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Proper splittings of operators are commonly used to study the convergence 
of iterative processes. In order to approximate solutions of operator equations, 
in this article we deal with proper splittings of closed range bounded linear 
operators defined on Hilbert spaces. We study the convergence of general proper 
splittings of operators in the infinite dimensional context. We also propose some 
particular splittings for special classes of operators and we study different criteria 
of convergence and comparison for them. In some cases, these criteria are given 
under hypothesis of operator order relations. In addition, we relate these results 
with the concept of the symmetric approximation of a frame in a Hilbert space.

© 2024 Elsevier Inc. All rights are reserved, including those for text and data 
mining, AI training, and similar technologies.

1. Introduction

Given an invertible matrix T ∈ Mn(C), a splitting of T is a partition T = U − V , where U, V ∈ Mn(C)
with U invertible. The theory of regular splittings for an invertible matrix T ∈ Mn(R), i.e., a splitting T =
U −V such that U, V ∈ Mn(R) and U−1 has all its entries nonnegative, started in a work due to Varga [36], 
where an iterative process to get the unique solution of the system Tx = w was given. To be more precise, 
given T ∈ Mn(R) invertible and T = U − V a regular splitting of T , Varga defined the iterative process

xi+1 = U−1V xi + U−1w,

and he proved that this process converges for every initial x0 if and only if the spectral radius of U−1V , 
ρ(U−1V ) < 1, is less than 1. Moreover, in such a case, the process converges to T−1w.

The idea of Varga was extended by Berman and Plemmons [7] in order to define an iterative process 
that allows to get the minimum norm least square solution of a system Tx = w, for T ∈ Mm×n(R). For 
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this purpose, the concept of proper splitting of T ∈ Mm×n(R) was introduced: a proper splitting of T is a 
decomposition T = U − V where R(U) = R(T ) and N (U) = N (T ). Then, Berman and Plemmos proved 
that given a proper splitting of T ∈ Mm×n(R) the iterative process

xi+1 = U†V xi + U†w, (1)

converges for every initial x0 if and only if ρ(U†V ) < 1 and, in such a case, it converges to T †w, the minimum 
norm least square solution of Tx = w.

In the literature different kinds of splittings and proper splittings of a matrix can be found. Some of 
them are regular splittings [36,14], nonnegative splittings with first and second type [34,35], weak regular 
splittings with first and second type [37,10,19], proper splittings [30,7,5], P -regular splittings [24,26], P -
proper splittings [28], weak nonnegative splittings of the first and the second type [11], among others. For 
each class of splitting there exist several results that guarantee the convergence of the associated iterative 
process. Also there exist results that compare the speed of convergence of the iterative method for different 
splittings of a matrix.

Arias and Gonzalez [5] used the concept of proper splitting of a matrix T ∈ Mm×n(C) to extend the 
iterative method (1) and so to define an iterative process that converges to a reduced solution of the 
solvable matrix equation TX = W . There, criteria of convergence and comparison for proper splittings 
were given under hypothesis of positivity (according to Löwner order) of certain matrices. Also in [5] it was 
proposed a particular proper splitting which is defined for every matrix in Mm×n(C); namely, the polar 
proper splitting. There, the convergence of the polar proper splitting was studied and it was shown that 
this particular splitting is “better” than others on certain classes of matrices.

Along this article we will be interested in extending the treatment of proper splittings of matrices to 
the context of Hilbert space operators in order to approximate solutions of an operator equation TX = W . 
On one hand we generalize to the infinite dimensional context results of [5] like a criterion of convergence 
for general proper splittings. Also, we study the polar proper splitting of a closed range operator and we 
characterize its convergence. We introduce particular proper splittings for the classes of split and Hermitian 
operators, we analyze their convergence and we establish different criteria of comparison. In addition, 
throughout the article we focus in comparing proper splittings of operators which are related under different 
factorizations. In particular some of the factorizations considered are given by means of the star order, the 
minus order, the sharp order. Also different proper splittings of operators in classes as the product of 
orthogonal projections, the product of an orthogonal projection by an Hermitian operator and the product 
of an orthogonal projection by a positive operator, are investigated.

The reader is referred to [16,31,29] among others, for results on splittings, iterative methods and criteria 
of convergence for splittings on infinite dimensional spaces. For example, Nacevsca [31] studied iterative 
methods for computing generalized inverses of linear operators by means of the method of splitting of 
operators. Liu and Huang [29] studied the convergence of an iterative method to find solutions of a linear 
system Tx = w by means of a proper splitting of the operator GT , where G is an operator with range and 
nullspace prescribed.

The paper is organized as follows. Section 2 contains notations and preliminaries results. In particular, we 
recall definitions of some operator orders and generalized inverses that will be used along the paper. Also, 
an extension to the infinite dimensional case of a characterization of the Löwner order for positive operators 
due to Baksalary, Liski and Trenkler [6,5] is given. In Section 3 the study of general proper splittings 
given in [5] for the finite dimensional case is now generalized for Hilbert space operators. Here the main 
result is Theorem 3.7, where we provide sufficient conditions for the convergence of proper splittings under 
certain compacity hypothesis. Section 4 is devoted to study the polar proper splitting. We characterize its 
convergence in Theorem 4.3. In Theorem 4.5 the polar proper splittings of two operators related by the star 
order, are compared. Also we show that the star order condition can not be replaced for a sharp order nor 
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a minus order condition. In Section 5 we present two particular proper splittings for a split operator, i.e., a 
bounded linear operator T defined on a Hilbert space H which satisfies the condition R(T )+̇N (T ) = H. The 
splittings for such a T are defined by means of operators that emerge from that decomposition of H; namely, 
the Q-proper splitting and the group proper splitting. For each one of them we give conditions that guarantee 
its convergence. We also provide some criteria of convergence for the splittings of two split operators related 
with the star and the sharp order. In Section 6 we study particular proper splittings associated to a closed 
range Hermitian operator T . Here we consider the MP-proper splitting and the projection proper splitting, 
defined by means of the Moore-Penrose operator of T and the orthogonal projection onto the range of 
T , respectively. We characterize the convergence of these proper splittings and we establish a comparison 
criterion between them and the polar proper splitting. On the other hand, we apply the projection proper 
splitting to induce a proper splitting of an operator that can be factorized in terms of some Hermitian 
operator (Theorem 6.7 and its corollaries). In subsection 6.1 we illustrate how we can apply the theory of 
splittings operators to get a symmetric approximation of a given frame.

Finally, given two bounded linear operators S, T on H, in Section 7 we study the induced splittings by 
T on S in the particular case that S and T are related by an invertible operator.

2. Preliminaries

Along this article H is a complex Hilbert space with inner product 〈., .〉 and L(H) is the algebra of 
bounded linear operators defined from H to H. The norm of T ∈ L(H) is ‖T‖ = sup{‖Tx‖ : ‖x‖ = 1}. By 
K, Lh, L+, U , Q and P we denote the classes of compact operators, Hermitian operators, positive operators, 
unitary operators, oblique projections and orthogonal projections of L(H), respectively. Given T ∈ L(H), 
T ∗ denotes the adjoint operator of T , R(T ) denotes the range of T and N (T ) denotes the nullspace of 
T . The direct and orthogonal sum between subspaces are denoted by +̇ and ⊕, respectively. Given closed 
subspaces S, T ⊆ H such that S+̇T = H, QS//T indicates the oblique projection onto S along T . In 
particular, the orthogonal projection onto S is denoted by PS . We will also use the notation PT to indicate 
the orthogonal projection onto R(T ), for a closed range operator T ∈ L(H). The spectrum and the spectral 
radius of T ∈ L(H) are denoted by σ(T ) and ρ(T ), respectively. It is well known that ρ(T ) ≤ ‖T‖ and, if T
is a normal operator (i.e., T ∗T = TT ∗) then ρ(T ) = ‖T‖.

The classical Löwner order for Hermitian operators is denoted by ≤. Given S, T ∈ Lh, it holds that 
S ≤ T if and only if 0 ≤ T − S, or equivalently 0 ≤ 〈(T − S)x, x〉 for all x ∈ H.

The following result on range inclusion and operator factorization is due to Douglas [17] and [2]:

Douglas’ theorem. Consider S, T ∈ L(H). The following conditions are equivalent:

1. R(S) ⊆ R(T );
2. there exists a number λ > 0 such that SS∗ ≤ λTT ∗;
3. there exists R ∈ L(H) such that TR = S.

Moreover, if any of the above conditions holds and M ⊆ H is a closed subspace such that M+̇N (T ) = H
then there exists a unique operator XM ∈ L(H) such that TXM = S and R(XM) ⊆ M. The operator XM
is called the reduced solution for M of the equation TX = S and also satisfies that N (XM) = N (S).

