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In this work, a novel dataset containing physiological signals recorded non invasevely during structured
acute stress induction, as well as aerobic and anaerobic exercise sessions is presented. The physiological
data were collected using the Empatica E4, a wearable device that measures electrodermal activity,
skin temperature, three-axis accelerometry and blood volume pulse, from which heart rate and heart
rate variability features can be derived. A stress induction protocol was designed using mathematical
and emotional tasks to elicit physiological responses. For aerobic and anaerobic exercise, a stationary
bike routine was developed to distinguish between the two types of activity. The dataset includes
records from 36 healthy individuals during the stress protocol, 30 during aerobic exercise, and 31 during
anaerobic exercise. Several machine learning algorithms were applied to validate the dataset, with
XGBoost achieving an accuracy of 93% in classifying stress versus rest, 91% in distinguishing between
aerobic and anaerobic exercise, and 84% in a four-label classification task involving stress, rest, aerobic,
and anaerobic activities. The dataset is publicly available for further research.

Background & Summary

Motivation. Type 1 diabetes mellitus (TIDM) is an autoimmune disease that leads to the destruction of
insulin-producing pancreatic beta cells. As a result, patients require lifelong exogenous insulin administration
and continuous blood glucose monitoring to prevent hypo- and hyperglycemia episodes". The most advanced
technology for diabetes management today is the artificial pancreas (AP) system, which automates the delivery of
basal insulin via continuous subcutaneous infusion. This system uses a control algorithm that receives data from
interstitial glucose sensors to regulate an insulin pump'. However, varied factors, such as food intake, physical
activity (PA), stress, and illness, can cause significant fluctuations in blood glucose levels. These fluctuations often
require user intervention due to rapid and sometimes unpredictable changes in insulin requirements® The cur-
rent challenge is to improve the performance and autonomy of AP systems by incorporating biometric measure-
ments of these disturbances. The first step toward this goal is the accurate detection of physical activity and acute
stress using non-invasive physiological signals®.

Stress is a natural human response, defined by the World Health Organization (WHO) as a state of worry or
mental tension triggered by a difficult situation. Stressful events can elicit cognitive, emotional, and biological
reactions, which can be assessed through self-report measures, behavioral coding, or physiological measure-
ments*. Indicators such as heart rate (HR), heart rate variability (HRV), blood volume pulse (BVP), electro-
dermal activity (EDA), skin temperature (ST), and motion activity are widely recognized as markers of acute
stress. These physiological responses are of particular interest because they can be measured in real-time using
wearable sensors like photoplethysmography (PPG), accelerometers (ACC), and temperature sensors, enabling
continuous stress monitoring in daily life-a critical requirement for integration into the AP system®.

Physical activity is defined by WHO as any bodily movement produced by skeletal muscles that requires
energy expenditure. PA includes both structured exercise-activities characterized by specific types, intensities,
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and durations-and non-exercise activities related to daily living. Aerobic, sprint, and resistance training can lead
to significant variations in blood glucose levels, making it crucial to detect not only the presence of physical
activity but also its type, intensity, and duration. Although wearable devices may not achieve the accuracy of
laboratory techniques in quantifying exercise, they offer the advantage of continuous monitoring in real-world
settings. Among the biomarkers related to PA intensity, HR provides the best estimation of energy expenditure.
Other variables measurable by wearable devices that can serve as indicators of exercise include ST, near-body
ambient temperature, skin electrical conductance, breathing rates/frequencies, heat flux, sweat rate, and accel-
erations in triaxial planes®

Although the physiological responses to exercise and acute stress can be described using the same indicators,
a key objective of this work is to analyze the best features for detecting each condition. In pursuing this goal, we
observed that, despite several research groups working on this topic-including efforts on simultaneous detec-
tion of physical activity and stress®-® and the integration of glucose prediction models’ -, there is a notable lack
of open datasets containing wearable data collected during structured sessions of acute stress and aerobic and
anaerobic exercise.

Public datasets. We conducted an extensive search for open datasets on platforms such as PhysioNet and
Kaggle, as well as popular scientific repositories, focusing on wearable data collected under acute stress and struc-
tured physical activity conditions. However, none of the datasets we found met the specific needs of our research.
As aresult, we decided to carry out our data collection, to make this dataset publicly available in the future.

