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Abstract: The processes involved in encoding and decoding signals in the human brain are a
continually studied topic, as neuronal information flow involves complex nonlinear dynamics. This
study examines awake human intracranial electroencephalography (iEEG) data from normal brain
regions to explore how biological sex influences these dynamics. The iEEG data were analyzed using
permutation entropy and statistical complexity in the time domain and power spectrum calculations
in the frequency domain. The Bandt and Pompe method was used to assess time series causality
by associating probability distributions based on ordinal patterns with the signals. Due to the
invasive nature of data acquisition, the study encountered limitations such as small sample sizes
and potential sources of error. Nevertheless, the high spatial resolution of iEEG allows detailed
analysis and comparison of specific brain regions. The results reveal differences between sexes in
brain regions, observed through power spectrum, entropy, and complexity analyses. Significant
differences were found in the left supramarginal gyrus, posterior cingulate, supplementary motor
cortex, middle temporal gyrus, and right superior temporal gyrus. This study emphasizes the
importance of considering sex as a biological variable in brain dynamics research, which is essential
for improving the diagnosis and treatment of neurological and psychiatric disorders.

Keywords: human iEEG; biological sex differences; shannon entropy; statistical complexity;
information theory; power spectral density (PSD); brain dynamics; MNI open iEEG atlas; normal
brain regions

1. Introduction

A dynamic system is characterized by its evolving state over time, which can be fully
described by a set of state variables at any given moment. These models allow for the
analysis and prediction of system behavior under different inputs or conditions. Study-
ing and understanding dynamic systems provides valuable insights into their behavior,
allowing for predictions and even the control or optimization of their performance in
various applications.

Dynamical systems can exhibit different dynamic properties, such as stability, peri-
odicity, or chaos. Chaotic systems exhibit sensitivity to initial conditions, known as the
butterfly effect, where small changes in initial conditions can lead to significant differences
in the system’s behavior over time [1]. This is a fundamental characteristic shared by
various physical systems, including neural networks, with the factors contributing to this
sensitivity yet to be fully understood.

The dynamics of the brain show complex nonlinear characteristics, and their underly-
ing mechanisms are still not well understood. While concrete evidence of chaos in cerebral
dynamics, from a mathematical standpoint, has primarily been observed at the level of
axons, individual cells, and paired cells, findings suggest that brain signals may exhibit
chaotic patterns across all levels of their hierarchy [2–4].
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Neural information processing is a challenging topic that requires an understanding
of the intricate mechanisms underlying neuronal activity. One key aspect of this process is
the nonlinear nature of neuronal dynamics, leading to complex phenomena such as chaos,
synchronization, and bifurcations. These phenomena have significant implications for
neural coding and computation. Analyzing the dynamics of nonlinear systems is not a
straightforward task, especially when there are no available differential equations to model
the system under study, as is the case with the brain.

One method of capturing the brain’s activity over time is through temporal recordings
of its electrical activity via intercellular local field potentials (LFPs). These recordings
reflect the extracellular electrical activity of nearby neurons and are obtained using deep
electrodes inserted into the brain, resulting in intracranial electroencephalography (iEEG)
signals, which are temporal voltage series.

The application of information theory to analyze iEEG signals enhances the under-
standing of brain activity by providing quantitative and objective measures. It enables the
extraction of temporal characteristics and quantification of the information contained in the
brain signals. Furthermore, information theory allows investigation of the complexity and
organization of brain signals, revealing underlying patterns and organizational structures.

Utilizing ordinal patterns to compute measures based on permutation entropy enables
the extraction of causal characteristics from signals and the assessment of nonlinear dynam-
ics within these systems. The approach to computing the probability distribution function
(PDF) from ordinal patterns, as proposed by Bandt and Pompe (BP), is widely embraced for
electroencephalography (EEG) analysis, including iEEG, and has demonstrated superior
results compared to conventional analyses [5].

Extensive studies have been conducted on non-intracranial EEG signals, such as the
analysis of time series in epilepsy EEG [6,7], the distinction between brain death and
coma [8], and the study of states of consciousness with the use of anesthetics [9], sleep
stages [5,10–12], and signal discrimination [13–15]. In iEEG, this method has been applied
to epilepsy for seizure prediction [16], detecting the epileptogenic focus [17], identifying
preictal markers [18], extracting different characteristics for identifying the epileptogenic
focus [17], and differentiating epileptic signals in an unsupervised manner [19–21]. These
findings underscore the potential of permutation analysis in delving into diverse facets
of EEG signal processing and analysis, empowered researchers to investigate the causal
characteristics of signals, and evaluate the nonlinear dynamics within neural systems.

A growing body of research indicates sex-related differences in neural activity recorded
in human EEG data [22–44]. Quantifiers derived from information theory, including
markers based on the entropy of EEG background activity [45], have shown potential for
identifying these sex differences. Several approaches have been proposed to exploit this
potential, such as estimating differences in brain status through entropy measurements [46]
and using permutation entropy to extract features for gender identification in emotional-
based EEG datasets [47] and non-stationary EEG signals [48].

Applying these analyses to iEEG facilitates a deeper understanding of how men and
women encode information during cognitive processes. A recent development involves
creating a database to compile iEEG data from normal brain regions [49–51]. Given the
impracticality of screening asymptomatic patients using invasive and costly methods,
this database, comprising epileptic patients with identified epileptogenic foci and distinct
healthy (non-affected) regions, currently provides the closest approximation for studying
signals from normal areas.

iEEG signals, which record the brain’s electrical activity, are obtained through elec-
trodes implanted in the cranial area or brain tissue. These signals offer superior spatial
resolution and less tissue attenuation compared to EEGs, facilitating the precise localiza-
tion of specific brain regions. They reflect the activity of ensembles or populations of
neurons responsible for encoding sensory, motor, or cognitive information. Adopting the
perspective of neural population [52] allows for investigating how the brain integrates
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and combines the activity of multiple neurons or brain regions to generate a coherent and
efficient representation of internal or external stimuli.