In the case that M = N (T )⊥, the unique solution Xr ∈ L(H) such that TXr = S and R(Xr) ⊆ N (T )⊥
is called the Douglas reduced solution of the equation TX = S. In addition Xr satisfies that N (Xr) = N (S)
and ‖Xr‖ = inf{λ : SS∗ ≤ λTT ∗}.

Remember that a general inverse (or pseundoinverse) of T ∈ L(H) is an operator which satisfies the 
equations TXT = T and XTX = X. It is well known that a general inverse of T ∈ L(H) is bounded if 
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and only if T has closed range. There exist different kinds of pseudoinverses of an operator according to the 
restriction imposed. In this article we deal with the Moore-Penrose inverse and with the group inverse of 
an operator. Next we collect some results about them.

Given T ∈ L(H) with closed range, T † ∈ L(H) denotes the Moore-Penrose inverse of T . The following 
two characterizations for the Moore-Penrose inverse of a closed range operator are known and they can be 
found in [23], [2]:

1. T † is the unique operator that satisfies simultaneously the following four equations:

TXT = T, XTX = X, TX = PT , XT = PT∗ ;

2. T † is the Douglas reduced solution of the equation TX = PT .

If S, T ∈ L(H) are invertible operators it is well known that (ST )−1 = T−1S−1. The extension of this 
identity to non invertible operators is known as “the reverse order law” for the Moore-Penrose inverse; 
i.e., (ST )† = T †S†. However this equality does not hold in general. A classical result due to Greville [22]
provides a characterization of the reverse order law for matrices. Next, we state its extension to bounded 
linear operators in Hilbert spaces proved in [8,25].

Proposition 2.1. Consider S, T ∈ L(H) with closed ranges such that ST has closed range. Then (ST )† =
T †S† if and only if R(S∗ST ) ⊆ R(T ) and R(TT ∗S∗) ⊆ R(S∗).

Corollary 2.2. Let S, T ∈ Lh be closed range operators such that ST = TS has closed range. Then (ST )† =
T †S†.

Proof. It is straightforward from Proposition 2.1. �
The following result characterizes the antitonicity property for the Moore-Penrose operator on the set 

L+. Its proof can be found in [20].

Theorem 2.3. Consider S, T ∈ L+ closed range operators. Then any two of the following conditions imply 
the third condition:

1. S ≤ T ;
2. T † ≤ S†;
3. R(S) ∩N (T ) = R(T ) ∩N (S) = {0}.

As a consequence of Douglas’ theorem we can characterize the Löwner order between positive operators 
by means of the spectral radius of certain product of operators and a range inclusion condition. The next 
result is the extension to the infinite dimensional case of a result due to Baksalary, Liski and Trenkler [6]
and [5].

Proposition 2.4. Consider S, T ∈ L+ such that R(T ) is closed. Then S ≤ T if and only if ρ(S1/2T †S1/2) ≤ 1
and R(S1/2) ⊆ R(T ).

Proof. Let S, T ∈ L+. If S ≤ T then, by Douglas’ theorem, R(S1/2) ⊆ R(T 1/2) = R(T ) and 
‖(T 1/2)†S1/2‖ = inf{λ : S ≤ λT}. Therefore, ‖(T 1/2)†S1/2‖ ≤ 1 and ρ(S1/2T †S1/2) = ‖S1/2T †S1/2‖ =
‖(T 1/2)†S1/2‖2 ≤ 1. Conversely, suppose that ρ(S1/2T †S1/2) ≤ 1 and R(S1/2) ⊆ R(T ) = R(T 1/2). Then 
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‖(T 1/2)†S1/2‖2 = ‖S1/2T †S1/2‖ = ρ(S1/2T †S1/2) ≤ 1. Hence, applying again Douglas’ theorem we get that, 
inf{λ : S ≤ λT} = ‖(T 1/2)†S1/2‖ ≤ 1 and S ≤ T . �

On the other hand, the group inverse of an operator is defined for the class of split operators; T ∈ L(H)
is a split operator if R(T ) �N (T ) = H. If T ∈ L(H) is a split operator then there exists a unique T � ∈ L(H)
such that the following equations are simultaneously satisfied:

TXT = T, XTX = X, TX = XT.

The operator T � is called the group inverse of T . In [32] necessary and sufficient conditions for the existence 
of this kind of pseudoinverse are shown:

Theorem 2.5. Consider T ∈ L(H), then the following statements are equivalent:

1. H = R(T ) � N (T );
2. R(T 2) = R(T ) and N (T 2) = N (T );
3. T � exists.

It is well known that if T admits a group inverse then it has closed range, R(T �) = R(T ), N (T �) = N (T )
and TT � = T �T = QR(T )//N (T ). In addition, T admits a group inverse if and only if T ∗ admits a group 
inverse. On the other hand, if T ∈ L(H) is an EP operator (i.e., T has closed range and R(T ) = R(T ∗)) 
then it admits a group inverse. Moreover, T � = T † if and only if T is an EP operator.

Remember that every T ∈ L(H) admits a factorization T = U |T |, where U is a partial isometry and 
|T | = (T ∗T )1/2. Moreover, this factorization is unique if the condition N (U) = N (T ) is imposed. The 
factorization T = UT |T |, where UT is the partial isometry such that N (UT ) = N (T ) is called the polar 
decomposition of T . It is not difficult to see that T † = |T |†U∗

T . In addition, if T ∈ Lh then T ≤ |T |.
We finish this section by introducing some order relations on L(H) that will be used throughout the 

article.

Definition 2.6. Let S, T ∈ L(H). Then:

1. S
∗
≤ T if there exist P, Q ∈ P such that S = PT and S∗ = QT ∗. The orthogonal projections can be 

chosen such that P = PS and Q = PS∗ .
2. S

−
≤ T if there exist P, Q ∈ Q such that S = PT and S∗ = QT ∗. The ranges of P and Q can be fixed as 

R(P ) = R(S) and R(Q) = R(S∗).

3. S
�

≤ T if S = T or if there exists Q ∈ Q with R(Q) = R(S), N (Q) = N (S) such that S = QT = TQ.

The above order relations are known as star order, minus order and sharp order, respectively. The reader 
can be referred to [1,15,18,27] and references therein for different treatments on these order relations. The 
following result gives characterizations of these orders by means of operator range decompositions. The 
proof can be found in [15] and [20].

Proposition 2.7. Consider S, T ∈ L(H). Then,

1. S
−
≤ T if R(T ) = R(S) 

.
+ R(T − S) and R(T ∗) = R(S∗) 

.
+ R(T ∗ − S∗).

2. S
∗
≤ T if and only if R(T ) = R(S) ⊕R(T − S) and R(T ∗) = R(S∗) ⊕R(T ∗ − S∗).
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3. If S, T are group invertible then S
�

≤ T if and only if R(T ) = R(S)+̇R(T − S) where R(T − S) ⊆ N (S)
and R(S) ⊆ N (T − S).

3. Proper splittings of operators and an iterative process

In [7] the concept of proper splitting of a matrix T is applied to approximate the minimum least square 
solution of a linear system Tx = w. In [5] this kind of splitting is used to guarantee the convergence 
of an iterative process to the reduced solution for M of a solvable matrix equation TX = W , where 
T, W ∈ Mm×n(C) and M is a subspace of Cn such that M+̇N (T ) = Cn. There, sufficient conditions for 
the convergence of the iterative process were given. Our goal is to extend the study made in [5] to the 
infinite dimensional context.

Definition 3.1. Consider T ∈ L(H) with closed range. A proper splitting of T is a decomposition T = U−V , 
where U, V ∈ L(H) and R(U) = R(T ) and N (U) = N (T ).

Consider T ∈ L(H) with closed range, W ∈ L(H) such that R(W ) ⊆ R(T ) and a closed subspace M ⊆ H
such that M 

.
+N (T ) = H. Let T = U−V be a proper splitting of T . Consider YM, ZM ∈ L(H) the reduced 

solutions for M of UY = V and UZ = W , respectively. We define, as in [5], the iterative process for M of 
the proper splitting T = U − V with respect to W :

Xi+1 = YMXi + ZM. (2)

As in the finite dimensional context [5], in the infinite dimensional case it can be proved that if the 
iteration (2) converges, then it converges to the reduced solution for M of TX = W . We omit the proof of 
the following two results because they are similar to those given in [5].