Several publicly available datasets focus on stress detection and emotional research using wearable data
We excluded datasets from non-wearable devices, as they do not align with our research objectives. However,
some datasets also include data from non-wearable sensors such as ECG, EEG, respiration, and SpO213-1°,
Additionally, certain datasets feature multimodal recordings, including voice and video'®.

The measurement devices, stressors, and self-reported emotional/stress assessments vary across these data-
sets. Common stress-inducing tasks include the Stroop test, arithmetic tasks, the Trier Social Stress Test, and
stressful videos. Most of these datasets were collected in controlled environments, though some were recorded
in specific contexts, such as during exams'® and while driving!”.

A few datasets include continuous monitoring in daily life, capturing spontaneous stress events and unstruc-
tured physical activities like chores, walking, and climbing stairs. For example, the Multilevel Monitoring of
Activity and Sleep in Healthy people (MMASH) dataset provides psychophysiological data of individuals in daily
life, but the activities related to physical activity are grouped into 13 categories, introducing inter-participant
variability (n=22)"%.

In terms of physical activity monitoring, Poon et al. developed a PPG dataset from wearable devices as par-
ticipants engaged in sitting, stationary walking, and running'”. The dataset presented by Urbanek et al. focuses
on ACC data collected during semi-structured outdoor activities, such as walking, stair climbing, and driving®.
Similarly, the REALDISP dataset includes a wide range of physical activities (e.g., warm-up, cool-down, and
fitness exercises), sensor modalities (including acceleration, rate of turn, magnetic field, and quaternions), and
participants (n=17)2.

There are also several open datasets focused on Human Activity Recognition, which involve participants
performing various activities, including exercise®.

The datasets developed by Birjandtalab et al. and Falk et al., which include acute stress and exercise, are the
most closely related to our work?**. The first one explores neurological status assessments and includes a 5-minute
exercise routine as a physical stressor measured with a wearable device. In the second one, participants performed
tasks of varying stress levels at three different activity levels on a stationary bike (0 km/h,18 km/h,24 km/h) and
provided quantitative ratings of their perceived stress and fatigue levels. However, to the best of our knowledge, no
publicly available dataset captures wearable data during structured, well-defined, induced stress sessions alongside
long-duration aerobic and anaerobic exercise protocols.

10-12

Key contribution.  We are sharing a dataset of healthy young men and women (n=36), which includes phys-
iological signals from a wearable device. These signals were collected during structured sessions of induced acute
stress, as well as during exercise sessions. In addition, self-reported stress levels are provided. All activities fol-
lowed standardized and reproducible protocols.

The main contributions of this work are as follows:

o To the best of our knowledge, this dataset fills the gap between stress and structured physical activity assess-
ment, unifying both in a single database. This enables the analysis of variables influenced by stress, as well as
aerobic and anaerobic exercise, improving the accurate detection of these states. This is essential, for example,
to incorporate biometric measurements into an AP control algorithm due to different effects of these distur-
bances on glycemic dynamic in TIDM patients.

o For stress research, we provide an efficient and reproducible protocol for stress inducement, supported by
self-reported stress levels throughout the protocol. This protocol alternates periods of acute induced stress
with rest periods, providing a comprehensive view of physiological responses.

« Exercise sessions were conducted on different days to ensure that the effects do not overlap. Aerobic and
anaerobic exercise sessions are of considerable length (20-30 minutes), reflecting typical exercise routines in
daily life. focusing on differentiating between aerobic and anaerobic activities.

» Protocols are well-documented, and signals are labeled to accurately identify and segment each phase. Addi-
tionally, we provide a script to open, read, and visualize the data.

« This work also presents machine learning classification results to validate the potential of the presented data.