This study aims to investigate how biological sex differences influence the way the
brain encodes information through iEEG signals and to explore their impact on neuronal
encoding dynamics. To achieve this, the study employs information theory quantifiers
based on ordinal patterns that preserve causal coding features, using the Bandt and Pompe
method. Complete signals are analyzed using the complexity-entropy causality plane and
power spectral density. In each region, the mean, median, and Mann–Whitney U test were
applied to entropy and complexity to compare between sexes. The analysis is based on
iEEG signals sourced from healthy sectors of the human brain sourced from the Open iEEG
Atlas [49–51].

The objective is to enhance the understanding of sex-based differences in brain activity
through a comprehensive exploration of local field potentials. This involves the segregation
of signals by sex, region, and hemisphere, followed by their analysis and the overlaying
of results for graphical comparisons and statistical tests. Ultimately, the purpose of this
study is to broaden the foundation for future research in neuroscience, thereby advancing
comprehension of the observed diversity in the human brain and the influence of biological
sex on cerebral dynamics.

2. Methods
2.1. Data Source and Preprocessing Methods

The data for this study were obtained from the MNI Open iEEG Atlas [49–51] database,
which features recordings of intracranial activity in normal brain regions during various
states, including quiet wakefulness with eyes closed, non-REM sleep (N2 and N3 stages),
and REM sleep.

The signals were recorded from 1772 channels across 106 patients with focal epilepsy,
using only those located in gray matter and considered “normal” (i.e., distant from epileptic
regions). Various types of intracerebral electrodes were used, including Dixi, homemade
MNI, AdTech electrodes, and AdTech subdural strips and grids.

The dataset includes patient information, such as sex, channel type, hemisphere,
channel name, channel position, and channel region. Artifacts were detected and removed
from the signals, and all signals were resampled at 200 samples per second to ensure
consistency. Power-line interference was minimized using an adaptive filter. All channels
were zero-padded to a length of 68 s (13,600 samples) to maintain uniform length regardless
of the number of segments.

The electrodes were placed in a common stereotactic space to facilitate patient activity
comparison and accumulation of results from multiple subjects. To obtain further infor-
mation about the database and acquisition methods, the reader can refer to the following
references [49–51].

2.2. Clustering of iEEG Data

The signals were separated by hemisphere, region, and sex, so that each region was
analyzed in both hemispheres, with female and male analyzed separately. Only eyes-closed
wakefulness data were analyzed in this study because there were no skipped channels or
interruptions to consider when analyzing causality.

To compare male and female behavior within the same region, a condition was im-
posed requiring at least five patients of each sex. This was achieved by analyzing the signals
without distinguishing between the electrodes used, as otherwise, fewer than two regions
per hemisphere had more than five patients of each sex. All cases where this minimum
statistic was not met were excluded from the analysis.

Figure 1 provides a schematic representation of the brain, highlighting the localized
regions that surpass the statistical restriction, as well as the corresponding electrodes used
for channel analysis. The graphics were created based on the nodes of the surfaces and the
electrode positions provided by the atlas [49–51].
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Figure 1. Schema of the analyzed region locations along with the corresponding electrodes
used. The yellow area represents the region of interest, and the red dots indicate the positions of
the electrodes.

2.3. Exploring iEEG Dynamics with Information Theory Tools

The study of neural systems and their dynamics is crucial for research in neuroscience.
Understanding patterns and structures of neural activity can provide insights into brain
function and potential mechanisms underlying neurological disorders. Information theory
provides tools for analyzing neuronal activity by associating a probability distribution
function (PDF) with the time series (TS) of brain signals. The Bandt and Pompe (BP) method
offers a robust approach for processing nonlinear and noisy data while accounting for
causality. This article uses the BP method to extract causal features from the signal and
explore brain dynamics in both males and females. The iEEG TS is analyzed to quantify
the information contained in observed neural activity by calculating Shannon entropy
and statistical complexity. The following section discusses the information theory tools
employed to analyze iEEG data, with a focus on the BP methodology used to obtain a
probability distribution function for each signal while considering causality. Entropy and
statistical complexity are then calculated from these distributions.

2.3.1. Examining Ordinal Structure and Quantifying Information Using the
Bandt-Pompe Approach

Quantifying the information contained in observed neural activity is essential for
analyzing neural systems. This can be achieved by computing the Shannon entropy and
statistical complexity of a TS associated with a PDF [53]. However, directly calculating a
histogram from the signal may lead to information loss concerning the temporal causality of
the underlying dynamical system. Fortunately, the BP approach offers a robust alternative
for analyzing nonlinear and noisy data, including neural activity [54]. This method utilizes
the ordinal structure of the TS to derive a PDF of ordinal patterns, which captures the
underlying structure of the TS without assuming any specific model. By comparing
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the relative values of the points in the TS rather than the amplitudes, this methodology
constructs the PDF associated with the TS using two parameters: embedding dimension
and embedding delay.

In this study, the BP technique is used to estimate the PDF of an iEEG TS,
χ(t) = {xt; t = 1, · · · , M}, comprising M observations, as described in [54–57]. The
BP approach involves transforming the TS into symbolic sequences and identifying ordinal
structures by considering all possible permutations of the series values within fixed-size
windows. The resulting PDF of ordinal patterns is obtained by calculating histograms of
patterns in the signal that reflect causality.

The TS is partitioned into n = M − (D − 1)τ overlapping segments, each with a
predetermined embedding dimension (D) and embedding delay (τ). Each segment is
represented by a D-dimensional vector of values, from which the permutation of index
numbers is determined. Every possible permutation of order D (with D! permutations)
is considered, and its relative frequency is computed to generate a histogram of ordinal
patterns. This distribution reflects the structure of the TS and can be used to compute the
Shannon entropy and statistical complexity of the observed neural activity.

