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The role of oxidative stress in prostate cancer has been increasingly recognised. Acute and chronic inflammations generate reactive
oxygen species that result in damage to cellular structures. Haeme oxygenase-1 (HO-1) has cytoprotective effects against oxidative
damage. We hypothesise that modulation of HO-1 expression may be involved in the process of prostate carcinogenesis and
prostate cancer progression. We thus studied HO-1 expression and localisation in 85 samples of organ-confined primary prostate
cancer obtained via radical prostatectomy (Gleason grades 4–9) and in 39 specimens of benign prostatic hyperplasia (BPH). We
assessed HO-1 expression by immunohistochemical staining. No significant difference was observed in the cytoplasmic positive
reactivity among tumours (84%), non-neoplastic surrounding parenchyma (89%), or BPH samples (87%) (P¼ 0.53). Haeme
oxygenase-1 immunostaining was detected in the nuclei of prostate cancer cells in 55 of 85 (65%) patients but less often in non-
neoplastic surrounding parenchyma (30 of 85, 35%) or in BPH (9 of 39, 23%) (Po0.0001). Immunocytochemical and western blot
analysis showed HO-1 only in the cytoplasmic compartment of PC3 and LNCaP prostate cancer cell lines. Treatment with hemin, a
well-known specific inducer of HO-1, led to clear nuclear localisation of HO-1 in both cell lines and highly induced HO-1 expression
in both cellular compartments. These findings have demonstrated, for the first time, that HO-1 expression and nuclear localisation
can define a new subgroup of prostate cancer primary tumours and that the modulation of HO-1 expression and its nuclear
translocation could represent new avenues for therapy.
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Several factors are involved in the development of prostate cancer
(PCa), such as age, genetic predisposition, environmental factors,
diet, and exposure to infectious agents or androgens, which induce
an imbalance in the redox state of the tissue (Malins et al, 2001;
Fleshner et al, 2004; Calabrese and Maines, 2006; Klein et al, 2006).
The role of oxidative stress in PCa has been increasingly
recognised. The ultimate effect of these events is to produce tissue
remodelling and proliferation (De Marzo et al, 2003). Acute and
chronic inflammations generate reactive oxygen species that result
in damage to cellular structures (Toyokuni et al, 1995).

Haeme oxygenase (HO) is the microsomal rate-limiting enzyme
in haeme degradation (Tenhunen et al, 1968; Kikuchi et al, 2005).
Haeme is the prosthetic moiety of various haeme proteins,
including cytochrome P450. Haeme oxygenase-1 (HO-1) regulates
cellular cytochrome P450 levels, which is related to steroidogenesis
in prostate, and an inverse relationship between HO-1 activity and

the level of cytochrome P450 has been established (Maines and
Abrahamsson, 1996).

To date, three different isoforms of mammalian HO have been
discovered, HO-1, HO-2 and HO-3, and these have distinct
patterns of tissue-specific gene expression (Prawan et al, 2005).
Haeme oxygenase-1 is an inducible and ubiquitous 32 KDa isoform
highly expressed in the spleen and liver and normally found in
very low levels in mammalian tissue (Maines and Gibbs, 2005). The
upregulation of HO-1 has been recognised as an adaptive response
to several stress stimuli (Willis et al, 1996; Maines, 2005; Morse
and Choi, 2005). The regulation of its potent enzymatic activity
depends primarily on the control of HO-1 expression at
transcriptional level (Alam et al, 2004; Dulak et al, 2004). The
role of HO-1 in tissue pathology is determined either by a delicate
balance between the injurious and protective action of the end
products generated during haeme catabolism (Dong et al, 2000) or
by exerting a function distinct from haeme degradation (Vazquez
et al, 2002) and playing a more proactive role in physiological
and pathological processes (Willis, 1999; Maines, 2000). Hence,
the induction of HO-1 is one of the most important events in
cellular response to pro-oxidative and proinflammatory insults
(Prawan et al, 2005).
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Haeme oxygenase-1 has been detected in several cancer cell lines
(Nishie et al, 1999; Chen et al, 2000; Liu et al, 2004; Busserolles
et al, 2006) and tumours (Fang et al, 2003; Tanaka et al, 2003), but
its role is still controversial. Recently, in vivo studies have
proposed HO-1 upregulation as a useful marker in identifying
patients with oral squamous cell carcinoma at low risk of
metastasis (Tsuji et al, 1999) and as a novel BCR/ABL-dependent
survival factor in chronic myeloid leukaemia (Mayerhofer et al,
2004). Moreover, Hill et al (2005) proposed that HO-1 exerts
antitumour functions in rat and human breast cancer cells by
antioxidant mechanisms. Targeted knockdown of HO-1 expression
led to pronounced growth inhibition of pancreatic cancer cells and
made tumour cells significantly more sensitive to radiotherapy and
chemotherapy (Berberat et al, 2005). In human parotid pleo-
morphic adenomas, HO-1 may be implicated in these tumours (Lo
et al, 2005).