Theorem 3.2. Consider T ∈ L(H) with closed range, W ∈ L(H) such that R(W ) ⊆ R(T ) and M a closed 
subspace of H such that M 

.
+N (T ) = H. Consider the proper splitting T = U − V of T . Then the iterative 

process (2) converges for all X0 to XM, the reduced solution for M of the equation TX = W , if and only 
if ρ(YM) < 1.

Corollary 3.3. Let T ∈ L(H) be a closed range operator and T = U − V a proper splitting of T . W ∈ L(H)
such that R(W ) ⊆ R(T ). Then, the iterative process of the proper splitting T = U − V converges for some 
closed subspace M such that M 

.
+ N (T ) = H if and only if the iterative process of the proper splitting 

T = U − V converges for all closed subspace M such that M 
.
+ N (T ) = H. In particular, the iterative 

process (2) is convergent if and only if ρ(U†V ) < 1.

Given T ∈ L(H) with closed range, the aim of this section is to obtain sufficient conditions that guarantee 
the convergence of a general proper splitting T = U−V . We first collect some properties of proper splittings 
that will be useful.

Proposition 3.4. Consider T ∈ L(H) a closed range operator. If T = U − V is a proper splitting of T then 
the following assertions follow:

1. (U†T )† = T †U ;
2. N (U†V ) = N (V );
3. T † = (I − U†V )−1U†.

Proof. 1. Since R(U) = R(V ) and N (U) = N (V ), the assertion follows by Proposition 2.1.
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2. Since U†V is the Douglas’ reduced solution of the equation UX = V , the assertion follows by Douglas’ 
theorem.

3. Let T = U−V be a proper splitting of T . First, let us see that I−U†V is an invertible operator. In fact, 
observe that U†V = U†(U−T ) = PT∗−U†T , then I−U†V = PN (T )+U†T . In order to see that this operator 
is invertible it is sufficient to note that (PN (T )+(U†T )†)(PN (T )+U†T ) = (PN (T )+U†T )(PN (T )+(U†T )†) =
I. Therefore, (I − U†V )−1 = PN (T ) + (U†T )†. Now, let us see that T † = (I − U†V )−1U†. In fact, since 
T (I − U†V )−1U† = T (PN (T ) + (U†T )†)U† = T (U†T )†U† = TT †UU† = PT and R((I − U†V )−1U†) =
R((PN (T ) + (U†T )†)U†) = R((U†T )†U†) = R(T †) = N (T )⊥ then the assertion follows. �
Proposition 3.5. Let T ∈ L(H) be a closed range operator. If T = U − V is a proper splitting of T then the 
following assertions are equivalent:

1. T †V ∈ L+;
2. U†V ∈ L+;
3. 0 ≤ U†V ≤ PV ∗ ;
4. 0 ≤ U†T ≤ PT∗ ;
5. The equation UX = V has a positive solution;
6. U†T ∈ Lh and (PT∗ − U†T )2 ≤ λ(PT∗ − U†T ), for some λ ≥ 0.

Proof. 1 ↔ 2. Suppose that T †V ∈ L+. Since T †V = T †(U −T ) = T †U −PT∗ then we get that PT∗ ≤ T †U . 
Now, as R(PT∗) ∩N (T †U) = {0} and R(T †U) ∩N (PT∗) = {0} then, by Theorem 2.3, U†T = (T †U)† ≤ PT∗ . 
Therefore, U†V = U†(U − T ) = PT∗ − U†T ∈ L+. The converse is similar.

1 ↔ 3. Let T = U − V be a proper splitting of T . Since T † = (I − U†V )−1U† then

0 ≤ T †V ↔ 0 ≤ (I − U†V )−1U†V ↔ 0 ≤
(
(I − U†V )−1U†V

)†
↔ 0 ≤

(
U†V

)† (I − U†V ) ↔ 0 ≤
(
U†V

)† − PN (U†V )⊥

↔ 0 ≤ PV ∗ ≤
(
U†V

)†
, (3)

where the third equivalence follows by Corollary 2.2 and by equivalence 1. ↔ 2. of this proposition. Now, if 
0 ≤ PV ∗ ≤

(
U†V

)† then by Theorem 2.3, we get 0 ≤ U†V ≤ PV ∗ . Conversely, if 0 ≤ U†V ≤ PV ∗ then by 

Theorem 2.3, 0 ≤ PV ∗ ≤
(
U†V

)†. Hence, by the equivalences (3), the assertion follows.
2 ↔ 4. Observe that 0 ≤ U†T ≤ PT∗ if and only if U†V = PT∗ − U†T ∈ L+.
2 ↔ 5. If U†V ∈ L+ then, by Douglas’ theorem, the equation UX = V has a positive solution. Conversely, 

if UX = V has a positive solution then V V ∗ ≤ λUV ∗ for some λ ≥ 0, see [33] or [3]. Now, multiplying on 
the left and right by U† and (U†)∗, respectively, the assertion follows.

5 ↔ 6. If UX = V has a positive solution then V V ∗ ≤ λUV ∗ for some λ ≥ 0, see [33] or [3]. Now, mul-
tiplying on the left and right by U† and (U†)∗, respectively, it follows that U†V V ∗(U†)∗ ≤ λU†UV ∗(U†)∗. 
Then 0 ≤ U†V (U†V )∗ ≤ λU†UV ∗(U†)∗ = λPU∗V ∗(U†)∗ = λPT∗V ∗(U†)∗ = λ(U†V )=λU†V . Since 
U†V = PT∗ − U†T , the assertion follows. The converse is similar. �

In order to state a sufficient condition for the convergence of a proper splitting we prove the following 
result. Recall that T ∈ L(H) is a compact operator, i.e. T ∈ K, if the image by T of the closed unit ball in 
H has compact closure in H.

Proposition 3.6. Consider T ∈ L(H) with closed range. If T = U − V is a proper splitting of T then the 
following statements are equivalent:
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1. T †V ∈ K;
2. U†V ∈ K;
3. V ∈ K.

Proof. 1 ↔ 2. If T †V = T †(U − T ) = T †U − PT∗ ∈ K then (T †U)†(T †U − PT∗) ∈ K. Now observe that 
(T †U)†(T †U − PT∗) = PT∗ − U†T = U†V . The converse is similar.

1 ↔ 3 Suppose T †V ∈ K. Since R(V ) ⊆ R(T ) then TT †V = V ∈ K. Conversely, if V ∈ K it is clear that 
T †V ∈ K. �

We can now prove a sufficient condition to guarantee the convergence of a general proper splitting of a 
closed range operator. The proof is similar to the one given for the finite dimensional case [5], however we 
include it for the sake of completeness.

Theorem 3.7. Consider T ∈ L(H) with closed range and T = U−V a proper splitting of T . If U†V ∈ L+∩K

then the proper splitting of T converges. Moreover, it holds that ρ(U†V ) = ρ(T †V )
1 + ρ(T †V ) < 1.

Proof. Note that U†V ∈ L+ ∩ K if and only if T †V ∈ L+ ∩ K. Now, let 0 �= λ. Let us see that λ ∈ σ(T †V )
if and only if λ

1+λ ∈ σ(U†V ). In fact,

T †V x = λx ↔ (I − U†V )−1U†V x = λx ↔ U†V x = (I − U†V )λx

↔ U†V (1 + λ)x = λx ↔ U†V x = λ

1 + λ
x.

Since T †V ∈ L+∩K, then ρ(T †V ) ∈ σ(T †V ) and 
λ

1 + λ
achieves its maximum when λ = ρ(T †V ). Therefore 

ρ(U†V ) = ρ(T †V )
1 + ρ(T †V ) < 1. �

4. The polar proper splitting

The polar proper splitting for rectangular matrices was defined in [5]. Next we extend this particular 
proper splitting for Hilbert space operators.

Definition 4.1. Consider T ∈ L(H) a closed range operator. The polar proper splitting of T is T = UT − V , 
where UT is the partial isometry of the polar decomposition of T .

By Theorem 3.7, given T ∈ L(H) such that T = U − V is a proper splitting of T and U†V ∈ K, the 
positivity of U†V is a sufficient condition to guarantee the convergence of the proper splitting of T . In the 
particular case that T = UT − V is the polar proper splitting of T , note that U†

T = U∗
T . In the next result 

we see that condition U∗
TV ∈ L+ can be characterized by means of the norm of T .