Finally, to calculate the PDF associated with the TS, the following expression can
be used:

pj(Πj) =
number of partitions of type Πj in πi

n
,

where pj(Πj) represents the relative frequency of the j-th ordinal pattern Πj, and πi denotes
the sequence of all ordinal patterns for all partitions. Note that the estimated PDF P is
discrete since it is derived from a histogram. Additionally, the TS analyzed, χ(t), should
be much longer than the number of possible ordinal patterns (M >> D! where M is
the number of samples in the TS) to ensure good statistical results when applying this
technique. Readers interested in further information and examples of the BP methodology
can refer to the following references: [53–58].

2.3.2. Quantifying Information-Theoretic Measures: Entropy and Complexity Calculations

Quantifying information-theoretic measures is crucial for understanding the dynamics
of a system represented by its TS. Although permutation Shannon entropy effectively
measures randomness in a system, it may not fully capture ordinal structures. Therefore,
measures of statistical or structural complexity are needed for a more comprehensive
characterization of the system’s dynamics [59].

In this study, the BP methodology is used to estimate the underlying PDF of a TS, χ(t),
and two information-theoretic quantifiers are calculated using the ordinal patterns method
to detect and quantify ordinal structures in the TS. These quantifiers enable a comparison
of the dynamics of physiological signals in the human brain between biological sexes.

Shannon entropy measures randomness in a TS and is calculated using its PDF. In the
discrete case, the Shannon entropy of a TS with a corresponding PDF P ≡ pj{j=1,··· ,N} is

given by the equation S[P] = −∑N
j=1 pj log2(pj), where N is the number of possible states

and pj is the probability of each state. However, large changes in P over a small range have
minimal impact on the Shannon entropy, as it is a “global” measure.

To more accurately characterize the system’s dynamics, measures of statistical or struc-
tural complexity are needed. Statistical complexity, developed by López-Ruiz et al. [60],
captures subtle differences in the dynamics of the systems under study. This study uses
the version of the metric developed by Martin-Rosso-Plastino, known as MPR complexity
[61,62]. From this point on, the term “complexity” refers specifically to this metric.

Statistical complexity is computed using C = QJ [P, Pe] · H[P]. The normalized Shan-

non entropy H, is defined as H[P] = S[P]
Smax , where Smax = S[Pe] = log2 N. The dise-

quilibrium (QJ = Q0J ) is a function of the Jensen–Shannon divergence, given as

J [P, Pe] = H[ P+Pe
2 ]− H[P]

2 − H[Pe ]
2 , and a normalization constant Q0. Here, Pe refers to the

uniform distribution. To obtain the statistical complexity, QJ and H are multiplied together.
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Statistical complexity and entropy were calculated for channels within the same region,
hemisphere, and biological sex. To traverse the TS, non-overlapping time windows smaller
than the original signals were utilized. A window size of 15 s was chosen to balance
the need for maximum causality (M >> D!) with minimal loss of information in neural
encoding [63]. This choice corresponded to 3000 samples, given the signals’ sampling
frequency of 200 Hz.

The BP methodology was applied to each window to obtain a PDF that accounts for
the causality of the signal. For this analysis, D = 6 and τ = 1 were used. Complexity and
entropy were then calculated from these PDFs. The values were accumulated for patients
meeting the specified conditions, and the results were plotted for both males and females.
In each region, the mean, median, and Mann–Whitney U test were utilized to quantify any
differences found between the results for males and females.

To further validate the condition M >> D!, the same analysis was conducted with an
embedding dimension of D = 5, using the same time window and τ = 1.

2.4. Investigating Frequency Bands in iEEG Signals: Power Spectral Density Analysis Using the
Welch Method

In the study of neuroscientific phenomena, power spectral density (PSD) is frequently
utilized as a measure of the distribution of power in a signal across different frequencies.
This method is commonly applied to electroencephalography (EEG) and intracranial EEG
(iEEG) signals to gain insight into underlying neural processes. PSD analysis can be
employed in iEEG to examine the frequency content of LFPs and identify neural processes
associated with specific frequency bands.

The Welch method [64] is a widely used approach for estimating PSD. It involves
dividing the signal into overlapping segments, applying a window function to each segment
to reduce spectral leakage, computing a periodogram for each segment, and then averaging
the periodograms to estimate the PSD. A periodogram is a mathematical tool that breaks
down a signal into its component frequencies, helping to identify which frequencies are
present and their strengths. The Fourier transform is commonly employed to compute
periodograms, decomposing signals into sine and cosine waves of varying amplitude
and frequency.

Welch’s approach is particularly useful for analyzing non-stationary signals as it
allows for the estimation of the PSD at multiple time points. To estimate the PSD of iEEG
signals using the Welch method, the iEEG signal is first divided into overlapping segments
of equal length. A window function, such as the Hamming window, is then applied to each
segment to reduce spectral leakage, and the periodogram of each segment is computed
using the fast Fourier transform (FFT) method. The periodograms are then averaged across
the segments to obtain an estimate of the PSD. For further information on these methods
and their implementation, refer to the literature cited in Refs. [65,66].

In this work, Welch’s method was used to estimate the PSD of the iEEG. Specifically, the
magnitude of the discrete-time Fourier transform of 59 overlapping blocks of 2 s duration
and 1 s step, weighted by a Hamming window, was averaged to obtain the spectral density
in each channel. The resulting spectral density in each channel was then normalized to a
total power, ensuring independence from the amplitude of the iEEG signal. The selection
of these parameters was based on the work by the creators of the MNI Open iEEG Atlas
(see Ref. [49–51]).

3. Results

This section presents the results of Shannon entropy and statistical complexity across
different brain regions in the left and right hemispheres of both male and female individuals,
using embedding dimensions of D = 6 and D = 5, with a time window of 15 s and a
delay of τ = 1. Additionally, power spectra and the complexity-entropy plane are shown
for those regions where significant differences between sexes were identified using the
Mann–Whitney U test.
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The first step involved examining the age distribution of the patients to account for
any potential age-related differences in the results. Table 1 displays the number of patients
(n), mean age, and standard deviation for each region. Within each region, the age ranges
for males and females were similar and fell within the standard deviation, which supported
the assumption that no significant disturbances in the calculated quantifiers arose from
age differences.