Here, we assessed HO-1 expression and subcellular localisation
in PCa specimens and tested if the expression/localisation profile
correlates with PCa progression.

MATERIALS AND METHODS

Patients and tissue specimens

The use of tissue samples was approved by the Local Commission
for Medical Ethics and Clinical Studies. All prostate tissues were
obtained from the archival tissue bank of the Department of
Pathology, Hospital Alemán, Buenos Aires, Argentina. Pathological
specimens were taken from prostate radical prostatectomy speci-
mens. Eighty-five PCa specimens were selected to represent the
complete range of Gleason grades (Gleason, 1966). None of these
patients received preoperative therapy. The age of the patients at
the time of surgery and their preoperative PSA levels were
recorded. Clinicopathological characteristics of the patients are
shown in Table 1. In addition, 39 samples of benign prostatic
hyperplasia (BPH) patients (59–76 years of age; mean 68 years),
who underwent transurethral resection of the prostate, were
included. All BPH specimens showed histological epithelial and/or
stromal cell hyperplasia but no malignant cells.

Antibodies

The following primary antibodies were used: rabbit polyclonal anti-
haeme-oxygenase-1 (Stressgen Biotechnologies Corp., San Diego,

CA, USA), mouse monoclonal anti-laminin A/C (Santa Cruz
Biotechnology Inc., Santa Cruz, CA, USA) and mouse monoclonal
anti-b-tubulin (Sigma, St Louis, MO, USA). Goat anti-rabbit and
anti-mouse IgGs coupled to horseradish peroxidase were used as
the secondary antibody (Santa Cruz Biotechnology Inc.).

Immunohistochemical analysis

All tissues were processed and fixed using a routinely established
protocol and stained as previously described (Caballero et al,
2004). Slides were counterstained with Mayer’s haematoxylin and
analysed by standard light microscopy. Sections incubated without
primary antibody were used as negative controls.

Stained slides were examined and scored independently by two
investigators (RM and GC). At least 20 randomly selected high-
power fields with a minimum of 4000 cells were evaluated for
expression both in the tumour and in the ‘normal’ tissue adjacent
to the tumour (non-neoplastic surrounding parenchyma). The
percentage of HO-1-positive cells was expressed as a ratio of
positive cells to the total number of cells counted. We considered
positive HO-1 expression when more than 25% cells exhibited
positive cytoplasmic staining. Specimens with less than 25% of
cells with cytoplasmic staining were considered negative. Nuclear
HO-1 staining was considered positive when at least 5% of the cells
demonstrated nuclear expression. Intraobserver error was calcu-
lated in a preliminary examination using the same material. It
showed that at least 900 tumour cells should be assessed to have
the results fall within 5% of the estimated real mean with a
probability of 95%.

Cell lines and reagents

LNCaP and PC3 cells were obtained from the American Type
Culture Collection (Manassas, VA, USA) and were maintained at
371C in a humidified incubator with a 5% CO2/95% air atmosphere
in RPMI 1640 supplemented with 10% FCS. Culture reagents were
obtained from Gibco BRL (Carlsbad, CA, USA). Hemin chloride
(equine), protease inhibitor cocktail for mammalian tissue and
phosphatase inhibitors (Na3VO4, NaF and Na4P2O7) were obtained
from Sigma.

Immunocytochemical analysis

LNCaP and PC3 cells were plated in Labtek chamber slides and
incubated with and without hemin (20mM, 22 h). Then, slides were
fixed in methanol (5 min, �201C) and permeabilised with 0.2%
Triton X-100 in PBS. After blocking with hydrogen peroxide and
with 2% bovine serum albumin, cells were incubated with anti-
HO-1 (1 : 5000), washed with PBS and incubated with the
secondary antibody.