SCIENTIFIC DATA | (2025) 12:520 | https://doi.org/10.1038/s41597-025-04845-9 2


https://doi.org/10.1038/s41597-025-04845-9

www.nature.com/scientificdata/

Gender Age Height Weight Protocol Stress Aerobic Anaerobic
ID [m][f] [years] [cm] [kg] Trains | version Inducement Exercise Exercise
S01 m 21 192 84 Y vl Y Y Y
S02 m 20 185 95 N vl Yk Y Y
S03 m 20 175 62 Y vl Y YHEE Y
S04 m 21 174 70 Y vl Y Y Y
S05 m 21 173 72 Y vl Y Y Y
S06 m 21 172 70 Y vl Y Y Yo
S07 m 19 184 88 Y vl Y YHEE Y
S08 m 20 174 67 Y vl Y Y Y
S09 m 19 174 63 Y vl Y Y Y
S10 m 21 180 80 Y vl Y Y Y
S11 m 21 183 64 Y vl Y Yok Y
S12 m 18 176 79 Y vl Y - Y
S13 m 21 175 65 Y vl Y Y Y
S14 m 19 182 85 Y vl Y Y Y
S15 m 21 176 77 Y vl Y Y Y
S16 m 20 168 61 Y vl Y Y YEE
S17 m 22 173 78 Y vl Y Y Y
S18 m 21 183 80 Y vl Y Y Y
fol f 25 152 61 N v2 Y Y Y
02 f 29 164 80 N v2 Y Y Y
03 f 26 160 61 Y v2 Y Y Y
04 f 29 168 56 N v2 Y Y Y
05 f 21 165 55 Y v2 Y Y Y
06 f 21 169 58 N v2 Y Y Y
fo7 f 21 163 47 N v2 Y* Y Y
fo8 f 22 158 50 N v2 Y Y Y
09 f 21 170 56 Y v2 Y Y Y
10 f 21 172 65 Y v2 Y Y Y
f11 f 31 170 84 N v2 Y Y Y
f12 f 30 158 97 N v2 Y Y Y
f13 f 29 154 56 N v2 Y Y Y
f14 f — — — — v2 Y#* — —
f15 f — — — — v2 Y
f16 f — — — — v2 Y — —
17 f — — — — v2 Y — —
f18 m — — — — v2 Y — —

Table 1. Demographic participants data. References: m(male); f(female); Y(Yes); N(No); v1(First Stage);
v2(Second Stage); * Wrong wristband placement; ** Connection Loss; *** Protocol was not fully completed; ****
Files with Constraints

Methods

Measurement device. The Empatica E4 wristband, a class IIa Medical Device in the EU, is a wearable
wireless device designed for comfortable, continuous, real-time data acquisition in daily life. This wristband is
intended for use in research settings. The E4 contains four sensors, each with its own sampling frequency:
(1) Photoplethysmography to provide blood volume pulse, from which HR, HRYV, and other cardiovascular fea-
tures may be derived; (2) Electrodermal activity, used to measure sympathetic nervous system arousal; (3) 3-axis
accelerometer, to capture motion-based activity; (4) Infrared thermopile, reading skin temperature.

Data collection. The data collection process was conducted in two stages. Initially, a group of 18 volun-
teers (v1) followed the protocol. A few months later, a second group of 18 volunteers (v2) participated using an
improved protocol based on initial experience. We will outline these modifications below. For all protocols, the E4
device was placed on the subject’s non-dominant hand to minimize motion artifacts during the tests.

Population. Participants were males and females between 19 and 30 years. Out of the 36 volunteers partici-
pating in the study, all 36 completed the stress protocol, 31 completed the anaerobic session, and 30 completed
the aerobic session. Some participants were unable to finish the exercise sessions. Demographic information is
presented on Table 1.
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Fig. 1 Stress Induction Original Protocol (v1). SL (Stress Level).

Data was collected under the supervision of the Ciencias de la Vida Department at the Instituto Tecnoldgico
de Buenos Aires (ITBA) following institutional ethical standards. This project was approved on April 27, 2023.
Enrollment in the study was facilitated through an online form. The exclusion criteria included individuals with
chronic illnesses and those with a family history of sudden death during exercise, as well as participants under-
going psychiatric treatment or taking medications that could potentially affect physiological responses. Before
conducting the tests, each participant signed an informed consent form. This document was sent to participants
in advance, allowing them sufficient time to review the information and ask any questions they might have.
Participation in the trial was completely voluntary, and participants were informed that they could withdraw at
any time without providing justification. Participants consented to the anonymous sharing of their demographic
information, including age, weight, height, clinical status, and data collected during the trials.

