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A B S T R A C T

Artificial intelligence (AI) in animal behavior and welfare research is on the rise. AI can detect behaviors and 
localize animals in video recordings, thus it is a valuable tool for studying social dynamics. However, main
taining the identity of individuals over time, especially in homogeneous poultry flocks, remains challenging for 
algorithms. We propose using differentially colored “backpack” tags (black, gray, white, orange, red, purple, and 
green) detectable with computer vision (eg. YOLO) from top-view video recordings of pens. These tags can also 
accommodate sensors, such as accelerometers. In separate experiments, we aim to: (i) evaluate avian visual 
perception of the different colored tags; (ii) assess the potential impact of tag colors on social behavior; and (iii) 
test the ability of the YOLO model to accurately distinguish between different colored tags on Japanese quail in 
social group settings. First, the reflectance spectra of tags and feathers were measured. An avian visual model was 
applied to calculate the quantum catches for each spectrum. Green and purple tags showed significant chromatic 
contrast to the feather. Mostly tags presented greater luminance receptor stimulation than feathers. Birds 
wearing white, gray, purple, and green tags pecked significantly more at their own tags than those with black 
(control) tags. Additionally, fewer aggressive interactions were observed in groups with orange tags compared to 
groups with other colors, except for red. Next, heterogeneous groups of 5 birds with different color tags were 
videorecorded for 1 h. The precision and accuracy of YOLO to detect each color tag were assessed, yielding 
values of 95.9% and 97.3%, respectively, with most errors stemming from misclassifications between black and 
gray tags. Lastly using the YOLO output, we estimated each bird’s average social distance, locomotion speed, and 
the percentage of time spent moving. No behavioral differences associated with tag color were detected. In 
conclusion, carefully selected colored backpack tags can be identified using AI models and can also hold other 
sensors, making them powerful tools for behavioral and welfare studies.

Introduction

Artificial intelligence (AI) is an important tool for achieving Preci
sion Livestock Farming (Li et al., 2020, 2021a; Ojo et al., 2022) and 
enhancing the efficiency of experimental research programs. By pairing 

cameras and body-mounted sensors with AI models, animal behavior 
and location can be monitored remotely and automatically over 
extended periods. However, each technological approach has its own set 
of strengths and limitations. For instance, cameras paired with real-time 
object detection AI systems can effectively detect elements in images (e. 
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g. birds), evaluate spatial use, monitor activity and identify key be
haviors such as dustbathing (Sozzi et al., 2022), feather pecking (Subedi 
et al., 2023), stretching (Li et al., 2021b), eating, resting, and drinking 
(Fang et al., 2021; Li et al., 2020; Neethirajan, 2022; Ojo et al., 2022). 
However, the analysis is limited to the camera’s field of vision, which 
can be a limitation in large, complex environments such as farms. In 
contrast, body-mounted sensors, such as radio frequency identification 
(RFID), ultra-wideband (UWB), and accelerometers, are not constrained 
by the environment. However, the technology is not yet as cost-effective 
or as easily accessible as cameras. RFID and UWB can provide the 
location of each bird outfitted with a sensor in laboratory settings, barns 
and aviaries (Baxter and O’Connell, 2023; Doornweerd et al., 2023; Li 
et al., 2020; van der Sluis et al., 2020). With accelerometers, 
high-resolution time series of a wide variety of poultry behaviors can be 
obtained simultaneously at an individual level, including activity levels 
(Cassey-Trott, 2018; Dawson et al., 2021; Derakhshani et al., 2022; 
Pearce et al., 2024; Shahbazi et al., 2023), jumping/landing (Banerjee 
et al., 2014), dustbathing (Fonseca et al., 2024), male reproductive be
haviors (Rossi et al., 2024), as well as other behaviors related to 
self-maintenance (e.g. grooming), feeding (e.g. food seeking, food and 
water intake), interactions with conspecifics (e.g. self-defense), and in
teractions with sensors (e.g. pecking at sensors) (Fujinami et al., 2023; Li 
and Chai, 2023; Li et al., 2021a; Mei et al., 2023; Pearce et al., 2024; 
Yang et al., 2021). Thus, an integrated technological approach could 
provide a comprehensive perspective on animal behavior, welfare and 
production. The key advantage of integrating various sensors with AI is 
the potential to offer a real-time and continuous overview of the indi
vidual birds’ status (Ben Sassi et al., 2016; Rowe et al., 2019) and 
location (Doornweerd et al., 2024). This would enable rapid in
terventions that benefit the flocks (Ben Sassi et al., 2016; Rowe et al., 
2019) and help to improve poultry health and welfare (Ojo et al., 2022).