Western blot analysis

For the isolation of nuclear and cytoplasmic fractions, LNCaP and
PC3 cells were treated or not with hemin (20 mM, 22 h) and lysed
with low-salt buffer A (50 mM HEPES, 10 mM KCl, 1 mM EDTA,
1 mM EGTA, 1 mM DTT, cocktail protease and phosphatase
inhibitors (1 mM Na3VO4, 20 mM NaF and 1 mM Na4P2O7), pH
7.9). After centrifugation, the cytoplasmic supernatant was
separated and the nuclear pellet was gently resuspended in low-
salt sucrose buffer (low-salt buffer A plus 1.0 M sucrose). After
centrifugation, the nuclear pellet was vortexed for 20 min with
high-salt extraction buffer (50 mM HEPES, 400 mM KCl, 1 mM

EDTA, 1 mM EGTA, 1 mM DTT, and protease and phosphatase
inhibitors, pH 7.9). Protein concentrations were determined in
both fractions using a BCA procedure (Pierce Biochemical,
Rockford, IL, USA). Western blot analysis was performed as
previously described (Sacca et al, 2004).

Table 1 Clinicopathological characteristics of prostate cancer patients

Characteristic Number of patients (%)

Number of cases 85

Age (years)
Range 44–92
Mean±s.d. 64±8.2

Pathologic tumour category
pT1 15
pT2 40
pT3 30

Gleason grade
4 3 (3.4)
5 17 (20.0)
6 18 (21.2)
7 26 (29.2)
8 15 (16.9)
9 and 10 6 (6.7)
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Statistical analysis

The results of the staining were analysed statistically with Graph
Pad software. Statistical significance of differences between HO-1-
positive staining and clinicopathologic features (Gleason grade)
was assessed by Fisher’s exact test. Contingency tables were
analysed using the w2 test and Fisher’s exact probability test to
compare positive HO-1 staining in tumour cells with those in the
non-tumoral parenchyma and in BPH.

RESULTS

HO-1 cytoplasmic localisation is similar in clinical prostate
cancer, non-neoplastic surrounding parenchyma, and
benign prostatic hyperplasia

We found positive immunoreactivity for HO-1 in the cytoplasm
of PCa cells, in epithelial cells of adjacent non-neoplastic areas
and in epithelial cells of BPH (Figure 1A–D). Of the 85 cases
with PCa analysed, we found positive cytoplasmic staining in 71
of 85 (84%) tissue sections with PCa and in 76 of 85 (89%)
tissue section when evaluating areas of adjacent non-neoplastic
specimens (Table 2). Also, 34 of 39 (87%) tissue samples from
BPH were positive for HO-1 cytoplasmic staining (Table 2).
Statistical analysis of these results found no significant difference
in the cytoplasmic immunoreactivity between area with tumour,
non-neoplastic surrounding parenchyma and in BPH samples
(w2, P¼ 0.53). Positive HO-1 cytoplasmic immunoreactivity was
seen in a small fraction of basal cells of the non-neoplastic
surrounding tissue (7 of 85, 8%) and BPH (3 of 39, 8%). The degree
of HO-1 expression in epithelial cells of PCa non-neoplastic
surrounding parenchyma (89%) and BPH (87%) compare to basal
cells (8 and 8%, respectively) was similar for both groups,
reflecting a uniform HO-1 cytoplasmic localisation in both samples
(Table 2).

Haeme oxygenase-1 is expressed in the nuclei of prostate
cancer cells in patient specimens

Haeme oxygenase-1 immunostaining was detected in the nuclei of
PCa cells in 55 of 85 (65%) tissue specimens from PCa patients
(Figure 1A and B; Table 2). The degree of HO-1 expression in the
nuclei of PCa cells was significantly higher than in the nuclei of
prostate epithelial cells in non-neoplastic surrounding parenchyma
(30 of 85, 35%) or BPH (9 of 39, 23%) (w2, Po0.0001) (Table 2).
Moreover, the results also showed a quite positive correlation with
Gleason score (Gleason 4–6, 53%; high Gleason 8–10, 76%); the
higher the Gleason score, the more the number of samples with
nuclear HO-1-positive staining (P¼ 0.0983 considered quite sig-
nificant) (Table 3). The rate of nuclear HO-1 expression in PCa non-
tumour surrounding parenchyma was about 34% independent of the
Gleason score of the samples (Table 3). Furthermore, relative risk
factors for nuclear staining evaluated by Fisher’s exact test were 1.8
tumour vs non-neoplastic surrounding parenchyma and 3.45 tumour
vs BPH (Table 4). These results suggest that HO-1 nuclear expression
is associated with malignant transformation.