Proposition 4.2. Consider T ∈ L(H) with closed range. If T = UT −V is the polar proper splitting of T then 
the following assertions are equivalent:

1. U∗
TV ∈ L+;

2. ‖T‖ ≤ 1;
3. (PT − |T ∗|)2 ≤ λ(|T ∗| − PT ) for some λ ≥ 0.
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Proof. 1. ↔ 2. Recall that U∗
TV = PT∗ − |T |. If U∗

TV ≥ 0 then |T | ≤ PT∗ , so that ‖T‖ = ‖|T |‖ ≤
1. Conversely, if ‖T‖ ≤ 1 then ρ(|T |1/2PT∗ |T |1/2) = ‖|T |1/2PT∗ |T |1/2‖ = ‖|T |‖ = ‖T‖ ≤ 1. Moreover, 
R(|T |1/2) = R(PT∗). Then, by Proposition 2.4, it follows that |T | ≤ PT∗ . Therefore, U∗

TV ∈ L+.
1. ↔ 3. If U∗

TV ∈ L+ then the equation UTX = V has a positive solution. Then by [33] or [3, Theorem 
2.3], we get that V V ∗ ≤ λUTV

∗ for some λ ≥ 0. So that, (PT − |T ∗|)2 ≤ λ(|T ∗| − PT ) for some λ ≥ 0. 
Conversely, since V V ∗ = (PT − |T ∗|)2 ≤ λ(|T ∗| − PT ) = λUTV

∗ for some λ ≥ 0, then UTV
∗ ≥ 0. Hence 

U∗
TUTV

∗UT = V ∗UT ≥ 0, so that U∗
TV ∈ L+. �

Now, we get a characterization of the convergence of the polar proper splitting. Before that, remember 
that given 0 �= T ∈ L(H), the reduced minimum modulus of T is γ(T ) = inf{‖Tx‖, dist(x, N (T )) = 1}. It 
is well-known that γ(T ) > 0 if and only if T has closed range and in this case, γ(T ) = ‖T †‖−1.

Theorem 4.3. Let T ∈ L(H) be a closed range operator and T = UT − V be the polar proper splitting of T . 
Then the following assertions are equivalent:

1. The polar proper splitting of T converges;
2. ‖UT − T‖ < 1;
3. ‖PT∗ − |T |‖ < 1;
4. ‖T‖ < 2.

Proof. Since U∗
TV = PT∗ − |T | ∈ Lh then ρ(U∗

TV ) = ‖U∗
TV ‖. Now, the equivalences 1. ↔ 2. ↔ 3. follow 

from the fact that ‖U∗
TV ‖ = ‖PT∗ − |T |‖ = ‖U∗

T (UT − T )‖ = ‖UT − T‖. To prove equivalence 2. ↔ 4. 
observe that by [9, Lemma 2.1] it holds that ‖UT −T‖ = max{1 −γ(T ), ‖T‖ −1}. Then the assertion follows 
noticing that γ(T ) > 0 because T has closed range. �
Example 4.4. Consider T ∈ L(H) a closed range operator. Observe that T ∗T = PT∗−V is the polar splitting 
of T ∗T . By Theorem 4.3, T ∗T = PT∗ − V converges if and only if ‖T ∗T‖ < 2 or equivalently, ‖T‖ <

√
2.

In the next result we show that given S, T ∈ L(H) with closed ranges such that S
∗
≤ T then the 

convergence of the polar proper splitting of T guarantees the convergence of the polar proper splitting of 
S. In addition, in this case, the polar proper splitting of T induces the polar proper splitting of S.

Theorem 4.5. Consider S, T ∈ L(H) with closed range such that S
∗
≤ T . If the polar proper splitting of T

converges then the polar proper splitting of S converges. Moreover, ρ(U∗
SW ) ≤ ρ(U∗

TV ), where S = US −W

and T = UT −V are the polar proper splitting of S and T , respectively. In addition, the polar proper splitting 
of S can be obtained from the polar proper splitting of T as follows: S = PSUT − PSV .

Proof. If S
∗
≤ T then S = PST . Now, if the polar proper splitting of T converges then, by Theorem 4.3, 

we get that ‖T‖ < 2. Then, ‖S‖ = ‖PST‖ ≤ ‖PS‖‖T‖ = ‖T‖ < 2 and so that, the polar proper splitting 

of S converges. Moreover, since S
∗
≤ T then by [1, Theorem 2.15], it holds that |S| 

∗
≤ |T |. Therefore, 

|S| = PS∗ |T |. Then ρ(U∗
SW ) = ‖PS∗ − |S|‖ = ‖PS∗ − PS∗ |T |‖ = ‖PS∗(I − |T |)‖ = ‖PS∗PT∗(I − |T |)‖ ≤

‖PT∗(I−|T |)‖ = ρ(U∗
TV ) < 1. Finally, since S

∗
≤ T then, again by [1, Theorem 2.15], it holds that US

∗
≤ UT

i.e., US = PSUT = UTPS∗ . Now, S = US −W = PSUT −W then W = PSUT −PST = PS(UT −T ) = PSV . 
Hence the assertion follows. �

In Theorem 4.5 the convergence of the polar proper splitting of S can be strictly faster than the conver-
gence of the polar proper splitting of T . We illustrate this assertion with both infinite and finite dimensional 
examples.
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Example 4.6. Consider H = H1 ⊕ H2 ⊕ H3, with Hk Hilbert spaces for k = 1, 2, 3. Let T ∈ H with 

matrix representation T =
(
T1 0 0
0 T2 0
0 0 0

)
, according to the decomposition H = H1 ⊕ H2 ⊕ H3, where 

Tk ∈ L+(Hk) are closed range operators such that ‖Tk‖ < 2 for k = 1, 2 and ‖PT1 −T1‖ < ‖PT2 −T2‖. Take 

S = PT1T =
(
T1 0 0
0 0 0
0 0 0

)
. From Definition 2.6, it holds that S

∗
≤ T . Let S = US −W and T = UT − V

be the polar proper splittings of S and T , respectively. Recall that ρ(U∗
SW ) = ‖PS − |S|‖ and ρ(U∗

TV ) =
‖PT − |T |‖. By [9, Lemma 2.1], it follows that ‖PTk

− Tk‖ = max{1 − γ(Tk), ‖Tk‖ − 1} < 1 for k = 1, 2. 
Since ‖PS − |S|‖ = ‖PT1 − T1‖ and ‖PT − |T |‖ = ‖PT − T‖ = max{‖PT1 − T1‖, ‖PT2 − T2‖}, it holds that 
the polar proper splittings of S and T converge. Moreover, it follows that ρ(U∗

SW ) < ρ(U∗
TV ).

Remark 4.7. Note that the above example is achievable in the context of frames on Hilbert spaces. Remember 
that a sequence F = {fi}i∈N is a frame for H if there exist constants A, B > 0 such that

A‖x‖2 ≤
∞∑
i=1

| 〈x, fi〉 |2 ≤ B‖x‖2, (4)

for all x ∈ H. The numbers A and B are called the frame bounds. The optimal constants which satisfy 
(4) are denoted by AF and BF , respectively. The frame is called tight if AF = BF . If {ei}i∈N is the 
standard orthonormal basis of �2 then the bounded linear operator TF : �2 → H defined by TF (ei) = fi is 
called the synthesis operator associated to the frame F . The operator SF = TFT ∗

F ∈ L+ is invertible and 
it is called the frame operator. Moreover, it holds that AF = ‖S−1

F ‖−1 and BF = ‖SF‖. Now, returning 
to the example, we can consider T1 = SF ∈ L+ and T2 = SG ∈ L+ the frame operators of two tight 
frames F = {fi}i∈N and G = {gi}i∈N such that AF = BF = 7

6 and AG = BG = 5
4 . Then, note that 

‖PT1 − T1‖ = max{1 − γ(T1), ‖T1‖ − 1} = max{1 − 1
‖T−1

1 ‖ , ‖T1‖ − 1} = 1
6 . Analogously it can be checked 

that ‖PT2 − T2‖ = 1
4 .