Table 1. Mean ages (in years) of patients in each analyzed region, along with their respective standard
deviation. ’n’ represents the number of patients.

Left Hemisphere
Female Male

Region n Mean std n Mean std
Superior parietal lobule 5 30 10 5 40 16

Supramarginal gyrus 7 27 9 7 40 12
Precuneus 5 26 9 7 30 12

Posterior cingulate 5 30 11 5 40 15
Supplementary motor cortex 5 29 7 8 37 9

Central operculum 5 24 6 8 35 9
Triangular part of inferior frontal gyrus 6 30 10 7 35 7

Middle frontal gyrus 10 29 8 13 36 6
Superior frontal gyrus and frontal pole 5 26 7 8 38 7

Precentral gyrus 6 25 6 12 30 11
Superior temporal gyrus 12 30 11 5 36 4
Middle temporal gyrus 13 30 10 9 35 7

Right Hemisphere
Female Male

Region n mean std n mean std
Postcentral gyrus (including medial segment) 7 20 10 7 30 11

Middle frontal gyrus 6 40 15 17 34 8
Superior temporal gyrus 6 30 12 5 30 10
Middle temporal gyrus 8 30 11 8 35 11

Differences in Shannon entropy and statistical complexity across different brain regions
in the left and right hemispheres of male and female individuals are presented in Table 2.
The analysis was conducted using the embedding dimension D = 6. Only regions with
a minimum of five female and five male patients were included in the analysis. For each
region, the mean and median values of Shannon entropy and statistical complexity were
calculated separately for males and females. The statistical significance of the differences
between male and female values was assessed using the Mann–Whitney U test, with
the results presented as p-values and h-index. Significant differences in both Shannon
entropy and statistical complexity between males and females were observed in certain
brain regions, as highlighted in the table. Conversely, the remaining regions showed no
significant differences between sexes for either measure.
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Table 2. Comparison of Shannon entropy and statistical complexity between males and females across different brain regions using D = 6.

Left Hemisphere
Shannon Entropy Statistical Complexity

Region Female Male Test Female Male Test
Mean Median Mean Median p-Value h Mean Median Mean Median p-Value h

Superior parietal lobule 0.35 0.35 0.37 0.37 1 × 10−5 1 0.64 0.59 0.69 0.70 0.05 0
Supramarginal gyrus 0.37 0.38 0.36 0.36 0.02 1 0.68 0.67 0.74 0.75 2 × 10−6 1

Precuneus 0.36 0.35 0.34 0.35 0.04 1 0.73 0.74 0.73 0.78 0.05 0
Posterior cingulate 0.33 0.34 0.31 0.31 0.01 1 0.77 0.78 0.81 0.81 0.01 1

Supplementary motor cortex 0.39 0.39 0.37 0.36 0.01 1 0.71 0.70 0.72 0.75 0.05 0
Central operculum 0.36 0.38 0.37 0.37 0.81 0 0.69 0.71 0.69 0.70 0.70 0

Triangular part of inferior frontal gyrus 0.34 0.35 0.36 0.36 0.03 1 0.75 0.75 0.73 0.73 0.19 0
Middle frontal gyrus 0.35 0.35 0.35 0.36 0.31 0 0.75 0.76 0.74 0.75 0.89 0

Superior frontal gyrus and frontal pole 0.36 0.36 0.36 0.37 0.92 0 0.72 0.71 0.70 0.72 0.50 0
Precentral gyrus 0.38 0.39 0.36 0.38 0.15 0 0.70 0.71 0.71 0.70 0.96 0

Superior temporal gyrus 0.36 0.36 0.36 0.36 0.64 0 0.66 0.68 0.65 0.66 0.43 0
Middle temporal gyrus 0.36 0.37 0.37 0.36 0.64 0 0.66 0.66 0.69 0.71 3 × 10−3 1

Right Hemisphere
Shannon Entropy Statistical Complexity

Region Female Male Test Female Male Test
mean median mean median p-value h mean median mean median p-value h

Postcentral gyrus (including medial segment) 0.37 0.37 0.38 0.38 0.07 0 0.66 0.65 0.68 0.68 0.29 0
Middle frontal gyrus 0.35 0.35 0.36 0.37 0.08 0 0.76 0.78 0.74 0.76 0.10 0

Superior temporal gyrus 0.36 0.35 0.37 0.37 0.06 0 0.74 0.74 0.65 0.66 3 × 10−7 1
Middle temporal gyrus 0.34 0.35 0.35 0.35 0.12 0 0.73 0.76 0.71 0.73 0.06 0
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The following figures display the PSD and complexity-entropy causality plane for
various brain regions in the left and right hemispheres. Each figure shows results from
both male and female patients, normalized to the total power in each channel. The format
is consistent across all figures: (A) and (B) present the median PSD for female and male
patients respectively (where the shaded area represents the interquartile range , IQR), (C)
shows the median PSD for both sexes, and (D) illustrates the complexity-entropy causality
plane for each sex using D = 6. Each scatter plot includes a boxplot for each sex, showing
the median, IQR, outliers, and the notch, which indicates the 95% confidence interval of
the median.

The figures correspond to the brain regions highlighted in Table 2, which showed
significant differences between males and females based on the statistical test with D =
6. These regions include the superior parietal lobule (Figure 2), supramarginal gyrus
(Figure 3), precuneus (Figure 4), posterior cingulate (Figure 5), supplementary motor cortex
(Figure 6), the triangular part of the inferior frontal gyrus (Figure 7), and the middle
temporal gyrus in the left hemisphere (Figure 8), as well as the superior temporal gyrus in
the right hemisphere (Figure 9).