Hemin can induce nuclear translocation of HO-1 in PCa
cells

Haeme oxygenase-1 was found in the cytoplasm of untreated PC3
or LNCaP cells, with clear nuclear exclusion (Figure 2A and D).
Treatment with Hemin, a well-known specific inducer of HO-1,
resulted in an increased-intensity HO-1 cytoplasmic staining and
induction of nuclear localisation in both cell lines (Figure 2B, C,
E–G). Western blot analysis of nuclear and cytoplasmic protein
extracts from treated and untreated cells confirmed these findings
(Figure 3). The purity of the cytoplasmic and nuclear fractions was
verified in all samples by detection of b-tubulin and laminin A/C,
respectively. Furthermore, basal cytoplasmic expression of HO-1
was lower in PC3 than in LNCaP. These results demonstrate that
HO-1 expression and localisation could be modulated by hemin in
androgen-insensitive and androgen-sensitive PCa cells.

A C

B D

Figure 1 Immunohistochemical staining of HO-1 in human prostatic tissues. Representative findings of HO-1 immunoreactivity. (A and B) Nuclear/
cytoplasmic staining in PCa samples. (C) Cytoplasmic staining of non-neoplastic parenchyma surrounding PCa with nuclear HO-1 exclusion. (C1) Negative
nuclear/cytoplasmic staining in tumoral region of the same sample. (D) Papillar structure of BPH covered by HO-1-negative and HO-1-positive cells. Original
magnification: � 40.
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DISCUSSION

In this report, we have demonstrated that HO-1 nuclear
localisation occurs in a subset of PCa. Haeme oxygenase-1 nuclear
localisation is likely associated with carcinogenesis rather than
with progression because it was only quite associated with Gleason
score.

Although one previous report had shown increased HO-1
expression in localised prostate carcinoma and BPH, the small
sample size of that study (six cases) precluded any conclusion on
the relevance of these findings. The higher detection frequency of

HO-1 expression and the more nuclear staining of HO-1 in our
study compared with the results of Maines and Abrahamsson
(1996) from a number of samples analysed covering all the ranges
of PCa progression and several cases of BPH. Here, we report that
whereas cytoplasmic HO-1 staining appears to correlate with
moderate levels of HO-1 expression, high levels of the protein tend
to correlate with a shift to nuclear translocation. Using immuno-
cytochemistry techniques and western blot analysis, we confirmed
HO-1 nuclear translocation either in androgen-dependent or
androgen-independent PCa cells mediated by hemin induction
(Figures 2 and 3).

Table 2 Immunohistochemical analysis of expression and localisation of positive HO-1 in patients with prostate cancer and benign prostatic hyperplasia

Tumour (N¼ 85) Non-neoplastic parenchyma (N¼85) Benign prostatic hyperplasia (N¼ 39)

No. of cases (%) No. of cases (%) No. of cases (%) P-value

Cytoplasm Epithelial cells 71 (84) 76 (89) 34 (87) 0.53a

Cytoplasm Basal cells — 7 (8) 3 (8) 1.00b

Nucleus 55 (65) 30 (35) 9 (23) o0.0001a

HO-1¼ haeme oxygenase-1. aw2 test for independence. bFisher’s exact test.

Table 3 Relationship between positive nuclear HO-1 immunoreactivity and the Gleason score in prostate cancer human samples

Tumour Non-neoplastic parenchyma

Gleason score No. of cases (%) P-valuea No. of cases (%) P-valuea

4–6 (N¼ 38) 20 (53) 13 (34)
7 (N¼ 26) 19 (73) 0.123 10 (38) 0.79
8–10 (N¼ 21) 16 (76) 0.0983** 7 (33) 1.00

HO-1¼ haeme oxygenase-1. Fisher’ s exact test. aP vs Gleason 4–6. **P-value considered not quite significant.

Table 4 Analysis of histological characteristics and positive HO-1 expression

Histology Relative risk 95% confidence intervala P-valueb

Tumour/BPH 3.45 1.88–6.35 o0.0001
Tumour/non-neoplastic parenchyma 1.83 1.32–2.55 0.0002
Non-neoplastic parenchyma/BPH 1.53 0.81–2.91 0.2138

BPH¼ benign prostatic hyperplasia; HO-1¼ haeme oxygenase-1. aWith Katz’s approximation. bFisher’s exact test.