Example 4.8. Consider H = C3, S =
(0 0 0

0 1/2 0
0 1/2 0

)
and T =

(1/2 0 0
0 1/2 0
0 1/2 0

)
. Since R(T ) = R(S) ⊕

R(T − S) and R(T ∗) = R(S∗) ⊕ R(T ∗ − S∗) then S
∗
≤ T . Now, the polar proper splitting of S is S =

US − W =

⎛
⎝0 0 0

0
√

2/2 0
0

√
2/2 0

⎞
⎠ −

⎛
⎝0 0 0

0
√

2/2 − 1/2 0
0

√
2/2 − 1/2 0

⎞
⎠ and the polar splitting of T is T = UT − V =

⎛
⎝1 0 0

0
√

2/2 0
0

√
2/2 0

⎞
⎠−

⎛
⎝1/2 0 0

0
√

2/2 − 1/2 0
0

√
2/2 − 1/2 0

⎞
⎠. Then it holds that ρ(U∗

SW ) = 2−
√

2
2 ≨ ρ(U∗

TV ) = 1
2 .

Remark 4.9. Condition S
∗
≤ T in Theorem 4.5 can not be replaced by a weaker order condition like S

−
≤

T . In fact, consider H = C3. Take S =
(1 0 0

2 0 0
0 0 0

)
and T =

(1 0 0
0 1/2 0
0 0 0

)
. It is clear that R(T ) =

R(S)+̇R(T − S) and R(T ) = R(S∗)+̇R(T − S∗) (remember that T = T ∗). So that, S
−
≤ T but they 

are not related with the star order. Now, since PT − |T | =
(1 0 0

0 1 0
0 0 0

)
−

(1 0 0
0 1/2 0
0 0 0

)
=

(0 0 0
0 1/2 0
0 0 0

)

then ‖PT − |T |‖ < 1 and thus the polar proper splitting of T converges. On the other hand, PS∗ − |S| =
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(1 0 0
0 0 0
0 0 0

)
−

⎛
⎝
√

5 0 0
0 0 0
0 0 0

⎞
⎠ =

⎛
⎝1 −

√
5 0 0

0 0 0
0 0 0

⎞
⎠. Then ‖PS∗ − |S|‖ = |1 −

√
5| > 1. Then, the polar 

proper splitting of S does not converge.

Remark 4.10. Condition S
∗
≤ T in Theorem 4.5 can not be replaced by condition S

�

≤ T . In fact, consider T =(3/2 0 0
0 0 0
0 0 3/2

)
and S =

(3/2 0 9/2
0 0 0
0 0 0

)
. Then S

�

≤ T because S = QT = TQ, where Q =
(1 0 3

0 0 0
0 0 0

)
. 

Also, note that the polar proper splitting of T converges because ‖T‖ = 3
2 < 2. However, the polar proper 

splitting of S does not converge because ‖S‖ > 2.

Proposition 4.11. Let S ∈ P · Lh. If S = PST , where T ∈ Lh and the polar proper splitting of T converges 
then the polar proper splitting of S converges. Conversely, if the polar proper splitting of S converges then 
there exists T0 ∈ Lh such that S = PST0 and the polar proper splitting of T0 converges.

Proof. Let S = PST , where T ∈ Lh. Consider the set AS = {B ∈ Lh : S = PSB}. By [4, Theorem 3.2], 
‖S‖ = min

B∈AS

‖B‖. Therefore, if the polar proper splitting of T converges then, by Theorem 4.3, ‖S‖ ≤ ‖T‖ <

2 and so, the polar proper splitting of S converges. Conversely, if the polar proper splitting of S converges 
then ‖S‖ < 2. Then applying again [4, Theorem 3.2], there exists T0 ∈ AS such that ‖T0‖ = ‖S‖. Therefore, 
the polar proper splitting of T0 converges. �
5. Splittings for split operators

In this section we put the focus on splittings of split operators. Recall that T ∈ L(H) is a split operator 
if T has closed range and R(T )+̇N (T ) = H. For this class of operators we consider the following proper 
splittings:

Definition 5.1. Given a split operator T ∈ L(H), we say that:

1. T = QT − V is the QT -proper splitting of T , where QT = QR(T )//N (T ).
2. T = T � − V is the group proper splitting of T , where T � is the group inverse of T .

Proposition 5.2. Let T ∈ L(H) be a split operator such that ‖PT∗(I−T )‖ < 1. Then the QT -proper splitting 
of T converges. In addition, if PT∗T ∈ Lh and the QT -proper splitting of T converges then ‖PT∗(I−T )‖ < 1.

Proof. Let T = QT − V be the QT proper splitting of T . By [12, Theorem 4.1], it holds that Q†
TV =

PT∗PTV = PT∗V = PT∗(QT −T ) = PT∗ −PT∗T . Now, since ρ(Q†
TV ) ≤ ‖PT∗(I−T )‖ < 1 then T = QT −V

converges. The converse follows from the above argument plus the fact that since Q†
TV ∈ Lh then it holds 

ρ(Q†
TV ) = ‖Q†

TV ‖. �
Next, we study conditions for the convergence of the QT -proper splitting for different classes of operators. 

Namely, we will consider the sets P · P = {T ∈ L(H) : T = PQ, for P, Q ∈ P}, P · L+ = {T ∈ L(H) : T =
PA, for P ∈ P and A ∈ L+} and P · Lh = {T ∈ L(H) : T = PB, for P ∈ P and B ∈ Lh}. The sets P · P, 
P · L+ and P · Lh have been studied in [13], [3] and [4], respectively. From the definitions is evident that 
the following inclusions hold: P · P ⊆ P · L+ ⊆ P · Lh. Moreover, these inclusions are strict in general [3,4]. 
They are not subsets of the class of split operators, in general. However, under certain extra conditions, 
their elements are split operators. In fact, it holds that: T ∈ P · P is a split operator if and only if R(T ) is 
closed [13, Theorem 3.2]; if R(T ) is closed then T ∈ P ·L+ if and only if T is a split operator and TPT ∈ L+
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[3, Theorem 3.3]; if R(T ) is closed and T ∈ P · Lh then, there exists B ∈ Lh with N (B) = N (T ) such that 
T = PTB if and only if T is a split operator [4, Corollary 2.13].

Corollary 5.3. The following assertions hold:

1. Let T ∈ L(H) be a split operator such that T ∗ ∈ P · Lh. Then, the QT -proper splitting of T converges if 
and only if ‖PT∗(I − T )‖ < 1.

2. Let T ∈ L(H) be a closed range operator such that T ∗ ∈ P · L+. Then, the QT -proper splitting of T
converges if and only if ‖PT∗(I − T )‖ < 1.

3. Let T ∈ L(H) be a closed range operator such that T ∈ P · P. Then, the QT -proper splitting of T
converges.

Proof. 1. It follows from Proposition 5.2 and equivalence a ↔ b of [4, Theorem 2.2].
2. It follows from Proposition 5.2 and by equivalence 1 ↔ 3 of [3, Theorem 3.3].
3. If T ∈ P ·P then T = PTPT∗ , see [13, Theorem 3.1]. Therefore, Q†

TV = PT∗ −PT∗PTPT∗ . Observe that 
PT∗PTPT∗ ≥ 0 and R(PT∗PTPT∗) = PT∗R(T ) = R(PT∗PT ) = R(T ∗). Then PT∗ is the partial isometry of 
PT∗PTPT∗ , so by [9, Lemma 2.1], it holds that ‖PT∗−PT∗PTPT∗‖ = max{1 −γ(PT∗PTPT∗), ‖PT∗PTPT∗‖ −
1}. Since R(PT∗PTPT∗) is closed, then γ(PT∗PTPT∗) > 0, so that 1 − γ(PT∗PTPT∗) < 1. Also, 
‖PT∗PTPT∗‖ ≤ 1 so that ‖PT∗PTPT∗‖ − 1 ≤ 0. Hence ρ(Q†

TV ) = ‖PT∗ − PT∗PTPT∗‖ < 1 and the as-
sertion follows. �
Example 5.4. We now describe the QT -proper splitting for a closed range operator T ∈ P · P. For such T
it holds that T = PTPT∗ and so T ∗ = PT∗PT , see [13, Theorem 3.1]. Then by [12, Theorem 4.1], it follows 
that (T ∗)† = QR(T )//N (T ). Therefore the QT -proper splitting of T is given by T = (T ∗)† − V , which is 
convergent by item 3 of the above proposition.

Proposition 5.5. Let T ∈ L(H) be a split operator. If ‖PT∗(I − T 2)‖ < 1 then, the group proper splitting 
T = T � − V converges. For the converse, if PT∗T 2 ∈ Lh and the group proper splitting of T converges then 
‖PT∗(I − T 2)‖ < 1.