Protocols. ~ Stress inducement. The participant was welcomed by the researcher and led to a quiet room where
the protocol was conducted. The room contained two computers: one displaying a guide outlining all the steps,
and another where the interactive tasks were performed. The participants wore earphones to cancel out environ-
mental noise and to enhance the sound stimuli during a specific task. The researcher guided the procedure but left
the participant alone during rest periods to promote relaxation. The original protocol(v1) started with a 3-minute
baseline recording, to be used as a reference. The first stress test was an adaptation of the widely used Stroop
Test*>*, adapted from PsyToolkit?”?. Afterwards, a 5-minute-rest period was imposed, followed by a modified
version of the Trier Mental Challenge Test?’, obtained through Millisecond Software, LLC. This test involved a
series of mathematical tasks within a 5 seconds time limit while an annoying sound stimulus was played in the
background. Participants were also instructed to vocalize their responses aloud, which further added to the cog-
nitive load and performance demands of the task. Once again, a 5-minute-period came before the final block. In
the latter, participants were asked to express their opinion about controversial topics and suddenly were instructed
to defend the opposite opinion over the same subject. Finally, participants were tasked with counting backward
from 1022 in decrements of 13, providing the answers aloud. Each of these tests had a time limit of 30 seconds.

Before and after every task and rest period, participants were required to verbally express their self-perception
stress level (SL) on a scale ranging from 1 to 10. A summary of the protocol is shown in Fig. 1.

Anaerobic activity. The anaerobic exercise protocol was adapted from the Wingate Anaerobic Test™. It began
with a 3-minute baseline recording during which the subject pedaled without resistance to warm up. This was fol-
lowed by three cycles, each consisting of 30 seconds of maximal effort, where the subject pedaled at their highest
intensity against high resistance, followed by a 4-minute cool-down period without resistance. Finally, a 2-minute
recording was made while the subject remained still.

Aerobic activity. 'The aerobic exercise test was adapted from the Storer-Davis Maximal Bicycle Protocol and
involved continuous stationary cycling for approximately 35 minutes®'. First, we determined the maximum resist-
ance for each participant by identifying the point at which they could no longer pedal at maximum effort. The
protocol began with a 3-minute baseline recording during which the subject pedaled without resistance to warm
up. After completing the baseline, the subject cycled in sync with a metronome, with each beat corresponding to
one foot down (or one knee up), meaning one revolution was completed every two beats.

Starting with low resistance (20% of maximum), the subject went through three 3-minute periods at increas-
ing paces of 60, 70, and 75 revolutions per minute (rpm), gradually raising the resistance up to a medium level
(30% of maximum). This was followed by four periods, the first two lasting 3 minutes each and the second two
lasting 2 minutes each, at paces of 80, 85, 90, and 95 rpm, respectively, with a gradual increase in resistance (5%
per stage). With a final fixed medium-high resistance (50% of maximum), the last three periods consisted of 2
minutes each, at paces of 100, 105, and 110 rpm, respectively.

Once completed, a 4-minute cool down period without resistance was conducted, followed by 2 minutes of
remaining still.

Protocol improvements. The second version of the protocol incorporated several modifications based on pre-
vious experience. For stress induction,the Stroop Test was removed, and the second rest period was relocated
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between the opinion tasks and the subtraction test. Rest periods were extended, and a relaxing video was shown.
Additionally, the protocol was conducted remotely, creating a more relaxed environment during rest times.

In the updated exercise protocols, participants attended in groups to a spinning room. The aerobic protocol
was modified as follows: a baseline was introduced, followed by a 2:15-minute warm-up. This was succeeded
by three 1:30-minute intervals at 70, 75, and 80 rpm, respectively. An 11:15-minute session at 85 rpm was con-
ducted, leading into a final 4:30-minute period at 90/95 rpm (depending on the participant’s condition). The
session concluded with a 3-minute cool down, followed by a rest period where participants sat on the bike
without movement.