In Table 2, using D = 6, it can be seen that differences between the entropy and
statistical complexity results for both biological sexes were observed in half of the analyzed
regions, as quantified by a Mann–Whitney test. The normalized spectral analysis of the
signals also revealed differences between the median results for both sexes. The figures
provide a qualitative analysis, showing not only the medians but also the dispersion of the
data through interquartile ranges (IQRs).

Superior Parietal Lobule Region in the Left Hemisphere

Figure 2. Power spectral density (PSD) and complexity-entropy causality plane of the superior
parietal lobule region in the left hemisphere. (A,B) PSD of female and male patients, respectively,
with the solid line representing the median and the shaded area representing the interquartile range
(IQR). (C) Median PSD of females and males. (D) Complexity-entropy causality plane using an
embedding dimension D = 6, a time delay τ = 1, and a temporal window of 15 s for females and
males. The boxplot shows the median, IQR, outliers, and the notch, which corresponds to the 95%
confidence interval of the median.
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Supramarginal Gyrus Region in the Left Hemisphere

Figure 3. Power spectral density (PSD) and complexity-entropy causality plane of the supra-
marginal gyrus region in the left hemisphere. (A,B) PSD of female and male patients, respectively,
with the solid line representing the median and the shaded area representing the interquartile range
(IQR). (C) Median PSD of females and males. (D) Complexity-entropy causality plane using an
embedding dimension D = 6, a time delay τ = 1, and a temporal window of 15 s for females and
males. The boxplot shows the median, IQR, outliers, and the notch, which corresponds to the 95%
confidence interval of the median.

Precuneus Region in the Left Hemisphere

Figure 4. Power spectral density (PSD) and complexity-entropy causality plane of the precuneus
region in the left hemisphere. (A,B) PSD of female and male patients, respectively, with the solid line
representing the median and the shaded area representing the interquartile range (IQR). (C) Median
PSD of females and males. (D) Complexity-entropy causality plane using an embedding dimension
D = 6, a time delay τ = 1, and a temporal window of 15 s for females and males. The boxplot shows
the median, IQR, outliers, and the notch, which corresponds to the 95% confidence interval of the
median.
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Posterior Cingulate Region in the Left Hemisphere

Figure 5. Power spectral density (PSD) and complexity-entropy causality plane of the posterior
cingulate region in the left hemisphere. (A,B) PSD of female and male patients, respectively, with
the solid line representing the median and the shaded area representing the interquartile range (IQR).
(C) Median PSD of females and males. (D) Complexity-entropy causality plane using an embedding
dimension D = 6, a time delay τ = 1, and a temporal window of 15 s for females and males. The
boxplot shows the median, IQR, outliers, and the notch, which corresponds to the 95% confidence
interval of the median.

Supplementary Motor Cortex in the Left Hemisphere

Figure 6. Power spectral density (PSD) and complexity-entropy causality plane of the supplemen-
tary motor cortex in the left hemisphere. (A,B) PSD of female and male patients, respectively, with
the solid line representing the median and the shaded area representing the interquartile range (IQR).
(C) Median PSD of females and males. (D) Complexity-entropy causality plane using an embedding
dimension D = 6, a time delay τ = 1, and a temporal window of 15 s for females and males. The
boxplot shows the median, IQR, outliers, and the notch, which corresponds to the 95% confidence
interval of the median.
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Triangular Part of Inferior Frontal Gyrus in the Left Hemisphere

Figure 7. Power spectral density (PSD) and complexity-entropy causality plane of the triangular
part of the inferior frontal gyrus in the left hemisphere. (A,B) PSD of female and male patients,
respectively, with the solid line representing the median and the shaded area representing the
interquartile range (IQR). (C) Median PSD of females and males. (D) Complexity-entropy causality
plane using an embedding dimension D = 6, a time delay τ = 1, and a temporal window of 15 s for
females and males. The boxplot shows the median, IQR, outliers, and the notch, which corresponds
to the 95% confidence interval of the median.

Middle Temporal Gyrus in the Left Hemisphere

Figure 8. Power spectral density (PSD) and complexity-entropy causality plane of the middle
temporal gyrus in the left hemisphere. (A,B) PSD of female and male patients, respectively, with the
solid line representing the median and the shaded area representing the interquartile range (IQR).
(C) Median PSD of females and males. (D) Complexity-entropy causality plane using an embedding
dimension D = 6, a time delay τ = 1, and a temporal window of 15 s for females and males. The
boxplot shows the median, IQR, outliers, and the notch, which corresponds to the 95% confidence
interval of the median.
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Superior Temporal Gyrus in the Right Hemisphere

Figure 9. Power spectral density (PSD) and complexity-entropy causality plane of the superior
temporal gyrus in the right hemisphere. (A,B) PSD of female and male patients, respectively, with
the solid line representing the median and the shaded area representing the interquartile range (IQR).
(C) Median PSD of females and males. (D) Complexity-entropy causality plane using an embedding
dimension D = 6, a time delay τ = 1, and a temporal window of 15 s for females and males. The
boxplot shows the median, IQR, outliers, and the notch, which corresponds to the 95% confidence
interval of the median.

In the left hemisphere, seven regions with significant differences were identified for
D = 6. In the superior parietal lobule, the median complexity and entropy values showed
disjoint notches in the boxplots, and the statistical test indicated that the entropy values
come from different distributions (Figure 2D). Figure 2C shows that the PSD had a peak
for both men and women. For women, this peak was located at the boundary of the θ − α
bands, while for men, it was shifted towards the α band.

The supramarginal gyrus region exhibited differences in the PSD spectra. A peak was
observed in the spectrum for women at the end of the θ band, while the male spectrum
lacked peaks in both the θ and γ bands (Figure 3C). The complexity-entropy plane also
showed differences, with notched medians indicating distinct distributions for men and
women (Figure 3D), as confirmed by statistical testing.