Proof. Note that (T �)†V = PT∗−(T �)†T = PT∗−(T �)†T �TT = PT∗(I−T 2). Therefore, if ‖PT∗(I−T 2)‖ < 1
then T = T � − V converges because ρ((T �)†V ) ≤ ‖PT∗(I − T 2)‖ < 1. Conversely, if PT∗T 2 ∈ Lh and 
T = T � − V converges then ‖PT∗(I − T 2)‖ = ρ(PT∗(I − T 2)) = ρ((T �)†V ) < 1. �

We finish this section by studying different criteria for the convergence of the Q-proper splitting and the 
group proper splitting of two operators related by means of the star and sharp orders.

Proposition 5.6. Consider S, T ∈ L(H) split operators such that ‖PT∗(I−T )‖ < 1. The following assertions 
hold:

1. If S
∗
≤ T then the QT -proper splitting of T and the QS-proper splitting of S converge.

2. If S
�

≤ T then the QT -proper splitting of T and the QS-proper splitting of S converge.

Proof. 1. Note that by Proposition 5.2, it holds that the QT -proper splitting of T converges. Let S = QS−W

be the QS-proper splitting of S. Recall that Q†
SW = PS∗PSW = PS∗W = PS∗(I − S). Since S

∗
≤ T then 

S = PST = TPS∗ . Therefore, ρ(Q†
SW ) ≤ ‖PS∗(I − S)‖ = ‖PS∗(I − T )PS∗‖ = ‖PS∗PT∗(I − T )PS∗‖ ≤

‖PT∗(I − T )‖ < 1, where the last inequality follows by hypothesis. Hence, the QS-proper splitting of S
converges.
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2. Since S
�

≤ T , then R(S) ⊆ R(T ), R(S∗) ⊆ R(T ) and S = QST = TQS . Therefore, ρ(Q†
SW ) ≤

‖Q†
SW‖ = ‖Q†

SQS(I − T )‖ = ‖PS∗(I − T )‖ = ‖PS∗PT∗(I − T )‖ ≤ ‖PT∗(I − T )‖ < 1, where the last 
inequality follows by hypothesis. Hence the QS-proper splitting of S converges. �
Proposition 5.7. Let S, T ∈ L(H) be split operators such that ‖PS∗(I − ST )‖ < 1. Then the following 
assertions hold:

1. If S
∗
≤ T then the group proper splitting of S converges.

2. If S
�

≤ T then the group proper splitting of S converges.

Proof. Let T = T � − V and S = S� −W the group proper splittings of T and S, respectively.
1. Since S

∗
≤ T then S = PST = TPS∗ . Observe that (S�)†W = PS∗(1 − S2) = PS∗(1 − STPS∗) =

PS∗(1 − ST )PS∗ . Hence ρ((S�)†W ) ≤ ‖PS∗(I − ST )‖ < 1, so that the group proper splitting of S also 
converges.

2. Since S
�

≤ T then S = QST = TQS . Observe that (S�)†W = (S�)†(S� − S) = PS∗ − (S�)†QST =
PS∗ −(S�)†S�ST = PS∗(I−ST ). Hence ρ((S�)†W ) ≤ ‖PS∗(I−ST )‖ < 1, so that the group proper splitting 
of S converges. �
6. Splittings for Hermitian operators

In this section we introduce two new types of proper splittings for closed range Hermitian operators.

Definition 6.1. Given T ∈ Lh with closed range we define the following splittings of T :

1. the MP-proper splitting of T is T = T † −W ;
2. the projection proper splitting of T is T = PT − Z.

Remark 6.2. Note that for T ∈ Lh, the MP-proper splitting and the projection proper splitting of T are 
particular cases of the group proper splitting and the QT -proper splitting of T , respectively. In addition, if 
T ∈ L+ the projection proper splitting of T coincides with the polar proper splitting of T .

Remark 6.3. Given T ∈ Lh with closed range it could be natural to consider the proper splitting of T , 
T = |T | − Y . However, as in the finite dimensional case [5] it holds that if this proper splitting converges 
then T ∈ L+, so that T = |T |. In fact, since T ∈ Lh then T ≤ |T | and so that Y ∈ L+. Now, if the 
proper splitting T = |T | − Y converges then ρ(|T |†Y ) = ρ(Y 1/2|T |†Y 1/2) < 1. In addition it holds that 
R((|T | −T )1/2) ⊆ R(|T | − T ) ⊆ R(|T |) + R(T ) = R(T ) + R(T ) = R(T ) = R(T ). Then, by Proposition 2.4, 
we get that |T | − T ≤ |T |. Therefore, T ∈ L+.

The following result gives a characterization for the convergence of the MP-proper splitting and the 
projection proper splitting.

Proposition 6.4. Consider T ∈ Lh a closed range operator. Then the following assertions hold:

1. The MP-proper splitting of T converges if and only if ‖PT − T 2‖ < 1.
2. The projection proper splitting of T converges if and only if ‖PT − T‖ < 1.

Proof. Let T = T † −W the MP- proper splitting of T and let T = PT − Z the projection proper splitting 
of T .
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1. Since TW = PT − T 2 ∈ Lh then ρ(TW ) = ‖PT − T 2‖. Therefore, the assertion follows.
2. Since PTZ = PT (PT − T ) = PT − T ∈ Lh then ρ(PTZ) = ‖PT − T‖. Hence, the assertion follows. �
The next result is a comparison criterion between the MP-proper splitting, the projection proper splitting 

and the polar proper splitting for Hermitian operators.

Proposition 6.5. Consider T ∈ Lh a closed range operator and T = UT − V = T † − W = PT − Z, the 
polar proper splitting, the MP-proper splitting and the projection proper splitting of T , respectively. Then 
the following assertions hold:

1. If the projection proper splitting of T converges then the polar proper splitting of T converges. Moreover, 
ρ(U∗

TV ) ≤ ρ(PTZ) < 1.
2. If ‖T‖ ≤ 1 and the MP-proper splitting of T converges then ρ(U∗

TV ) ≤ ρ(TW ) < 1.
3. If ‖PT + T‖ ≤ 1 and the projection proper splitting of T converges then the MP-proper splitting of T

converges. Moreover, ρ(TW ) ≤ ρ(PTZ) < 1.

Proof. Let T = UT − V = T † −W = PT − Z, the polar proper splitting, the MP-proper splitting and the 
projection proper splitting of T , respectively.

1. Suppose that the projection splitting of T converges. Recall that ρ(PTZ) = ‖PT − T‖ and ρ(U∗
TV ) =

‖PT − |T |‖. Now, by [9, Corollary 2.5], it follows that ‖PT − |T |‖ ≤ ‖UT − |T |‖ = ‖UT (PT − U∗
T |T |)‖ =

‖UT (PT − T )‖ ≤ ‖PT − T‖, and so the assertions follow.
2. Since ‖T‖ ≤ 1, by Theorem 4.3, the convergence of the polar proper splitting of T is guaranteed. Also, 

note that ρ(|T ||T |†|T |) = ρ(|T |) = ‖|T |‖ = ‖T‖ ≤ 1, where the second equality holds because |T | ∈ L+. 
Then, by Proposition 2.4, it holds that |T |2 ≤ |T |. Now, observe that TW = PT−|T |2 ≥ PT−|T | = U∗

TV ≥ 0, 
where the last inequality holds by Proposition 4.2. Hence, ρ(U∗

TV ) ≤ ρ(TW ) < 1.
3. Since T ∈ Lh then PT −T, PT −T 2 ∈ Lh. Then observe that, ρ(TW ) = ‖PT −T 2‖ = ‖(PT −T )(PT +

T )‖ ≤ ‖PT − T‖ = ρ(PTZ) < 1. �
Given T ∈ Lh with closed range and W ∈ L(H), the equation TX = W is solvable if and only if the 

equation |T |X = W is solvable. Therefore, it is interesting to establish some relationships between proper 
splittings of T and proper splittings of |T |.

Proposition 6.6. Consider T ∈ Lh a closed range operator. Then the polar proper splitting of T converges 
if and only if the projection proper splitting of |T | converges. Moreover, if T = UT − V is the polar proper 
splitting of T and |T | = P|T | − Z is the projection proper splitting of |T | then ρ(U∗

TV ) = ρ(P|T |Z).

Proof. It is immediate. �
Next, we build a proper splitting of an operator in P · Lh in terms of the projection proper splitting of 

an Hermitian associated factor.

Theorem 6.7. Let S ∈ P ·Lh be a split operator with closed range. Then S = PSPS∗ −W is a proper splitting 
of S. Moreover, the proper splitting S = PSPS∗ − W converges if and only if ‖PS∗ − Q∗S‖ < 1, where 
Q = QR(S)//N (S).

