- 6 6.77
[4-tert-butylcyclohexane-1,1-diylbis(4,1-phenyleneoxy)]diisobenzofuran-1,3-dione})

44 Poly({4,4’-[adamantane-2,2-diylbis(4,1-phenyleneoxy)]dianiline}-alt-{5,5’- 7 6.87
[4-tert-butylcyclohexane-1,1-diylbis(4,1-phenyleneoxy)]diisobenzofuran-1,3-dione})

45 Poly({4,4'-[tricyclo[5.2.1.0"2,6""|decane-8,8-diylbis(4,1-phenyleneoxy)|dianiline}-alt-{5,5'- 7 6.46
[4-tert-butylcyclohexane-1,1-diylbis(4,1-phenyleneoxy)]diisobenzofuran-1,3-dione})

46 Poly([4,4’-(1,4-phenylenedioxy)dianiline]-alt-{N,N’-bis[ (chloroformyl)methyl]-4,4’-[2,2,2-trifluoro-1- 30.5 28.26
(trifluoromethyl)ethane-1,1-diyl]diphthalimide})

47 Poly({4,4’-[sulfonylbis(4,1-phenyleneoxy)]dianiline }-alt-{N,N’-bis[ (chloroformyl)methyl]-4,4'-[2,2,2- 39.1 28.99
trifluoro-1-(trifluoromethyl)ethane-1,1-diyl]diphthalimide})

48 Poly({4,4’-[1-methylethane-1,1-diylbis(4,1-phenyleneoxy)|diphenol}-alt-{N,N’-bis[ (chloroformyl)methyl]- 29.2 31.00
4,4'-[2,2,2-trifluoro-1-(trifluoromethyl)ethane-1,1-diyl]diphthalimide})

49 Poly({4,4’-[4-(tert-butyl)cyclohexane-1,1-diylbis(4,1-phenyleneoxy)]dianiline}-alt- 6.9 6.13
{5,5'-[4-phenylcyclohexane-1,1-diylbis(4,1-phenyleneoxy)|diisobenzofuran-1,3-dione})

50 Poly({4,4’-[1-methylethane-1,1-diylbis(2,6-dimethyl-4,1-phenyleneoxy)]dianiline}-alt- 6.5 8.22
{5,5’-[4-phenylcyclohexane-1,1-diylbis(4,1-phenyleneoxy)]diisobenzofuran-1,3-dione})

51 Poly({4,4’-[ (bicyclo[2.2.1]heptane-2,2-diyl)bis(4,1-phenyleneoxy)]dianiline}-alt- 6.8 6.40
{5,5’-[4-phenylcyclohexane-1,1-diylbis(4,1-phenyleneoxy)]diisobenzofuran-1,3-dione})

52 Poly([4,4'-(2-tert-butyl-1,4-phenylenedioxy)dianiline]-alt-{5,5’-[4-phenylcyclohexane-1,1- 7.6 6.91

diylbis(4,1-phenyleneoxy)]diisobenzofuran-1,3-dione})
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Sample Polymer name Elongation at break  Elongation at break

number (%) (exp.) (%) (calc.)

53 Poly([4,4’-(2,2’-dimethylbiphenyl-4,4'-diyldioxy)dianiline]-alt-{5,5'-[4-phenylcyclohexane- 7 6.78
1,1-diylbis(4,1-phenyleneoxy)]diisobenzofuran-1,3-dione})

54 Poly((4,4’-methylenedianiline)-alt-{5,5’-[4-phenylcyclohexane- 8.5 5.89
1,1-diylbis(4,1-phenyleneoxy)]diisobenzofuran-1,3-dione})

55 Poly((4,4’-oxydianiline)-alt-{5,5'-[4-phenylcyclohexane-1,1- 7.7 6.35
diylbis(4,1-phenyleneoxy)]diisobenzofuran-1,3-dione})

56 Poly({4,4'-[tricyclo[5.2.1.0"2,6""|decane-8,8-diylbis(4,1-phenyleneoxy)]dianiline}-alt- 7.1 6.43
{5,5'-[4-phenylcyclohexane-1,1-diylbis(4,1-phenyleneoxy)]diisobenzofuran-1,3-dione})

57 Poly({4,4’-[1-(trifluoromethyl)-2,2,2-trifluoroethane-1,1-diylbis(4,1-phenyleneoxy)|dianiline}- 7 7.08
alt-{5,5’-[1-methylethane-1,1-diylbis(2,6-dimethyl-4,1-phenyleneoxy) |bis(isobenzofuran-1,3-dione)})