For the anaerobic protocol, a fourth maximum power sprint was added, with the sprints extended to 45 sec-
onds each, followed by a corresponding cool down period.

Data Records

All raw data recorded during the experiment are publicly available for further research and analysis. The
Jupyter Notebook containing the source code for data visualization, along with complementary files such as
stress levels and demographic data, is provided alongside the raw signal files. Data can be downloaded from
PhysioNet™* (https://doi.org/10.13026/zzf8-xv61), Repositorio Institucional CONICET Digital** (http://hdLhan-
dle.net/11336/245570) and from Zenodo (https://doi.org/10.5281/zenodo.13993658).

The dataset is organized into three main categories: STRESS, AEROBIC exercise, and ANAEROBIC exercise.
Each category contains subfolders specific to individual subjects, where raw sensor reading .csv files downloaded
from the Empatica E4 Connect are stored. The exceptions are the IBL.csv and HR.csv files, which are generated
by Empatica’s algorithm. Tags related to unintentionally pressed buttons have been deleted from the tags file to
improve protocol understanding. These tags mark the beginning and end of protocol segments, which facilitates
signal segmentation.

In accordance with HIPAA Safe Harbor De-Identification guidelines, each participant is assigned a unique
ID. The session dates and event marks during the protocols (in tags.csv) have been modified by a random num-
ber of days, with the resulting shift exceeding one year. Time samples have been shifted consistently across all
records to maintain signal alignment. Empatica provides time in Unix timestamp format, but files are already
converted to UTC. Participants from the first stage are labeled as “Sxx” while those from the second stage are
labeled as “fxx”.

Each subject folder contains the raw signal .csv files provided by Empatica. These files follow this format: the
first row is the initial time of the session expressed in UTC (Empatica provides time in Unix timestamp format,
but files are already converted to UTC). The second row is the sample rate expressed in Hz.

o TEMP.csv: Data from temperature sensor expressed degrees on the Celsius (°C) scale.

o EDA.csv: Data from the electrodermal activity sensor expressed as microsiemens ((1S) .

o BVPcsv: Data from photoplethysmography sensor.

« ACC.csv: Data from 3-axis accelerometer sensor. The accelerometer is configured to measure acceleration in
the range [-2g, 2g]. Therefore the unit in this file is 1/64g. Data from x, y, and z axis are respectively in first,
second, and third column.

o IBLcsv: Time between individuals heart beats extracted from the BVP signal. No sample rate is needed for
this file. The first column is the time (respect to the initial time) of the detected inter-beat interval expressed
in seconds (s). The second column is the duration in seconds (s) of the detected inter-beat interval (i.e., the
distance in seconds from the previous beat).

o HR.csv: Average heart rate values computed in spans of 10 seconds extracted from the BVP signal. The first
row is the initial time of the session expressed in UTC. The second row is the sample rate expressed in Hz.

o tags.csv: Event mark times. Each row corresponds to a physical button press on the device; the same time as
the status LED is first illuminated. The time is expressed in UTC and it is synchronized with initial time of the
session indicated in the related data files from the corresponding session

Activities performed and demographic data such as age, weight, and height are provided in the subject-info.
csv file.

Additionally, a file containing all self-reported stress levels for each stage is provided (Stress_level_v1.csv and
Stress_level_v2.csv).

Some participants experienced issues such as incorrect wristband placements, incomplete protocols, and
connection problems. Details about these issues can be found in the data_constraints.txt file. These register have
not taken in count for ML classifications but are provided in the dataset for research purpose.

Technical Validation

We assessed the technical validity of the dataset through two key approaches: (1) analyzing self-reported
stress levels to evaluate the effectiveness of the stress induction protocols, and (2) performing both binary and
four-state classifications to demonstrate the potential of physiological signals in distinguishing between different
conditions.