Proof. Since S ∈ P · Lh is a split operator with closed range then, by [4, Theorem 2.12 and item a) 
of Proposition 2.17] there exists a unique T ∈ Lh with N (T ) = N (S) such that S = PST . Namely, 
T = (S+S∗−PSS

∗)Q, where Q = QR(S)//N (S). Let T = PT −V be the projection proper splitting of T . Let 
us see that S = PSPT −PSV is a proper splitting of S. In fact, R(PSPT ) = PSR(T ) = R(PST ) = R(S). In 
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addition, N (S) = N (T ) = R(T )⊥ ⊆ N (PSPT ). Now, if PSPTx = 0 then PTx ∈ R(T ) ∩R(S)⊥ = N (T )⊥ ∩
R(S)⊥ = N (S)⊥∩R(S)⊥ = (N (S) +R(S))⊥ = {0}, so that x ∈ R(T )⊥ = N (S). Then, N (PSPT ) = N (S)
and therefore S = PSPT − PSV is a proper splitting of S. Finally, since (PSPS∗)†W = Q∗(PSPS∗ − S) =
Q∗(PSPS∗ − PST ) = PS∗ − T ∈ Lh then the proper splitting S = PSPS∗ − W converges if and only if 
‖PS∗ − T‖ < 1. The assertion follows replacing T by (S + S∗ − PSS

∗)Q, where Q = QR(S)//N (S). �
Remark 6.8. With the same notation that in the proof of Theorem 6.7 it holds that the projection proper 
splitting of T converges if and only if the proper splitting S = PSPT − PSV converges. In fact, by [12, 
Theorem 4.1] we get that (PSPT )†PSV = Q∗PSV = Q∗V = Q∗(PT −T ) = PT −T , because R(T ) = R(S∗). 
Then ρ((PSPT )†PSV ) = ‖PT − T‖ and the assertion follows from Proposition 6.4.

Corollary 6.9. Consider S ∈ P · L+ with closed range. Then there exists T ∈ L+ with N (T ) = N (S) such 
that S = PST . Moreover, the projection proper splitting of T , T = PT − V , induces a proper splitting of 
S, namely, S = PSPT − PSV . In addition, the projection proper splitting of T converges if and only if 
S = PSPT − PSV converges.

Proof. The existence of T ∈ L+ with N (T ) = N (S) such that S = PST is guarantee by [3, Proposition 
4.1]. Then the proof follows as in the above theorem. �

Consider S ∈ L(H) with closed range such that S = PST , where T ∈ L+ and N (T ) = N (S). The next 
result shows that the proper splitting of S induced by the projection proper splitting of T in Corollary 6.9, 
converges faster than the polar proper splitting of S.

Corollary 6.10. Consider S ∈ L(H) with closed range. Suppose that there exists T ∈ L+ with ‖T‖ ≤ 1, 
N (T ) = N (S) and R(T ) closed such that S = PST . Consider T = PT − V the projection proper splitting 
of T and S = PSPT − PSV = US −W the proper splitting of S induced by T and the polar proper splitting 
of S, respectively. Then it holds that ρ((PSPT )†PSV ) ≤ ρ(U∗

SW ).

Proof. Since S = PST with T ∈ L+ and N (T ) = N (S) then R(T ) = R(S∗). Therefore (PSPT )†PSV =
PS∗ − T ≥ 0 by Proposition 2.4. Now, note that |S| = (TPST )1/2 ≤ T . Then PS∗ − |S| ≥ PS∗ − T ≥ 0 and 
so ρ(U∗

SW ) = ‖PS∗ − |S|‖ ≥ ‖PS∗ − T‖ = ρ((PSPT )†PSV ). Hence the assertion follows. �
Remark 6.11. Let us see that in Corollary 6.10 the inequality can be strict. Take S = PST ∈ P · L+, where 

PS =
(

1/2 1/2
1/2 1/2

)
and T =

(
1/4 0
0 0

)
. It holds that T ∈ L+ and N (S) = N (T ). The projection proper 

splitting of T is T = PT − V =
(

1 0
0 0

)
−

(
3/4 0
0 0

)
. Then the proper splitting of S induced by the 

projection proper splitting of T is S = PSPT − PSV =
(

1/2 1/2
1/2 1/2

)(
1 0
0 0

)
−
(

1/2 1/2
1/2 1/2

)(
3/4 0
0 0

)
.

Now, (PSPT )†PSV =
(

1/2 0
1/2 0

)† (1/2 1/2
1/2 1/2

)(
3/4 0
0 0

)
=

(
1 1
0 0

)(
1/2 1/2
1/2 1/2

)(
3/4 0
0 0

)
=(

3/4 0
0 0

)
. Then ρ((PSPT )†PSV ) = 3/4. On the other hand, the polar proper splitting of S is S =

US − W =
(√

2/2 0√
2/2 0

)
−

(√
2/2 − 1/8 0√
2/2 − 1/8 0

)
, so that, U∗

SW =
(√

2/2
√

2/2
0 0

)(√
2/2 − 1/8 0√
2/2 − 1/8 0

)
=(

(8 −
√

2)/8 0
0 0

)
. Hence, ρ(U∗

SW ) = 1 −
√

2/8 and therefore ρ((PSPT )†PSV ) < ρ(U∗
SW ).

Proposition 6.12. Let S ∈ L(H) be a split operator. If T ∈ Lh then the following assertions hold:
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1. If S
∗
≤ T and the projection proper splitting of T converges then the QS-proper splitting of S converges.

2. If S
�

≤ T and the projection proper splitting of T converges then the QS-proper splitting of S converges.

Proof. Consider T = PT −Z the projection proper splitting of T and S = QS −W the QS-proper splitting 
of S:

1. Since S
∗
≤ T and T ∈ Lh then R(S) ⊆ R(T ), R(S∗) ⊆ R(T ) and S = PST = TPS∗ . Observe that 

ρ(Q†
SW ) ≤ ‖Q†

SW‖ = ‖PS∗(1 − S)‖ = ‖PS∗PT (1 − T )PS∗‖ ≤ ‖PT (I − T )‖. Since the projection proper 
splitting of T converges then, by Proposition 6.4, it holds that ‖PT (I − T )‖ < 1. Therefore, the QS-proper 
splitting of S converges.

2. It is similar to the proof of item 1. �
The next result allows to give an extension of the above proposition for the case of the minus order as 

we will see in Remark 6.14.

Proposition 6.13. Let S ∈ L(H) be a split operator and T ∈ Lh such that R(S∗) ⊆ R(T ) and S∗ = QT , for 
some Q ∈ Q with R(Q) = R(S∗) and ‖Q‖ < 1

‖PT−T‖ . If the projection proper splitting of T converges then 
the QS-proper splitting of S converges.

Proof. Let T ∈ Lh such that R(S∗) ⊆ R(T ) and S∗ = QT , where Q ∈ Q and R(Q) = R(S∗). The QS

proper splitting of S is S = QS −W , where QS = QR(S)//N (S). Then Q†
SW = PS∗PS(QS −S) = P ∗

S(I−S). 
Now, since R(S∗) ⊆ R(T ) we get that ‖PS∗(I−S)‖ = ‖(I−S∗)PS∗‖ = ‖(I−QT )PS∗‖ = ‖(Q −QT )PS∗‖ =
‖Q(I − T )PS∗‖ = ‖QPT (I − PT )PS∗‖ ≤ ‖Q‖‖PT − T‖ < 1. �
Remark 6.14. Suppose that S ∈ L(H) is a split operator and T ∈ Lh are such that S

−
≤ T . This means 

that S = Q1T and S∗ = Q2T , for some Q1, Q2 ∈ Q with R(Q1) = R(S), R(Q2) = R(S∗). Observe that if 
‖Q2‖ < 1

‖PT−T‖ then we are in the case of Proposition 6.13.

Proposition 6.15. Consider S, T ∈ Lh closed range operators such that S
∗
≤ T . If the MP-proper splitting of 

T converges then the MP-proper splitting of S converges.