58 Poly([4,4’-(2-tert-butyl-1,4-phenylenedioxy)dianiline]-alt-{5,5’-[ 1-methylethane- 6 8.63
1,1-diylbis(2,6-dimethyl-4,1-phenyleneoxy)]bis(isobenzofuran-1,3-dione)})

59 Poly([2,2’-bis(trifluoromethyl)benzidine]-alt-{5,5’-[ 1-methylethane-1,1- 6 10.49
diylbis(2,6-dimethyl-4,1-phenyleneoxy) |bis(isobenzofuran-1,3-dione)})

60 Poly([4,4’-(2,2’-dimethylbiphenyl-4,4'-diyldioxy)dianiline]-alt-{5,5'-[ 1-methylethane-1,1- 7 8.95
diylbis(2,6-dimethyl-4,1-phenyleneoxy) |bis(isobenzofuran-1,3-dione)})

61 Poly({4,4’-[adamantane-2,2-diylbis(4,1-phenyleneoxy)]dianiline}-alt- 7 7.85
{5,5’-[1-methylethane-1,1-diylbis(2,6-dimethyl-4,1-phenyleneoxy)]bis(isobenzofuran-1,3-dione)})

62 Poly({4,4'-[(bicyclo[2.2.1]heptane-2,2-diyl)bis(4,1-phenyleneoxy)]dianiline}-alt- 10 7.08
{5,5’-[1-methylethane-1,1-diylbis(2,6-dimethyl-4,1-phenyleneoxy) |bis(isobenzofuran-1,3-dione)})

63 Poly({4,4'-[tricyclo[5.2.1.0"2,6""|decane-8,8-diylbis(4,1-phenyleneoxy)]dianiline}-alt- 10 8.20
{5,5’-[1-methylethane-1,1-diylbis(2,6-dimethyl-4,1-phenyleneoxy)]bis(isobenzofuran-1,3-dione)})

64 Poly{(4,4’-oxydianiline)-alt-[6,6’-bis(4-tertbutylphenyl)biphenyl-3,3’,4,4’-tetracarboxylic anhydride]} 9 9.16

65 Poly{(4,4’-methylenedianiline)-alt-[6,6'-bis(4-tertbutylphenyl)biphenyl-3,3’,4,4'-tetracarboxylic anhydride]} 9 10.20

66 Poly({4,4’-[2,2,2-trifluoro-1-(trifluoromethyl)ethane-1,1-diyl]dianiline}-alt- 6 10.11
[6,6’-bis(4-tertbutylphenyl)biphenyl-3,3’,4,4’-tetracarboxylic anhydride])

67 Poly((4,4’-oxydianiline)-alt-{6,6'-bis[4-(trimethylsilyl)phenyl]biphenyl-3,3’,4,4’-tetracarboxylic anhydride}) 11 13.47

68 Poly({4,4'-[2,2,2-trifluoro-1-(trifluoromethyl)ethane-1,1-diyl]dianiline}-alt- 7 13.60
{6,6’-bis[4-(trimethylsilyl)phenyl]biphenyl-3,3’,4,4'-tetracarboxylic anhydride})

69 Poly([4,4’-(2,2'-dimethylbiphenyl-4,4’-diyldioxy)dianiline]-alt-{5,5’-[cyclododecane- 6 6.78
1,1-diylbis(4,1-phenylene)]bis(isobenzofuran-1,3-dione)})

70 Poly((4,4’-methylenedianiline)-alt-{5,5'-[cyclododecane-1,1-diylbis(4,1-phenylene)]bis(isobenzofuran-1,3-dione)}) 7 5.92

71 Poly([4,4’-(2-tert-butyl-1,4-phenylenedioxy)dianiline]-alt-{5,5'-[cyclododecane- 8 6.48
1,1-diylbis(4,1-phenylene)]bis(isobenzofuran-1,3-dione)})

72 Poly((4,4’-oxydianiline)-alt-{5,5’-[cyclododecane-1,1-diylbis(4,1-phenylene) ]bis(isobenzofuran-1,3-dione)}) 10 7.04

73 Poly({4,4’-[(bicyclo[2.2.1]heptane-2,2-diyl)bis(4,1-phenyleneoxy)]dianiline}-alt- 9 6.39
{5,5'-[cyclododecane-1,1-diylbis(4,1-phenylene)]bis(isobenzofuran-1,3-dione)})

74 Poly({4,4'-[4-(tert-butyl)cyclohexane-1,1-diylbis(4,1-phenyleneoxy)]dianiline}- 7 6.87
alt-{5,5’-[cyclododecane-1,1-diylbis(4,1-phenylene) |bis(isobenzofuran-1,3-dione)})