Similar patterns were observed in the precuneus region. The female PSD displayed a
peak between the θ − α bands, whereas no peaks were seen in the male PSD within these
regions (Figure 4C). Although the notches in the medians had some overlap (Figure 4D),
the statistical test revealed differences in entropy values between men and women.

In the posterior cingulate region (Figure 5), both spectra showed a small peak in
the boundary between the δ and θ bands, with the male peak shifted to slightly lower
frequencies (Figure 5C). Regarding complexity and entropy (Figure 5D), while some overlap
was observed between the notches in entropy, the values for complexity were well separated.
Statistical tests indicated that the distributions for both quantifiers were different.

The supplementary motor cortex presented a peak at the beginning of the θ band in
both spectra. However, as frequencies increased, differences emerged: the female spectrum
showed a peak in the β band, which was absent in the male spectrum (Figure 6C). Although
the medians for complexity and entropy were well differentiated with non-overlapping
notches, statistical tests revealed significant differences only for entropy (Figure 6D).
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In the triangular part of the inferior frontal gyrus region, both spectra showed a peak
in the θ band, but the female peak was shifted toward lower frequencies. Additionally,
the male PSD featured a second peak centered in the α band which was not present in the
female spectrum (Figure 7). Despite overlapping notches in the medians for complexity
and entropy, statistical tests indicated differences between sexes for entropy.

The middle temporal gyrus region showed differences between the θ and α bands in
the PSD. A peak in the female spectrum occurred at the boundary between these bands,
whereas the male spectrum displayed two peaks in the α band (Figure 8C). While entropy
medians were well differentiated, complexity medians presented overlapping notches
(Figure 8D). Statistical tests revealed significant differences in complexities, but not in
entropies.

In the right hemisphere, among the four regions with acceptable statistics, only the
superior temporal gyrus region displayed differences for D = 6. Both spectra showed a
peak, with the female peak located between the θ and α bands, and the male peak shifted to
the left in the θ band with higher amplitude (Figure 9C). Non-overlapping notches for both
entropy and complexity were observed (Figure 9D), but statistical tests revealed significant
differences only for complexity.

To improve the statistics of BP and ensure that the length of the time series (M) was
much greater than D!, an embedding dimension of D = 5 was used with the same time
window. Results for mean, median, and statistical tests of Shannon entropy and statistical
complexity using D = 5 are presented in Table 3.

With D = 5, the regions of the supramarginal gyrus, posterior cingulate, supplemen-
tary motor cortex, and middle temporal gyrus in the left hemisphere showed differences
between males and females. Shannon entropy differences were detected in the first three
regions, while all four regions displayed differences in statistical complexity. In the right
hemisphere, differences were observed in two regions: the superior temporal gyrus, which
showed differences in both quantifiers, and the middle temporal gyrus, which showed
differences in entropy.

In summary, significant differences were observed in both D = 6 and D = 5 analyses in
the following regions: the supramarginal gyrus, the posterior cingulate, the supplementary
motor cortex, and the middle temporal gyrus in the left hemisphere, and the superior
temporal gyrus in the right hemisphere.
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Table 3. Comparison of Shannon entropy and statistical complexity between males and females across different brain regions using D = 5.

Left Hemisphere
Shannon Entropy Statistical Complexity

Region Female Male Test Female Male Test
Mean Median Mean Median p-Value h Mean Median Mean Median p-Value h

Superior parietal lobule 0.27 0.30 0.28 0.28 0.98 0 0.68 0.63 0.73 0.74 0.09 0
Supramarginal gyrus 0.28 0.29 0.26 0.26 0.001 1 0.71 0.71 0.77 0.78 2 × 10−6 1

Precuneus 0.26 0.25 0.25 0.24 0.10 0 0.77 0.78 0.77 0.81 0.07 0
Posterior cingulate 0.23 0.24 0.20 0.21 0.01 1 0.81 0.81 0.84 0.84 0.01 1

Supplementary motor cortex 0.29 0.30 0.27 0.26 0.05 1 0.74 0.73 0.76 0.78 0.05 1
Central operculum 0.27 0.29 0.28 0.28 0.90 0 0.73 0.75 0.73 0.73 0.74 0

Triangular part of inferior frontal gyrus 0.25 0.25 0.26 0.26 0.05 0 0.78 0.79 0.76 0.77 0.15 0
Middle frontal gyrus 0.25 0.25 0.25 0.26 0.30 0 0.78 0.79 0.78 0.79 0.96 0

Superior frontal gyrus and frontal pole 0.27 0.26 0.27 0.27 0.58 0 0.76 0.75 0.74 0.76 0.52 0
Precentral gyrus 0.29 0.29 0.27 0.29 0.49 0 0.74 0.74 0.74 0.74 0.99 0

Superior temporal gyrus 0.28 0.29 0.28 0.28 0.79 0 0.69 0.72 0.69 0.70 0.47 0
Middle temporal gyrus 0.28 0.29 0.27 0.27 0.10 0 0.69 0.70 0.72 0.75 0.003 1

Right Hemisphere
Shannon Entropy Statistical Complexity

Region Female Male Test Female Male Test
mean median mean median p-value h mean median mean median p-value h

Postcentral gyrus (including medial segment) 0.29 0.29 0.29 0.30 0.64 0 0.69 0.69 0.72 0.72 0.30 0
Middle frontal gyrus 0.25 0.25 0.26 0.26 0.07 0 0.80 0.81 0.77 0.79 0.10 0

Superior temporal gyrus 0.26 0.26 0.29 0.29 2 × 10−4 1 0.77 0.77 0.69 0.70 4 × 10−7 1
Middle temporal gyrus 0.24 0.24 0.26 0.26 0.05 1 0.77 0.79 0.75 0.76 0.05 0
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4. Discussions

In summary, the findings of this study indicate that biological sex-based differences in
brain function can be detected through iEEG signal analysis. These variations are evident
in multiple brain regions, affecting both spectral characteristics and measures of complexity
and entropy.