Self Reported Stress-Level Analysis. The stress induction protocol proved to be effective in generating
stress during the tasks and relaxation during the rest periods. This is supported by the self-reported perceived
stress levels shown in Fig. 2 (v1) and Fig. 3 (v2). To control for individual differences in stress perception, we nor-
malized the reported stress levels for each participant. For all statistical tests, a p-value (p) threshold of 0.05 was
used to determine significance. Tests yielding p < 0.05 were considered statistically significant.
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Fig. 2 Normalized Stress Auto Reported Level - First Stage (v1).
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Fig. 3 Normalized Stress Auto Reported Level - Second Stage (v2).

vl v2
Baseline vs TCMT p=6.21e-4 p=7.00e-6
First_Rest vs TMCT p=1.70e-5 p=9.53e-11
Second_Rest vs TMCT p=7.82e-3 p=9.87e-14
Real_Opinion vs TMCT p=>5.20e-5
Opposite_Opinion vs TMCT p=7.17e-3
Second_Rest vs Real_Opinion p=3.76e-2
First_Rest vs Opposite_Opinion p=1.78e-2
Second_Rest vs Opposite_Opinion p=4.43¢-4
First_Rest vs Subtract Test p=6.23¢-3 p=7.86e-4
Second_Rest vs Subtract Test p=1.10e-5

Table 2. Significance Differences of Normalized Stress Levels Between Blocks. (v1: First Stage; v2: Second Stage).

A Shapiro-Wilk test was used to assess the normality of the data for each block. Several blocks showed a
non-normal distribution: Baseline (p = 0.037) and First_Rest (p = 0.047) in v1, and Real_Opinion (p = 0.022)
in v2. Therefore, we applied the non-parametric Kruskal-Wallis test. Both stages demonstrated statistically sig-
nificant differences between the blocks (p = 6.24e-06 for v1, and p = 9.96e-16 for v2).

Following this, Dunn’s post-hoc test was applied to determine which groups were significantly different, as
presented in Table 2. The Trier Mental Challenge Test resulted as the primary stress-inducing block in both data
collection stages, followed by the Subtract Test, with both tasks involving mathematical challenges.

Signal Preprocessing and Feature Extraction. For signal filtering and preprocessing, we utilized
Python libraries such as Pandas, SciPy and NumPy, along with open-source tools like NeuroKit2*>.

Tags were used to segment the signal according to the protocol. From each segment, we extracted relevant
features to characterize the signals, aiming to distinguish between different conditions. These features were then
used as input for training and evaluating different machine learning models.

The files we worked with included BVP.csv, HR.csv, EDA.csv, and ACC.csv, as well as the tags.csv file for seg-
mentation purposes. In this work, we did not perform any temperature analysis. Additionally, we chose not to
use the IBI.csv file provided by Empatica due to missing data, particularly for exercise recordings. A summary of
the entire process, from data collection to classification, is illustrated in Fig. 4.

Signal preprocessing.  Blood Volume Pulse refers to the variation in arterial blood volume under the skin result-
ing from the heart cycle. To remove noise, we applied a 4th-order Chebyshev Type II digital filter with a band-
pass of 0.5-10 Hz.
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Fig. 4 Feature extraction.

Electrodermal Activity measures the variation in skin conductance in response to sweat gland activity, which
is controlled by the sympathetic nervous system. This signal includes both a tonic component (skin conduct-
ance level, SCL) and a rapid phasic component (skin conductance responses, SCRs), which result from sympa-
thetic neuronal activity. The raw EDA signal was filtered using a 5th-order Butterworth low-pass filter with a
cutoff frequency of 1.99 Hz. Once filtered, a Savitzky-Golay filter was applied to separate the tonic and phasic
components.

Heart rate variability is considered an indicator of mental stress and physical fitness. The standard method of
obtaining HRV is through ECG, using the time interval between two consecutive R-peaks (Inter Beat Interval,
IBI). An alternative method is through Pulse Rate Variability, which measures the time interval between succes-
sive peaks in the PPG signal. BVP was filtered, and wave peaks were detected to obtain pulse intervals, equiva-
lent to the RR intervals in ECG*. We then obtained the normal pulse-to-pulse intervals, discarding ectopic and
incorrectly detected beats. Once we got the clean interval series, time domain and frequency domain features
were computed.

No filtering was applied to the 3-axis accelerometer signals or the heart rate data provided by Empatica.