75 Poly({4,4’-[adamantane-2,2-diylbis(4,1-phenyleneoxy)]dianiline}-alt-{5,5’-[cyclododecane- 6 6.13
1,1-diylbis(4,1-phenylene)]bis(isobenzofuran-1,3-dione)})

76 Poly[sulfonyl(3-sulfo-1,4-phenylene)sulfanediyl-1,4-phenylenesulfanediyl- 16 11.64
1,4-phenylenesulfanediyl(2-sulfo-1,4-phenylene)]

77 Poly[sulfonyl(3-sulfo-1,4-phenylene)sulfanediyl-1,4-phenylenesulfanediyl- 12 14.91

1,4-phenylenesulfanediyl(2-sulfo-1,4-phenylene)]

of polymers that are known to influence the behavior of the target
property. In this regard, this aim is not achieved with classic descriptors.

The advantage of working with a trimer lies in the faster structure
optimization and the easier calculation of the descriptors. The trimer
segment that best represents the original polymer structure is the mid-
dle one (repeating unit), since it is influenced by physicochemical, steric
and electronic features of adjacent units, as well as preserves the struc-
tural characteristics of the polymer. The main chain was defined as the
succession of all atoms (even the hydrogen atoms attached to them)
that were in the backbone of the trimer middle repeating unit, and the
remaining atoms (in this middle repeating unit) were considered as
side chain. Once the molecules were drawn and optimized, the

following 7 specific properties were calculated (by using HyperChem)
for the main and side chains of the middle repeating unit of the trimer:
Van der Waals surface area, Van der Waals volume, Log P (logarithm
octanol-water partition coefficient), Refractivity, Polarizability, Mass, and
Number of atoms. To put it another way, these specific properties were
estimated for fragments of polymers thus obtaining 14 descriptors, 7
for the main chain and 7 for the side chain. Next, the same specific prop-
erties (except for Number of atoms) were calculated, but “normalized”
via dividing by the atom number of the respective polymer portion
considered, bringing another 12 descriptors, 6 for the main chain and
6 for the side chain. Therefore, 26 descriptors were calculated and are
detailed in Supplementary file.
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Fig. 2. Trimeric molecular model and identification of its fragments for sample number #76. Example of main chain (MC) and side chain (SC) fragments that belong to the repeating unit of

trimeric structure.
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Table 2

Nomenclature of proposed descriptors.
New descriptors Nomenclature

Unnormalized Normalized

Main chain surface area/side chain surface area SAnmic/SAsc nSAnic/nSAsc
Main chain volume/side chain volume Vmc/Vse nVyic/nVsc
Main chain Log P/side chain Log P Log Pyic/Log Psc nLog Pyc/nLog Psc
Main chain refractivity/side chain refractivity Ruic/Rsc NRyc/NRsc
Main chain polarizability/side chain polarizability Puic/Psc nPyc/nPsc
Main chain mass/side chain mass Mpic/Msc nMuyc/MMsc
Main chain atom number/side chain atom number Nuc/Nsce -
Number-average molecular weight/monomer molecular weight (number of average repeating units) Mn/MW -

Total number of bonds that have bond order greater than one - number of average repeating units

Number of rotatable bonds - number of average repeating units
Number of acceptor atoms for H-bonds (N,0,F) - number of average repeating units
Number of donor atoms for H-bonds (N and O) - number of average repeating units

(Main chain surface area/side chain surface area) - number-average molecular weight

Number-average molecular weight/main chain surface area
Number-average molecular weight/side chain surface area

nBondsM - (Mn/Mw) -
RBN - (Mn/Mw) -
nHAcc - (Mn/Mw) -
nHDon - (Mn/Mw) -
(SAmc/SAsc) - Mn -
Mn/SAmc -
Mn/SAsc -

In order to continue developing descriptors for polymers, herein also
other chain descriptors have been proposed. These derive from ratio be-
tween chain descriptors (calculated for each specific property) and are,
in total, 13 new descriptors. Furthermore, other 8 Mn-linked descriptors
were generated with the aim of combining a priori important informa-
tion (both macromolecular and repeating unit) for the target property.
Thus, it should be noted that many of the proposed descriptors in this
paper are related to Mn which is an experimental datum. In Table 2,
the nomenclature for the 21 new descriptors is shown and their values
are available as a Supplementary file.

On the other hand, the experimental parameters Mn, Mw, Mw/Mn,
and Cross-head Speed, which were taken from PolyInfo, were incorpo-
rated as descriptors.

2.3.2. Calculation of the classic descriptors

As a supplement of our descriptors, a set of classic variables were cal-
culated by using Dragon 5.5 software [34] and PADEL software [35]. In
view of most dataset polymers possess complex molecular structures,
these descriptors were calculated on the monomer (not on the trimer)
in order to save computational cost. Moreover, these classic descriptors
were calculated considering the whole monomer (not the user-defined
fragments mentioned in Section 2.2), because neither Dragon nor
PADEL could select any fragment of the molecule.