Recently, real-time object detection systems such as YOLO ("You 
Only Look Once") with state-of-the-art performance in terms of accu
racy, speed, and network size (Badgujar et al., 2024) have become easily 
accessible. YOLO can be trained to identify elements in an image, such as 
chickens, and has been used in poultry houses and coops (Marin et al., 
2024; Neethirajan, 2022) and research settings (Sozzi et al., 2022; 
Subedi et al., 2023; Yang et al., 2021). Moreover, YOLO can be used with 
a tracking-by-detection algorithm to maintain the identity of a specific 
animal in a group (Doornweerd et al., 2023; Doornweerd et al., 2024; 
Jaihuni et al., 2023; Neethirajan, 2022) at least over short intervals of 
time (Doornweerd et al., 2024). Tracking algorithms are especially 
powerful if there are phenotypic differences between individuals and 
groups are small (Okinda et al., 2020). However, within poultry flocks 
where age, size and color are fairly uniform, maintaining the identity of 
each individual over prolonged periods of time still remains a challenge 
for computer vision models. In a recent study, Doornweerd et al. (2024)
observed 1,952 losses of identification of individuals (ID-losses) in a 
flock of 39 broilers during an approximately 2 h test. Their results led the 
authors to conclude that future studies which require maintaining bird 
identities (e.g. locomotion) must address not only the issue of the al
gorithm switching animal’s ID and the optimization of the tracking al
gorithm, but also the necessity of incorporating an external animal 
identification system (e.g., passive radio frequency identification) 
(Doornweerd et al., 2024).

The need to maintain the identity of individuals within relatively 
homogenous flocks for research and management purposes is not a novel 
problem. This inconvenience in the past has been solved by marking 
animals with numbered and/or colored tags (Derakhshani et al., 2022; 
Fujinami et al., 2023; Shahbazi et al., 2023) or even by painting the 
birds’ feathers (Dennis et al., 2008; Marin et al., 2014). However, 
changes in the phenotypic appearance in poultry and other avian species 
under certain circumstances have also been proven to alter their be
haviors, reproductive success, and social and rank-related interactions 
(Burley, 1988; Campderrich et al., 2017; Dennis et al., 2008; Johnsen 
et al., 2000; Johnsen et al., 1997; Liste and Estevez, 2023; Marin et al., 

2014). For example, in broilers, increased aggressions toward marked 
animals have been observed when a small proportion of individuals in 
the group are marked (Dennis et al., 2008). It is also important to note 
that birds perceive colors differently than humans, as they not only vary 
in the sensitivity of their visual cones but also in their density and color 
processing (Tanaka, 2015). Thus, the particular way in which in
dividuals experience their environment (i.e. “Umwelt”), which depends 
on the capacity of the sensory organs to generate an interpretation of it, 
must be taken into account (Bueno-Guerra, 2018). Most diurnal birds 
have relatively uniform tetrachromatic color vision systems based on 
four types of single cones expressing four functional options: SWS1, 
SWS2, Rh2 and LWS (Kelber, 2019). The main variation is found in the 
SWS1-based pigments, which can either peak in the ultraviolet (UV) 
range between 355 and 370 nm or, as in the case of Galliformes, in the 
violet (V) range between 402 and 424 nm (Kelber, 2019). Therefore, 
following the conceptualization of the animalś “Umwelt”, it is highly 
relevant to determine how the animal under study may perceive the 
elements in its environment through its senses (Bueno-Guerra, 2018), in 
this case, the color of the tags that will be used for their later 
identification.

The possibility of tracking the position of each animal within a social 
group over prolonged periods of time (e.g., days or weeks) using AI is an 
extremely promising prospect for the field of poultry behavior, welfare, 
and production. How an animal moves and occupies its environment can 
provide valuable information regarding social dynamics (François et al., 
1999). Inter-individual distance maintained between animals depends 
to a large extent on conflicting tendencies to approach and withdraw 
from conspecifics (Jones et al., 1999). For example, during agonistic 
encounters, an individual may increase the distance separating it from 
others. However, after distancing, social species will also be highly 
motivated to reinstate social contact by re-approaching conspecifics 
(François et al., 1999). Spatial usage by each animal can also be assessed 
using heatmaps, which indicate more or less frequently used areas and 
provide information regarding potential territoriality (Baxter et al., 
2023). Lastly, from spatial coordinates, the locomotor dynamics of each 
individual can also be studied (Barberis et al., 2023; Guzman et al., 
2017; Kembro et al., 2023), offering not only additional information 
regarding social structures (Alcala et al., 2019; Guzman et al., 2013) but 
also indirect information regarding health and welfare. Fearful, sick, or 
injured animals tend to remain less active than healthy, non-fearful birds 
(Jones, 1996).