Proof. Since S
∗
≤ T then S = PST = TPS and R(S) ⊆ R(T ). If the MP-splitting of T converges then, by 

Proposition 6.4, it holds that ‖PT − T 2‖ < 1. Now, ‖PS − S2‖ = ‖PS − PST
2PS‖ = ‖PS(I − T 2)PS‖ =

‖PSPT (I − T 2)PS‖ ≤ ‖PT (I − T 2)‖ < 1. Therefore the assertion follows by Proposition 6.4. �
6.1. An application to symmetric approximations of frames

In this section we will apply the results obtained to find the synthesis operator of the symmetric approx-
imation of a frame in a Hilbert space. First, we state a consequence of Proposition 3.6 for the polar proper 
splitting of T that will be useful in this subsection:

Proposition 6.16. Consider T ∈ L(H) with closed range. If T = UT − V is the polar proper splitting of T
then the following statements are equivalent:

1. U∗
TV ∈ K;

2. |T |† − PT∗ ∈ K;
3. |T | − PT∗ ∈ K;
4. UT − T ∈ K.
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Proof. 1 ↔ 4. It follows from Proposition 3.6.
2 ↔ 3. It follows from the fact that |T | − PT∗ = |T |(PT∗ − |T |†) and |T |† − PT∗ = |T |†(PT∗ − |T |).
3 ↔ 4. It follows from the fact that (UT − T ) = UT (PT∗ − |T |) and PT∗ − |T | = U∗

T (UT − T ). �
A sequence {fi}i∈N ⊆ H is a frame for a subspace S ⊆ H if there exist constants A, B > 0 such that the 

inequalities (4) hold for all x ∈ S. If A = B = 1 the frame is said normalized tight. Two frames {fi}i∈N
and {gi}i∈N for subspaces S and T respectively, are called weakly similar if there exists a bounded linear 
invertible operator T : S → T such that T (fi) = gi for all i ∈ N.

A normalized tight frame {vi}i∈N in T ⊆ H is said to be a symmetric approximation of {fi}i∈N if the 
inequality

∞∑
i=1

‖ui − fi‖2 ≥
∞∑
i=1

‖vi − fi‖2

holds for all normalized tight frames {ui}i∈N which are weakly similar to {fi}i∈N and the sum of the right 
side is finite.

If F denotes the synthesis operator of a given frame {fi}i∈N ⊆ H, it is known [21, Theorem 2.3] that there 
exists a symmetric approximation of this frame if PF∗ − |F | ∈ L2, where L2 is the Hilbert-Schmidt class of 
L(H). Moreover, the symmetric approximation is given by the frame {UF ei}i∈N , where {ei} is the canonical 
orthonormal basis of �2 and UF is the partial isometry of the polar decomposition of F , F = UF |F |. Now, 
if we consider the equation |F |X = F ∗ it is well known that U∗

F is its Douglas’ reduced solution. Then, we 
can consider the projection proper splitting |F | = PF∗ − V of |F | (observe that this proper splitting is the 
polar proper splitting of |F |) to obtain the operator U∗

F . We summarize in the following result this fact:

Proposition 6.17. Consider {fi}i∈N a frame for a subspace S ⊆ H and |F | = PF∗ − V the projection proper 
splitting of |F |. If PF∗ − |F | ∈ L2 and ‖PF∗ − |F |‖ < 1 then the iterative process

Xi+1 = (PF∗ − |F |)Xi + F ∗,

converges to the adjoint of the synthesis operator of the symmetric approximation of {fi}i∈N .

Proof. It follows from [21, Theorem 2.3], Theorem 3.2 and Proposition 6.4. �
Remark 6.18. Observe that from Theorem 3.7 if PF∗ − |F | ∈ L+ ∩ L2 then the projection proper splitting 
|F | = PF∗ − V of |F |, converges. So that, ‖PF∗ − |F |‖ < 1. However, condition ‖PF∗ − |F |‖ < 1 does not 
imply PF∗ −|F | ∈ L+, in general. Therefore, with this particular proper splitting we get a weaker condition 
that the one given in Theorem 3.7 to guarantee the convergence.

7. A few more on induced splittings

In this section we study induced splittings for the case of two operators related by an invertible operator.

Proposition 7.1. Consider S ∈ L(H) and T ∈ Lh such that S = TG for some G ∈ G. Then the projection 
proper splitting T = PT − V of T induces a proper splitting of S, namely, S = PTG − V G. Moreover, the 
projection proper splitting of T converges if and only if the S = PTG − V G converges.

Proof. Observe that S = TG = PTG − V G. Let us see that R(PTG) = R(S) and N (PTG) = N (S). In 
fact, R(PTG) = R(PT ) = R(T ) = R(S). In addition, since PTG = T †TG we get that N (S) = N (TG) ⊆
N (PTG). Now, if 0 = PTGx = T †TGx then TGx ∈ R(T ) ∩ R(T )⊥ = {0}, so that x ∈ N (TG) = N (S). 
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Thus, N (PTG) = N (S). Then S = PTG −V G is a proper splitting of S. Observe that PTG = T †TG = T †S. 
Finally, (T †S)†V G = S†TV G = S†T (PT − T )G = S†(TG − T 2G) = S†(S − TS) = S†(PT − T )S, where 
the first equality holds by Proposition 2.1. Now, as σ((T †S)†V G) ∪{0} = σ(S†(PT − T )S)∪{0} = σ((PT −
T )SS†) ∪ {0} = σ((PT − T )PT ) ∪ {0} = σ((PT − T )) ∪ {0} then we get that ρ((T †S)†V G) = ρ(PT − T ), 
and the assertion follows. �
Proposition 7.2. Consider S, T ∈ L(H) such that S = TW , for some W ∈ U . If T = U − V is a proper 
splitting of T then S = UW − VW is a proper splitting of S. Moreover, it holds that the proper splitting of 
T converges if and only if the proper splitting S = UW − VW converges.

Proof. Let us see that S = UW−VW is a proper splitting of S. Note that R(UW ) = R(U) = R(T ) = R(S). 
In addition, N (UW ) = N (TW ) = N (S). Indeed, UWx = 0 if and only if Wx ∈ N (U) = N (T ) if and only 
if TWx = 0. Therefore S = UW − VW is a proper splitting of S. Now, since R(U∗UW ) ⊆ R(W ) = H and 
R(WW ∗U∗) = R(U∗) then, by Proposition 2.1 (UW )† = W ∗U†. Finally, since (UW )†VW = W ∗U†VW

then ρ((UW )†VW ) = ρ(U†V ). Then the assertion follows. �
Corollary 7.3. Let S, T ∈ L(H) such that S = TW , for some W ∈ U . Then the following assertions hold:

1. If T = UT − V is the polar proper splitting of T then the induced proper splitting of S, S = UTW − VW

is the polar proper splitting of S.
2. If S, T ∈ Lh and T = T † − V is the MP-proper splitting of T then the induced proper splitting of S, 

S = T †W − VW is the MP-proper splitting of S.

Proof. 1. By Proposition 7.2 it is sufficient to note that UTW = US . If fact, R(UTW ) = R(S), N (UTW ) =
N (S) and UTWW ∗U∗

T = U∗
TUT = PT = PS . So that, UTW = US .

2. By Proposition 7.2 it is sufficient to note that T †W = S†. Since S = S∗, by Proposition 2.1 it holds 
that S† = (W ∗T )† = T †W . So, the assertion follows. �
Corollary 7.4. Let S, T ∈ L(H) such that S = TW , for some W ∈ U . Then the following assertions hold:

1. The polar proper splitting of T converges if and only if the polar proper splitting of S converges.
2. If S, T ∈ Lh then the MP-proper splitting of T converges if and only if the MP-proper splitting of S

converges.

Proof. It follows from Proposition 7.2 and Corollary 7.3. �
The last result shows that the polar proper splitting of all operators in the unitary orbit of an T ∈ L(H)

has the same behavior with respect to the convergence. Moreover, the speed of convergence of these polar 
proper splittings coincides.

Proposition 7.5. Consider S, T ∈ L(H) such that S = UTU∗, where U ∈ U . Then, the polar proper splitting 
of S converges if and only if the polar proper splitting of T converges. Moreover, if S = US − W and 
T = UT − V are the polar proper splittings of S and T , respectively, then ρ(U∗

SW ) = ρ(U∗
TV ).

Proof. Since S = UTU∗ then U∗SU = T = U∗USU − U∗WU . Let us see that U∗USU = UT . In fact, 
|S| = U |T |U∗ then |S|† = U |T |†U∗. Now, US = S|S|† = UTU∗U |T |†U∗ = UT |T |†U∗ = UUTU

∗. So that 
U∗USU = UT and then U∗WU = V . Therefore, ρ(U∗

TV ) = ‖U∗
TV ‖ = ‖U∗U∗

SUV ‖ = ‖UU∗U∗
SUV U∗‖ =

‖U∗
SUV U∗‖ = ‖U∗

SW‖ = ρ(U∗
SW ). �
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