Some descriptors were not considered. Besides all binary descrip-
tors, fingerprints (2D binary and 2D frequency fingerprints) [34,36]
were not taken into account in order to prevent the introduction of
the “missing structure” phenomenon [37]; e.g. the missing structures
could be fragments, functional groups, etc. This phenomenon occurs in
QSPR models when some fragments do not exist or they have a very
low frequency in the training set; hence, the coefficients associated
with these sub-structures are not statistically significant [37].

Additionally, some descriptors belonging to the molecular proper-
ties category [34,36] were deleted as they are associated to drug fea-
tures (e.g. drug like index [36]), which are evidently completely
different from polymer characteristics. The 3D descriptors [34]
were also avoided so as to obtain simpler models. Lastly, constants'
descriptors (i.e., variables that take a same value for all samples in the
dataset) and near constants (i.e., variables that take a same value, but
allowing some predetermined small number of samples to take other
values) were excluded.

The final pool of classic descriptors chosen consisted of 990
descriptors and their values are available as a Supplementary file.

2.4. Model development

A variable selection method was included as the first step in the
model building process. The purpose of variable selection is to reduce

the set of descriptors (independent variables) when predicting a target
(elongation at break) in order to improve the prediction performance of
the descriptors and to provide a better understanding of the underlying
process. This technique was applied to the whole set of descriptors
(Sections 2.3.1 and 2.3.2). Next, the selected descriptors were used as
input for ANNs. A 4-fold cross-validation scheme was employed to
evaluate the model performance (see Section 2.4.2 for k-fold cross-
validation technique explanation). Methodology was summarized in
Fig. 1.

2.4.1. Variable selection

When a physical chemistry expert develops a QSPR predictive
model, the choice of the most appropriate descriptors for this model
constitutes the first complex challenge. Once the molecular descriptors
have been computed for a given dataset, different combinations of them
should be analyzed in order to obtain a good quality model. In this
context, the QSPR model must satisfy two quality standards: high
prediction accuracy, statistically evaluated, and good interpretability,
evaluated from a physicochemical point of view. Considering the high
number of molecular descriptors that are usually calculated for a dataset
(sometimes above 1000), a common practice consists of exploring
different combinations of descriptors by feature selection methods
S0 as to obtain alternative models. In this work, we adopted a semi-
automatic approach with the aim of identifying the most relevant de-
scriptors by a combination of automatic variable selection software
and domain experts; a detailed explanation is described below.

In the first stage, we employed the automatic variable selection
method; the chosen software for this purpose was Delphos [38]. This
tool in particular allows for the identification of linear and nonlinear
variables (descriptors), and it was previously applied in the model
development for T, prediction [33]. Delphos brings not only one but
also several possible sets of descriptors. In more formal terms, given
an arbitrary initial set of descriptors and a target T, Delphos produces
p sets {Sy, Sa, ..., Sp}, so that each S; (i = 1, ..., p) is a “statistically
good” set of descriptors in order to establish a QSPR relationship be-
tween each S; and T. Moreover, the cardinality of each set of descriptors
S; could be different. Although all S; subsets are not identical, some de-
scriptors could appear in several subsets; this situation usually occurs
with the most relevant descriptors. Delphos is based on a wrapper
methodology. It works as follows: In a first phase a multi-objective ge-
netic algorithm is used so as to find the best subsets of descriptors;
the fitness function enables different regression techniques to assess
these subsets. In a second phase, the best subsets are rigorously evaluat-
ed (statistically) by an ensemble of ANN. As a result, Delphos provides
as output multiple S; sets of descriptors best correlated with the target
property (T), based on the lowest mean absolute error (MAE) and
mean square error (MSE).
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Numerical values of model descriptors.
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Sample number

CHS (mm/min)

Mn/SAyc (g mol~! A=2)

My (g mol™ ')

0N U WN =

5

1.27
1.27
1.27

5

5

5
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

5
30.1
30.1
30.1
30.1
30.1
30.1
30.1

4676.45
5550.91
29,085.24
8782.60
513.27
513.27
513.27
68.46
55.52
69.36
64.28
54.49
57.97
53.20
50.48
127.25
92.16
108.32
95.62
89.09
93.80
107.38
163.36
10,744.18
28,542.07
10,605.64
24,449.88
26,030.13
57,442.56
93,691.44
30,558.61
4285.89
4797.64
64.26
171.59
212.83
199.80
34.42
29.73
139.95
64.23
65.18
68.31
4737
76.37
16.63
10.83
8.33
45.81
28.44
35.09
100.67
39.76
55.54
72.72
64.04
84.34
64.75
68.57
80.37
65.30
90.39
68.46
529.93
203.55
270.59
108.45
114.95
25.52
71.58
58.49
127.59
78.14
55.22
39.82