Feature extraction. The features can be categorized into general statistical properties (mean and standard devi-
ation), minimum and maximum change ratios(obtained from the 5% and 95% percentile of the first derivative,
respectively), and specific signal characteristics.

«  For the filtered BVP, the mean and standard deviation were calculated.

« For HR, the mean and standard deviation were obtained, along with the maximum and minimum change
ratios.

 Statistical features were derived from the raw, phasic, and tonic EDA signals. The minimum and maximum
change ratios was computed for the tonic component. For the phasic component, the Neurokit2 tool was
used to extract information from Skin Conductance Responses (SCR) events, including SCR amplitude, the
samples at which SCR onsets and peaks occurred, SCR rise time (time from onset to peak), SCR recovery time
(time from peak to the midpoint of the fall), and SCR height (value from onset to peak). Additionally, SCR
density was derived by dividing the number of SCR events by the segment length.

o Regarding HRYV, time-domain features included mean, maximum and minimum IBI. The HR mean was com-
puted from the IBI mean, which differs from the HR data provided for Empatica. Further features included
SDNN (standard deviation of normal-to-normal intervals), RMSSD (root mean square of successive differ-
ences between normal beats), pNN50, and pNN20 (percentage of the difference associated with NN intervals
differing by more than 50 ms and 20 ms, respectively) were calculated. In the frequency domain, the power
and peaks of each frequency band - Very Low Frequency (VLF: 0-0.04 Hz), Low Frequency (LF: 0.04-0.15
Hz), High Frequency (HF: 0.15-0.4 Hz), and Very High Frequency (VHEF: 0.4-2 Hz) - were calculated. Total
power, normalized LF and HF, and the LE/HF ratio were also computed.
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E4 Signal | Type Features
BVP (2) Statistical bvp_mean, bvp_std
HR (4) Statistical hr_mean, hr_std, hr_ratio_down, hr_ratio_up
Time Domain max_ibi, min_ibi, mean_ibi, hr_mean_ibi, pnn20, pnn50, rmssd, sdnn
HRV (20) total_power, ratio, VLF_power, VLF_peak, LF_power, LF_peak, LH_n,

Frequency Domain HF_power, HF_peak, HF_n, VHF_power, VHF_peak

mean_raw_eda, std_raw_eda, mean_tonic_eda, std_tonic_eda, mean_phasic_

Statistical eda, std_phasic_eda,tonic_ratio_down, tonic_ratio_up
EDA (13) s denoi eich —
SCR Events peaks_density, SCr_mean_amp, scr_mean_neig t, scr_mean_risetime,
scr_mean_recoverytime
Statistical x_mean, x_std, y_mean, y_std, z_mean, z_std
ACC (10)
Magnitude acc_mean, acc_std, acc_ratio_down, acc_ratio_up

Table 3. Features extracted.

o  For the accelerometer data, the mean and standard deviation of each axis, as well as the magnitude, were cal-
culated. Additionally, the maximum and minimum change ratios derived from the acceleration magnitude
were obtained.

For a better comprehension, all extracted features are presented in Table 3.

Classification. Data preprocessing. To reduce inter-subject variability, intra-participant normalization was
applied to all blocks within the stress protocol. No normalization was applied for exercise sessions and multiple
classification as they were conducted on different days.

Stress blocks (Stroop, TMCT, Real, and Opposite Opinion, Subtract) were labeled as 1, and rest blocks
(Baseline, First Rest and Second Rest) were labeled as 0. We used the second half of both the First Rest and
Second Rest blocks to minimize the influence of any residual stress effects from the previous stress blocks. The
resulting data was imbalanced due to differences in protocol versions: 154 corresponding to stress blocks and
102 for rest periods.

For the exercise sessions, a binary classification between common aerobic slots and maximum power sprints
was performed, due to variations in protocol versions. For aerobic protocols, a 1-minute middle segment from
70 rpm, 75 rpm, 80 rpm, and 85 rpm blocks was extracted for analysis. For anaerobic protocols, sprints were
used. The resulting data was also imbalanced: 120 samples from aerobic blocks and 106 from high-intensity
blocks.