CONTROL HEMIN

LNCap

PC3

A B C

E F

G

D

Figure 2 Immunohistochemical detection of HO-1 nuclear translocation induced by hemin. Cytoplasmic immunostaining in LNCaP (A) and PC3 (D) cells
grown under control conditions. Positive nuclear staining in LNCaP (B and C) and PC3 (E–G) cells grown with hemin (20 mM) during 22 h. Magnification:
� 40 (A, B, D–G) and � 100 (C).
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It is believed that intracellular localisation of HO isoforms may
be related to selective functions in different cell types (Parfenova
et al, 2001). In particular, nuclear HO-1 localisation in astroglial
cells was implicated in brain development and neurodegenerative
diseases (Li Volti et al, 2004), in rat fetal lung cells exposed to
hyperoxia as a chaperone or a nuclear messenger (Suttner et al,
1999) and in brown adipocyte as a transcription factor in
adipogenesis (Giordano et al, 2000). Recently, HO-1 immuno-
reactive signal was detected in the nucleus of cultured cells after
exposure to hypoxia and haeme, suggesting that this localisation
may serve to upregulate genes that promote cytoprotection against
oxidative stress (Lin et al, 2007). Although several studies have
implicated HO-1 with cancer (Prawan et al, 2005), no report has
associated this protein expression with its nuclear translocation.

Haeme plays an important role in activating the expression of
different genes by regulation of various transcription factors. In
response to haeme, these transcription factors bind to activation
sequences of numerous genes encoding functions required for
respiration and for controlling oxidative damage (Hon et al, 1999).
As with other heat-shock proteins (Segui-Simarro et al, 2003), the
transport of HO-1 could involve either interaction of the enzyme
nuclear localisation signal with the nuclear pore complex or with
other cytoplasmic components that would deliver the protein (Li
Volti et al, 2004).

A number of transcriptional activators are regulated by redox
modulation, including c-myb, Ets, early growth response-1, the

glucocorticoid receptor, members of the activating transcription
factor/cAMP-responsive element binding family, and HIF-1a
(Guehmann et al, 1992; Huang and Adamson, 1993; Wasylyk and
Wasylyk, 1993; Esposito et al, 1995; Huang et al, 1996).

Redox regulation is one of the key mechanisms for adapting to a
variety of stresses, including oxidative stress (Goodman et al,
1997). Excess generation of ROS can cause DNA damage (Ohshima
et al, 2003; Toyokuni, 2006), leading to changes in the genomic
information in spite of the strong counteractions of repair
enzymes and apoptotic pathways. The localisation of oxidative
nucleic acid damage in certain specific sequences, which are
especially vulnerable to oxidative stress, may differ depending on
the cell type and cellular environment (Toyokuni, 2006). Such
difference could explain the specific signalling pathway turns on/
off in each type of cancer.

Where DNA damage is involved, HO-1 may emerge to counter-
act stress-induced apoptosis and represent a mutagenic/carcino-
genic defence mechanism to protect cells expressing unrepairable
DNA damage. It is possible that HO-1 may modulate proliferation
by scavenging and/or preventing the formation of reactive oxygen
metabolites. This is particularly relevant to active proliferating
cells with low levels of antioxidant detoxifying enzymes. Haeme
oxygenase-1 may therefore be one guardian of the genome,
limiting mutations of DNA and promoting deletion of aberrant
cells (Oates and West, 2006). An altered prooxidant/antioxidant
balance in PCa patients, reflected by elevated lipid peroxidation
and concomitant antioxidant depletion, was suggested to lead to
an increase in oxidative damage playing an important role in
prostate carcinogenesis (Yilmaz et al, 2004; Aydin et al, 2006).

Hence, HO-1 is found exclusively in the cytoplasm of some cells,
and in others it is localised both in the cytoplasm and nucleus. The
biological relevance of the compartmentalisation of HO-1 is not
understood, but the complexity of staining patterns suggests that
localisation is regulated.

Thus, if HO-1 seen in PCa cells is primarily functioning as an
adaptive cellular defence system, its movement into the nucleus
from the cytoplasm would have an impact on the ability of this
protein to carry out other functions probably related to regulation
of nuclear DNA repair activities, which could result in a different
oncogenic phenotype.

Further studies that could correlate the HO-1 expression and
nuclear translocation with the progression of the disease for each
Gleason score could show a predictive value. In this way, it could
be determined which patients with Gleason 5 or 6 could be
considered for watchful and waiting and which ones for treatment,
likewise in patients with Gleason 3þ 4 and 4þ 3 the convenience
of radical prostatectomy or radiotherapy. However, HO-1 ther-
apeutic implications in PCa are yet unclear.
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