5.41
5.41
5.41
5.41
5.41
5.41
5.41
8.13
8.13
7.91
8.16
8.15
8.11
8.34
8.15
8.10
8.13
8.13
7.91
8.16
8.15
8.15
8.23
8.34
8.34
8.34
8.34
8.34
12.01
12.01
12.01
12.01
12.01
8.62
8.83
7.24
7.96
8.75
8.75
9.31
8.56
8.74
8.70
8.56
8.56
8.42
8.61
8.36
8.56
8.92
8.56
8.74
8.70
8.41
8.69
8.56
8.92
9.16
9.32
9.07
8.92
8.92
8.92
9.13
8.68
9.03
9.13
9.03
8.70
8.41
8.74
8.69
8.56
8.56
8.56

Table 3 (continued)

Sample number  CHS (mm/min)  Mn/SAyc (g mol=' A=2)  nMyc (g mol™1)

76 5 113.67 10.25
77 5 119.22 10.25

In the second stage of the variable selection of this work, the expert
user evaluates the quality of the S; subsets resulting from Delphos by
considering quantitative and qualitative aspects. These S; should be
systematically compared to find the best combination of descriptors.
In general, this process encompasses several tasks, such as analyzing
descriptor co-occurrence in the different S;, the relevance of pairwise
occurrence of descriptors and descriptor-target relationships. This ex-
ploration is carried out by the expert combining the expertise with
the design of plots and tables in ad-hoc manner. Thereby, the final selec-
tion of the best descriptors, which make up the predictive model, arises
from the combination of: the prediction accuracy (minimum prediction
error), the physicochemical meaning, the interpretability and the
number of selected descriptors.

As a result of application of the methodology explained above, 3
descriptors were chosen by domain experts, who aimed at including
into the model orthogonal aspects of the molecules, so that important
and interpretable features are considered and redundancy is kept min-
imal. These selected descriptors are: Cross-head Speed (CHS), Number
Average Molecular Weight/Main Chain Surface Area ratio (Mn/SAyc) and
Normalized Main Chain Mass (nMyc). CHS was manually included con-
sidering its importance as variable of the tensile test (see details in
Section 3.2). Mn/SAyc was chosen due to the fact that it appears in
more than one subset and incorporates mass information of polymer
molecules. nMy,c was the most frequent descriptor among the S; subsets
from Delphos. The descriptors' numerical values are shown in Table 3.

24.2. Nonlinear modeling with ANNs

The best set of descriptors obtained as already mentioned in the
previous section, was used as input in a multi-layer neural network
perceptron (MLP) for the same target (elongation at break) by using
STATISTICA 8.0 software [39]. The network architecture was defined
as MLP 3-3-1 (three input layer neurons, three hidden layer neurons
and one output layer neuron); the activation functions were Tanh
(Hyperbolic Tangent) for the hidden layer and Logistic (Sigmoid) for
the output layer, the error function SOS (sum of squares) and the
BFGS (Broyden-Fletcher-Goldfarb-Shanno) quasi-Newton training
algorithm.

As for model performance evaluation we employed a k-fold cross-
validation scheme. It works as follows: the whole dataset is partitioned
into k equal size subsets; from the k subsets, a single subset is retained
as the validation data for testing the model, and the remaining k — 1
subsets are used as training data. In this way, each sample in the dataset
is predicted without using it in the training set. In this work k is set to 4.
The samples selected for each k subset were chosen by using a stratified
selection. The original list (Table 1) was sorted (ascending) by target
values. The compounds designed for validation in each k-fold were the
following: {i*4 + k|i= 0,1,...; k= 1,...,4}, and they are detailed in Sup-
plementary material. The reader should note that although we speak in
terms of “developing a model using an ANN”, the k-fold cross-validation
scheme requires the training of k ANNs.

In addition, Y-randomization technique was applied with the aim of
avoiding the possibility of chance correlation of the descriptors. The
results are shown in Section 3.1.