Features selection. From an initial set of 49 features, we applied a high-correlation filter, discarding features
with a Pearson correlation coefficient above 0.8. The Python open-source library Sweetviz was used for data
exploration, providing insights into categorical associations, multicolinearity analysis and distribution of the
data. This helped in selecting features that provided the most informative value for the target labels. Different
sets of features were tested based on these criteria.

Machine Learning algorithms.  For model training and testing, we used the Python Sklearn library.

For classification purposes, 2 stress records were discarded due to incorrect wearable device placement for
participant f07 and bad fit of the wristband for participant f13. Despite some incomplete exercise sessions, all
participants performed the stages selected for classification.

Although these stress records were excluded from the classification analysis, they are included in dataset with
their corresponding comments and constraints.

Binary classification was performed between stress vs. rest states, and aerobic segments vs. sprints.
Additionally, a multi-class classification task was conducted with four labels: rest, stress, aerobic, and maximum
power states.

The data were imputed and scaled (subtracting the mean and dividing by the standard deviation), and several
machine learning algorithms were tested, including K-Nearest Neighbors, Logistic Regression, Gaussian Naive
Bayes, Support Vector Classifier, Random Forest, and XGBoost. These models were evaluated using 10-fold
cross-validation, following an 80/20 train-test split. Since the data were imbalanced, different resampling tech-
niques were applied. The performance of the models was assessed using metrics such as accuracy, precision,
recall, and F1 score.

After the feature optimization process, the original 49 features were reduced to 13, 12, and 19 features for
binary stress classification, binary exercise classification, and four-label classification, respectively.

XGBoost was the best-performing model across all tasks, achieving a maximum accuracy of 93% for the
binary stress/rest classification using 10-fold cross-validation. In all cases, oversampling proved to be the most
effective technique for handling the data imbalance. The classification performance metrics are detailed in
Table 4.

Usage Notes

This data can be used to develop ML models for stress and exercise detection and classification, as well as for
signal processing and feature extraction. For information on expected signals and recommended tools for signal
processing, visit the Empatica website.
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Feature Set Accuracy | Precision | Recall | F1
hr_mean, mean_raw_eda, mean_tonic_eda, std_tonic_eda, mean_ o o o o
Stress / Rest recoverytime, max_ibi, ibi_mean, rmssd, ratio, LF_peak, x_std, y_std, z_std 93% 93% 92% 92%
. . hr_std, std_phasic_eda, tonic_ratio_down, peaks_density, mean_recoverytime, o N o o
Aerobic/ Sprints min_ibi, pnn50, VHF_power, LF_n, z_std, acc_mean, acc_ratio_down 1% 92% 92% oL%
hr_mean, hr_std, mean_tonic_eda, std_tonic_eda, mean_recoverytime,
Stress / Rest / Aerobic / Sprints | std_phasic_eda, tonic_ratio_down, peaks_density,max_ibi, ibi_mean, rmssd, 84% 85% 84% 84%
min_ibi, LF_peak, LF_n, x_std, y_std, z_std, acc_mean, acc_ratio_down

Table 4. XGBoost performance metrics with 10-fold cross validation.

Pilot results on binary stress classification and feature extraction from signals have been presented at confer-
ences®”*. The multimodal classification presented in this work extends classification to detect and differentiate
among various physiological states, including aerobic and anaerobic exercise, based on the collected data.

Limitations (details about these issues can be found in the data_constraints.txt):

o Stress Session: S02 has duplicated data; f07 did not remove the wrist-band protection cover, so not all signals
are valid; f14’s data is split into two parts.

o Aerobic Session: S03 and S07 could not complete the procedure; S11’s data is split into two parts; S12 did not
perform this test.

« Anaerobic Session: S06 could not complete the procedure; S16’s data is split into two parts.

Code availability

A Jupyter Notebook (Wearable_Dataset.ipynb) is provided to open, read, and visualize the data. This can be
downloaded from PhysioNet* (https://doi.org/10.13026/zzf8-xv61), Repositorio Institucional CONICET
Digital®® (http://hdlhandle.net/11336/245570) and from Zenodo** (https://doi.org/10.5281/zenodo.13993658).
To execute the notebook, ensure that basic Python libraries such as pandas, os, numpy, time, and matplotlib are
installed.
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