Further research is needed to explore the underlying causes of these differences. The
invasive nature of iEEG signal collection prevents its application to healthy subjects, re-
sulting in a restricted amount of LFP data from normal brain regions. However, despite
constraints on patient numbers per region, iEEG analysis offers unparalleled spatial res-
olution compared to EEG, enabling the capture of region-specific LFPs and allowing for
comparisons across sexes. Additionally, signals collected from electrodes implanted directly
in the brain minimize attenuation caused by the skull and other tissues, a common issue
with EEG, leading to less interference. These advantages come with challenges, as the
“healthy” regions analyzed originate from the brains of epilepsy patients. This not only
limits the dataset size but may also introduce bias, as the signals are taken from regions
deemed “normal”, rather than from truly “healthy” individuals.

To address potential factors influencing the results, a strategy was employed to adjust
for age within the analyzed sample, despite its limited size. The dataset was subsampled
to include five patients for each region, aiming to minimize age differences between males
and females while reducing standard deviations. The results of this analysis are detailed
in this Section for the interested reader. The tables for D = 6 show that the number of
regions exhibiting differences increased under this restriction (see Tables 4 and 5) in both
hemispheres. Additionally, Table 6 provides the results of a significance analysis using
the Benjamini–Hochberg FDR correction for D = 5 and D = 6, applied to both the entire
patient cohort and the subsets created to minimize differences and deviations. Reducing
age differences in the dataset helps to minimize the impact of age-related variables or
confounding factors that could introduce noise or skew the results. By reducing age
variability between groups (i.e., males and females), the analysis can more directly focus on
the effects of the variables of interest, reducing the influence of age as a potential source of
noise or bias. This approach also increases sensitivity to variations attributable to biological
sex, reinforcing the current findings.

Neuroscience research must increasingly acknowledge the vast diversity present
in human brains. A key step in this direction is adopting a binary, proportional, and
inclusive segmentation based on common biological classifications of male and female. To
better understand brain dynamics, it is essential to reduce biases in sample selection and
analyze the data both collectively and separately. Future research should also investigate
whether these differences persist when considering perceived gender identity and hormonal
backgrounds, as these factors can significantly influence brain structure and function.
Incorporating these variables could provide a more comprehensive understanding of brain
dynamics and help mitigate biases in neuroscience research.

This study found that both Shannon entropy and MPR statistical complexity can
serve as sensitive biomarkers for biological sex in iEEG from awake patients. Recently,
we proposed a framework constructed with Renyi entropy and its generalized statistical
complexity, where we detected sex-based differences related to scale-free phenomena in
non-REM sleep stages N1 and N2, as well as REM sleep [67].

These findings underscore the necessity of addressing biases in experimental design.
Including both males and females in the study population is crucial for ensuring that results
are representative and not skewed by gender imbalances. Differences in average brain
dynamics between sexes highlight the importance of inclusivity and equality in research.
Despite advancements in gender equality, preclinical neuroscience often inadvertently
excludes women, leading to biased data and conclusions. Thus, considering biological sex
and gender differences is essential for obtaining a comprehensive understanding of brain
function. Incorporating these variables into future studies could enhance our understanding
of brain dynamics and contribute to reducing biases in neuroscience research.
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Table 4. Mean ages (in years) of patients selected to minimize differences in mean values between
males and females for each analyzed region, along with their respective standard deviations.

Left Hemisphere
Female Male

Region Mean sd Mean sd
Superior parietal lobule 29 10 41 16

Supramarginal gyrus 30 9 32 10
Precuneus 26 9 29 8

Posterior cingulate 28 11 38 15
Supplementary motor cortex 29 7 33 10

Central operculum 24 6 31 8
Triangular part of inferior frontal gyrus 33 10 33 7

Middle frontal gyrus 31 9 31 6
Superior frontal gyrus and frontal pole 26 7 34 6

Precentral gyrus 26 6 26 6
Superior temporal gyrus 36 13 36 4
Middle temporal gyrus 34 8 34 5

Right Hemisphere
Female Male

Region mean sd mean sd
Postcentral gyrus (including medial segment) 27 10 27 8

Middle frontal gyrus 37 16 37 8
Superior temporal gyrus 32 13 33 10
Middle temporal gyrus 36 9 36 13
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Table 5. Comparison of Shannon entropy and statistical complexity between males and females across different brain regions, using D = 6 for the five patients of
each sex selected to minimize differences in mean age values and standard deviations. h: null hypothesis; sd: standard deviation. Light gray shading indicates
regions with sex differences in one quantifier, while bold gray shading represents regions where both quantifiers showed sex differences.

Left Hemisphere
Shannon Entropy Statistical Complexity

Region Female Male Test Female Male Test
Mean Median sd Mean Median sd p-Value h Mean Median sd Mean Median sd p-Value h

Superior parietal lobule 0.64 0.59 0.13 0.69 0.705 0.081 0.05 0 0.352 0.355 0.026 0.370 0.375 0.020 1 × 10−5 1
Supramarginal gyrus 0.675 0.657 0.090 0.76 0.758 0.051 3 × 10−6 1 0.366 0.368 0.022 0.355 0.354 0.035 0.09 0

Precuneus 0.732 0.742 0.055 0.72 0.779 0.115 0.27 0 0.359 0.350 0.029 0.343 0.348 0.020 0.08 0
Posterior cingulate 0.774 0.777 0.056 0.81 0.810 0.047 0.01 1 0.333 0.343 0.042 0.306 0.307 0.039 0.01 1

Supplementary motor cortex 0.708 0.697 0.041 0.68 0.686 0.095 0.38 0 0.385 0.393 0.028 0.374 0.378 0.022 0.02 1
Central operculum 0.69 0.71 0.11 0.681 0.690 0.074 0.45 0 0.361 0.376 0.041 0.373 0.376 0.021 0.71 0