2.5. Domain of applicability

As it was mentioned in Section 2.1 (Dataset generation), our dataset
was specially assembled in order to have represented different chemical
families as well as various molecular weights and testing conditions.
Nowadays, the definition of the applicability domain is progressively
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Fig. 3. Calculated vs. experimental values of elongation at break (%).

more considered to estimate the reliability of a new prediction (query
compound). Following this tendency, in the present work we computed
the leverage measurements (extent of similarity). Theoretically, lever-
age is proportional to Hotelling's T? statistic and Mahalanobis distance
measure from the centroid of the training set [40]. Usually, a warning
threshold is set to three times the average of the leverage p/n, where p
is the number of model parameters while n is the number of training
compounds. Query compounds with leverage higher than this defined
threshold of 3 « p/n are considered to be unreliably predicted. For
this purpose we applied Leverage node (part of Enalos KNIME Nodes),
freely available in the KNIME Community framework [41].

3. Results and discussion

The elongation at break is a measure of ductility having a polymeric
material. As has already been noted, it is influenced by various factors,
including the molecular structure, molecular weight, degree of crystal-
linity, and testing standards and conditions such as cross-head speed,
sample shape, and tensile test temperature. For these reasons, these ex-
perimental parameters were considered during the generation of the
dataset and we proposed as descriptors some of them with the aim of
modeling elongation at break. Experimental data collection of many
polymers is not a straightforward task due to the fact that most of scien-
tific sources have incomplete and/or inconsistent data. In this fact lies
the importance of the dataset presented in this paper, which was de-
fined for amorphous, non-cross-linked, non-elastomer polymers, and
whose T, were above tensile test temperature.

In order to model the target property, the ideal scenario would be to
obtain descriptors from a molecular model that represents either the
weight distribution of the material or, at least its average molecular
weights. Nevertheless, in view of the size and complexity of the entire
molecules, it would be impossible to perform this ideal descriptor calcu-
lation from a computational perspective [7]. Therefore, a reduced
molecular design consisting of a trimer was used to represent each poly-
mer, which proved to be useful in a previous case [33]. The merit of
working with a trimer resides in the faster structure optimization and
the easier calculation of the descriptors. As mentioned in Section 2.3,

Table 4

Quality indices for the final model using cross-fold validation.
R? MAE MSE RMSE
0.88 1.89 6.71 2.59

Table 5

Model acceptability criteria metrics.
Metrics Fold 1 Fold 2 Fold 3 Fold 4
R%?> 06 0.90 0.88 0.89 0.88
R > 0.5 0.88 0.87 0.89 0.87
(R? — R§)/R* < 0.1 0.01 0.00 0.01 0.03
(R? — R3)/R?* < 0.1 0.00 0.01 0.00 0.01
|R3 — R’3]<0.3 0.01 0.01 0.00 0.03
085 <k<1.15 1.10 0.98 1.02 1.06
085 <k <115 0.86 0.97 0.93 0.89

the trimer segment that best represents the original polymer structure
is the middle one (repeating unit). Thus, it is not surprising that descrip-
tors related to the middle repeating unit (trimer model) were selected
in our prediction model and neither of those calculated at the whole
monomer.

Even though a trimer is a very simple representation of a polymer, it
is valid to optimize its geometry so as to consider its intramolecular
interactions. This molecular optimization does not aim to emulate the
3D conformation of polymer molecule, but to consider intramolecular
interactions between atoms of neighbor repeating units in minimum
scale. Furthermore, the values of the proposed descriptors are affected
by these interactions.

The results of this section are presented and discussed as follows: in
Section 3.1 the performance of the prediction model, validation and
domain of applicability; in Section 3.2 descriptors of the QSPR model
and lastly, in Section 3.3 an evaluation of variable relevance.

3.1. Model performance, validation and domain of applicability

The model performance was assessed using a 4-fold cross-validation
technique; the ANNs were developed using the statistical software
STATISTICA. The observed and predicted elongations at break values
are shown in Table 1 and Fig. 3. As can be seen from Table 4, a very
good performance is obtained with regard to R? (squared correlation
coefficient) and other classical statistical parameters.

In view of the dataset range for the elongation at break is two orders
of magnitude (0.4 for #1 and 39.1 for #47 (from Table 1)). MAE, MSE and
RMSE (root mean square error) metrics are not sufficiently representa-
tive, mainly for low values. Even so, when a very small value of the
target property as for example 0.4 is predicted around 1, from the ex-
perimental perspective it would be predicting the same type of material,
i.e. a brittle material.
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Fig. 4. Y-randomization. R? values from 100 models obtained by randomization of the
target values (100 runs).


image of Fig.�3
image of Fig.�4

D. Palomba et al. /| Chemometrics and Intelligent Laboratory Systems 139 (2014) 121-131 129

T ;s T 2 T ks T i T X T . T : T 3 T
100 |- A a -
€ sof 4
£
£
= 60 |- g
©
@
(0] AAAAL
(=%
w
o 40 [ -
©
o A A A4 AA
2
o 20| Al A -]
(8] A A
A A A
A AAAA AA A
0+ A AA .
1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Elongation at break [%] — Exp
T ] T " T L T L T ) T * T L T L T
100000 - b -
A
80000 |- g
o L
g 60000 |- a g
= L
g
<« 40000 |- -
g 2
= [ A
s A B
20000 | B
FoOA
A A AA
OF 4 SAMMMALLL A A AA AA
1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 1 1
0 5 10 15 20 25 30 35 40
Elongation at break [%] — Exp
13 T T T T T T T T T
121 M A AA C
1 .
= 10 A A
E L i
2 9l T 4
. I AA f“ i R Ay
EE 8 “;At.l 4 i
=
7k 4 i
6 .
[ AkkA
5 -
1 " 1 L 1 1 1 1 1 4 1 1 1 L 1 L 1
0 5 10 15 20 25 30 35 40

Elongation at break [%] — Exp.

Fig. 5. Plots of model descriptor values versus elongation at break values: a) CHS, b) Mn/SAuc,
and ¢) nMyc.

Despite the fact that dataset consisted of structurally diverse com-
pounds, only 3 descriptors were used in the model, following the
principle of parsimony (Occam) [42]. Hence the generalization ability
of model's descriptors is demonstrated.

As already stated above, it is advisable to complete the task with a
proper validation. In order to achieve this aim, two different approaches
were applied: The model acceptability [40,41] and the internal
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Fig. 6. Plot of Mn, SAyc, and SAsc values versus molecule number of our dataset (see
Table 1).

validation method Y-randomization [43] (also known as Y-random per-
mutation or Y-scrambling).

3.1.1. Model acceptability

According to Tropsha et al. [40], the following statistical criteria must
be satisfied by a predictive model: R? > 0.6, R%.y; > 0.5, (R*> — R3)/
R? < 0.1, (R*> — R’3)/R?> < 0.1, |R§ — R’3|<0.3, 0.85 < k < 1.15,
0.85 < k’ < 1.15; where: R? is the correlation coefficient between
the predicted and observed activities, R2,; is the external cross val-
idation, R3 is the coefficient of determination for the predicted versus
observed activities, R'3 is the coefficient of determination for the ob-
served versus predicted activities, k is the slope for the predicted ver-
sus observed activity regression lines through the origin and k’ is the
slope for the observed versus predicted activity regression lines
through the origin. We computed the above metrics considering as
external validation sets the 4 folds previously defined. As expected,
all the metrics matched the requirements; results are summarized
in Table 5.

3.1.2. Y-randomization

Randomization of target values was applied 100 times; in order to
automate the variable selection in each iteration we applied Delphos
on the whole set of descriptors and used the best subset that was used
to establish a QSPR relationship by using an ANN. The results can be
seen in Fig. 4, where all models generated by randomization of target
values gave a very poor performance, thereby confirming that there
was no chance correlation between the model descriptors and the
elongation at break values.

3.1.3. Applicability domain
As it was explained in Section 2.5, the applicability domain using
leverage measurements was defined for all compounds following a

Table 6
Statistical metrics for the input variable assessment.
R? MAE MSE RMSE
Model 0.86 1.88 8.06 2.84
Model — {nMpc} 0.73 241 15.44 3.93
Model — {Mn/SAwmc} 0.49 2.93 28.37 5.33
Model — {CHS} 0.19 3.67 44.48 6.67
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LLO (leave-one-out) scheme. The output of applicability domain of each
sample was reported in Supplementary file. The results show that only
compounds #29, #30 and #36 were estimated as unreliable because
this method considers that the predictive values are obtained from ex-
trapolation. However, the corresponding model predictions (Table 1)
are still coherent with a brittle material and these chemical families
are well represented in the dataset. Therefore, we considered that
these three compounds can be included in the model.

3.2. About model descriptors

In the literature for QSPR technique, there is a trend to avoid models
that are impossible or very difficult to interpret, although they have
good performance. As indicated in [44], “when the interpretation of a
QSPR model is consistent with existing theories and knowledge of
mechanisms, the ability to explain how and why an estimated value
from the model was produced increases. Adding that transparency to
model performance is the goal of including a mechanistic interpretation
of the model”. Even though it is not always possible to find a global in-
terpretation, it is desirable to make the effort to find an explanation
for the model in a “mechanistic” way [45]. By following these sugges-
tions, this section is intended to show the type of information provided
by each model descriptor in particular and all together in general.