Triangular part of inferior frontal gyrus 0.749 0.751 0.071 0.73 0.732 0.068 0.37 0 0.343 0.346 0.045 0.353 0.354 0.033 0.18 0
Middle frontal gyrus 0.734 0.738 0.052 0.71 0.736 0.069 0.27 0 0.367 0.365 0.029 0.377 0.378 0.022 0.04 1

Superior frontal gyrus and frontal pole 0.722 0.714 0.073 0.67 0.689 0.107 0.02 1 0.362 0.362 0.043 0.367 0.375 0.027 0.86 0
Precentral gyrus 0.690 0.702 0.072 0.74 0.772 0.131 4 × 10−3 1 0.389 0.392 0.027 0.333 0.354 0.098 3 × 10−5 1

Superior temporal gyrus 0.689 0.673 0.059 0.65 0.663 0.100 0.16 0 0.377 0.383 0.022 0.359 0.363 0.019 2 × 10−4 1
Middle temporal gyrus 0.578 0.556 0.088 0.67 0.682 0.088 3 × 10−5 1 0.376 0.378 0.016 0.372 0.372 0.015 0.23 0

Right Hemisphere
Shannon Entropy Statistical Complexity

Region Female Male Test Female Male Test
mean median sd mean median sd p-value h mean median sd mean median sd p-value h

Postcentral gyrus (including medial segment) 0.625 0.640 0.091 0.697 0.701 0.084 1 × 10−3 1 0.378 0.381 0.026 0.363 0.369 0.025 0.04 1
Middle frontal gyrus 0.765 0.778 0.071 0.795 0.802 0.056 0.01 1 0.349 0.355 0.044 0.326 0.320 0.039 5 × 10−3 1

Superior temporal gyrus 0.731 0.734 0.071 0.650 0.657 0.082 1 × 10−6 1 0.359 0.366 0.030 0.370 0.369 0.014 0.2 0
Middle temporal gyrus 0.71 0.79 0.12 0.73 0.77 0.10 0.9 0 0.331 0.313 0.036 0.341 0.339 0.023 0.1 0
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Table 6. Results of the Benjamini–Hochberg FDR correction and significance analysis. Light gray shading indicates cases where sex differences were identified.

Left Hemisphere
D = 6 D = 6 (5 Patients) D = 5

H C H C H CRegion
pvc Ho pvc Ho pvc Ho pvc Ho pvc Ho pvc Ho

Superior parietal lobule 0.11 F 2.10 × 10−4 T 0.09 F 2.10 × 10−4 T 0.17 F 1.18 × 10−4 T
Supramarginal gyrus 2.27 × 10−5 T 0.13 F 2.40 × 10−5 T 0.14 F 1.62 × 10−5 T 0.14 F

Precuneus 0.36 F 0.13 F 0.36 F 0.14 F 0.16 F 0.14 F
Posterior cingulate 0.03 T 0.04 T 0.02 T 0.03 T 0.04 T 0.03 T

Supplementary motor cortex 0.41 F 0.06 F 0.43 F 0.05 F 0.13 F 0.05 F
Central operculum 0.45 F 0.76 F 0.48 F 0.76 F 0.85 F 0.76 F

Triangular part of inferior frontal gyrus 0.41 F 0.22 F 0.43 F 0.24 F 0.24 F 0.24 F
Middle frontal gyrus 0.36 F 0.11 F 0.36 F 0.08 F 0.99 F 0.09 F

Superior frontal gyrus and frontal pole 0.05 F 0.86 F 0.04 T 0.86 F 0.64 F 0.86 F
Precentral gyrus 0.01 T 2.10 × 10−4 T 0.01 T 2.10 × 10−4 T 0.99 F 1.40 × 10−4 T

Superior temporal gyrus 0.26 F 9.33 × 10−4 T 0.26 F 9.33 × 10−4 T 0.63 F 7.00 × 10−4 T
Middle temporal gyrus 1.58 × 10−4 T 0.26 F 1.60 × 10−4 T 0.26 F 0.02 T 0.28 F

Right Hemisphere
D = 6 D = 6 (5 patients) D = 5

H C H C H CRegion
pvc Ho pvc Ho pvc Ho pvc Ho pvc Ho pvc Ho

Postcentral gyrus (including medial segment) 0.36 F 0.13 F 4.00 × 10−3 T 0.08 F 0.44 F 0.34 F
Middle frontal gyrus 0.18 F 0.13 F 0.02 T 0.02 T 0.17 F 0.15 F

Superior temporal gyrus 5.18 × 10−6 T 0.13 F 0.00 T 0.25 F 6.88 × 10−6 T 6.88 × 10−6 T
Middle temporal gyrus 0.12 F 0.16 F 0.90 F 0.15 F 0.13 F 0.10 F
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5. Conclusions

This study examined biological sex differences in statistical complexity MPR, Shannon
entropy, and power spectral density (PSD) across various regions of the brain. Significant
variations in Shannon entropy and statistical complexity were detected between males and
females in certain brain areas, with these differences persisting across multiple analyses.
The regions where these distinctions were observed, both in power spectra analyses and
when computing entropy and complexity with embedding dimensions D = 5 and D = 6,
include the supramarginal gyrus, posterior cingulate, supplementary motor cortex, and
middle temporal gyrus in the left hemisphere, and in the right hemisphere, the superior
temporal gyrus.

Overall, this study supports the notion that biological sex-based distinctions exist in
brain function. Furthermore, it suggests that statistical complexity, Shannon entropy, and
PSD can serve as sensitive biomarkers for identifying these variations. Differences related
to biological sex and scale-free dynamics have also been found in this atlas when analyzing
non-REM stages N2 and N3, as well as REM sleep, in another study [67]. Moreover,
due to limited data, this study did not consider the impact of gender identity on the
outcomes, and the number of patients by area was limited. Future investigations will aim
for a more comprehensive analysis, including filtering by frequency bands and exploring
high-frequency oscillation behavior to compare neural activity between sexes.

This research underscores the importance of recognizing sex as a biological variable
when designing and conducting studies in the field of neuroscience.
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