In Fig. 5 the plots of values of the three model descriptors versus the
target property values are shown. It can be seen that every descriptor
provides supplementary information to the prediction model. Firstly,
the CHS (Cross-head Speed) descriptor is presented in Fig. 5a. In general,
in this graph can be observed that the higher the cross-head speed, the
lower the elongation to break values, regardless of the type of molecule.
If, however, low cross-head speed values are analyzed, it can be seen
that the target property has a wide spread of values. This situation can
be attributed to the fact that elongation at break, at low cross-head
speed values, becomes independent of this tensile test variable and
thus, it can reveal the structure-property relation of each molecule [5]
. It can be noted the importance of this tensile test variable, thereby jus-
tifying its manual inclusion in the model.

Fig. 5b shows the Mn/SAyc (Number Average Molecular Weight/Main
Chain Surface Area ratio) values versus the target property values. This
descriptor has the special feature of retaining “macro” information of
the average real molecule through the value of Mn, although its final
value is divided by the surface area of the main chain (of the middle re-
peating unit of the trimer). In order to better understand this descriptor,
the Mn, SAyc (Main Chain Surface Area) and SAsc (Side Chain Surface
Area) values of the molecules of our dataset are presented in Fig. 6.
Note that in our dataset the families of molecules have higher structural
variation in the main chain [7.93-770.63 A?| than in the side chain
[58.32-559.79 A?]; therefore, it is reasonable to expect that the descrip-
tors of the model show the higher value spread of our dataset, which oc-
curs for the main chain. In short, this descriptor combines the “macro”
information of the molecule (by means of Mn) and a structural property
related to “micro” information (SAuc).

Finally, Fig. 5c shows nM,,c (Normalized Main Chain Mass) values vs.
target property values. This descriptor provides information about the
synthetic model of the polymer, more specifically about the middle
repeating unit of the trimer, normalizing the mass of the main chain
with its atom number. Once again, the choice of this descriptor by
means of the variable selection algorithm could be due to the fact that
the information provided by the main chain was prioritized over the in-
formation supplied by the side chain.

To sum up, with Fig. 5 it can be concluded that the descriptors are
providing information not only on the tensile test, but also on the aver-
age real molecule and on the synthetic model segment that has more
variation in our dataset. Furthermore, as demonstrated in the following
section (3.3), all variables proved to be significant to the performance of
the model confirming that the contribution is global.

3.3. Evaluation of variable relevance

Besides statistical measures (Section 3.1), the significance of the
input variables to the model was assessed by removing the i-th input
variable, training the networks without it and evaluating the resulting
model by: R?, MAE, MSE, and RMSE. The metrics were compared
with the reference values obtained globally for the complete model
(Table 6). When figures showed an important decline, it might be con-
cluded that the presence of the associated i-th input variable was com-
pulsory for the model. When figures enhanced or remained similar to
original model, the i-th input variable should be removed. If the indexes
were better, the variable could be affecting the model negatively. In
turn, in case they were similar, the variable would seem redundant.

From the results (Table 6), it is worth noting that all the input vari-
ables play a fundamental role in the model since none of them neither
reach nor overcome original-model performance.

4. Conclusions

In this article we were able to generate a good model of low cardinal-
ity (3 descriptors) for predicting elongation at break through QSPR
approach, within application domain of amorphous polymers.

An original dataset from PolyInfo was generated and presented in
this work for the first time, which encompasses neat resins, amorphous,
linear, non-cross-linked, and non-elastomer polymers. The difficulty of
this comprehensive task resided in the collection of a large amount of
consistent experimental data from reliable sources, which did not
exist to date in the literature.

New descriptors were proposed in order to better represent struc-
tural features related to the target, including experimental parameters.
Although all descriptors (new and classic ones) were considered to
develop the prediction model, only the proposed descriptors and nei-
ther of classic ones were selected by combining a variable selection
technique with domain knowledge. This result demonstrated the use-
fulness of considering a priori important experimental parameters of
polymers as descriptors, as well as new structural approaches (main
and side chains). Thus, the prediction is tackled from two complemen-
tary perspectives.

The prediction model, which was validated by cross-fold validation
and Y-randomization, is statistically very good and useful for predicting
mechanical properties of polymers provided that certain testing and
structural conditions of polymers are met.

This contribution within the framework of the mechanical proper-
ties of the polymers allows this research field - totally experimental
and applied - to be explored by means of theoretical tools. In this
regard, it should be noted that by combining different disciplines
(machine learning techniques plus domain knowledge) the reliability
of the method was enhanced. Moreover, by using a simplified molecular
model (trimer) good prediction results were obtained. Finally, as
already has been mentioned, in current literature there are very few
studies on prediction of mechanical properties of polymers, which fur-
ther highlights our endeavor to provide more intelligent tools for the
design of new materials with a specific application profile.
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