We propose using 7 colored (black, gray, white, orange, red, purple, 
and green) tags in the form of backpacks that can be detected by AI 
models like YOLO through top-view videos of the pens. These backpacks 
were designed to hold small light-weight accelerometers; thus they 
could be used both for marking individuals and for accelerometer re
cordings. Previous studies have shown that black backpack tags do not 
significantly affect Japanese quail behavior after habituation (Rossi 
et al., 2024). However, as stated previously, a bird’s perception of 
certain colors could affect its behavior. In this study, through indepen
dent experiments, we aimed to: i) evaluate the avian visual perception of 
the colored tags; ii) assess the potential effects of tag colors on social 
behavior; and iii) test the AI model’s ability to distinguish and track 
different color tags on birds within social groups.

Materials and methods

Japanese quails (Coturnix japonica) were used as the animal model. 
Experiments were conducted according to the "Guide for the Care and 
Use of Laboratory Animals" published by the US National Institute of 
Health (NIH, publication 85-23, revision 1996), and the experimental 
protocol was approved by the Institutional Animal Care and Use Com
mittee (CICUAL) of the Institute for Biological and Technological 
Research (IIByT, UNC-CONICET) Acta n◦ 28.
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Animals and husbandry

After hatching, 200 chicks were housed in 15 breeding pens of 90 cm 
x 45 cm x 45 cm (length x height x width) with a plastic floor covered 
with rice husk substrate and wire mesh walls. Chicks were initially 
housed in mixed sex groups of 50 to 60 individuals. Each breeding pen 
was equipped with a brooder plaque measuring 20 cm x 30 cm (width x 
length) with an adjustable height. The brooder consists of a thermostatic 
metal plate calibrated at 37◦C, surrounded by fabric curtains that pre
vent heat loss. This system allows the chicks to freely move in and out 
from underneath the brooder, helping them regulate their body tem
perature. The room temperature was set at 24◦C. The quails were sub
jected to a daily 14:10 h light/dark regime under LED lighting with an 
intensity of 300 lux, and food and water were supplied ad libitum. Birds 
were monitored daily. At 28 d of age sex was determined by plumage 
coloration and males were removed from pens. Stocking density was 
adjusted to ensure that only 8 females remained in each pen (500 cm2/ 
bird), exceeding minimum space breeding recommendations (El Sabry 
et al., 2022), and the brooder plate was removed. At least 1 week before 
testing, stocking density was further adjusted to either 3 or 5 females 
according to each experimental procedure (see details below). Testing 
was performed on birds between 150 and 180 d of age.

Colored accelerometer tags

Previous studies have shown that a backpack-type tag is a suitable 
method for holding accelerometers in behavioral studies (Banerjee et al., 
2014; Fonseca et al., 2024; Rossi et al., 2024; Fujinami et al., 2023; 
Shahbazi et al., 2023; Simian et al., 2022). Plastic backpacks were 3D 
printed in seven different colors to identify animals in behavioral 
studies: black, white, gray, orange, red, purple, and green (Fig. 1).

Experiment 1: avian visual perception of colored tags

Five feathers were manually extracted from the dorsal/mantle area 
of five randomly selected birds between 150 and 180 d old and placed in 
sealed plastic Ziploc bags. Feathers from the same bird were mounted 
one on top of each other. The coloration of each bird́s feathers and the 
backpacks of each different color were measured using an Ocean Optics 
USB4000 spectrophotometer (Ocean Optics, Inc., Florida, USA), with 
data acquisition performed via SpectraSuite software (Ocean Insights, 
Rostock, Germany). Measurements were performed every 0.20 nm using 
a USB2000 miniature fiber optic spectrophotometer (Ocean Optics, Inc., 
Florida, USA) with a deuterium-tungsten halogen lamp to provide 
standardized illumination and a UV-visible reflection/backscatter probe 
with a wavelength range between 300 and 1100 nm. The probe was 
inserted into a rectangular prism holder at 45◦ to avoid specular re
flections with its head placed at the bottom of the prism at an approx
imate distance of 3 mm from the sampled surface. Reflectance was 
measured relative to a white standard (Ocean Optics, WS-1-SS White 
Standard) and dark standard (lamps switched off and probe covered); 
both standards were reset between measurements to account for envi
ronmental fluctuations. Backpack samples were taken from the top view, 
as this was visually observable during experimentation.

Spectra were imported in R, trimmed to the wavelength interval of 
300 to 700 nm, and subsequently smoothed (Maia et al., 2019). For each 
spectrum, colorimetric variables (hue, brightness and saturation) were 
calculated. To quantify the visual stimulation generated by the colors to 
an avian viewer, spectra were converted to quantum catches using Pavo 
cristatus cone values, and chromatic (dS) and achromatic (dL) color 
contrasts were calculated between feathers and backpacks using the 
functions vismodel and coldist of the R package pavo: Perceptual Anal
ysis, Visualization and Organization of Spectral Colour Data (Maia et al., 
2013; Maia et al., 2019).

Fig. 1. Experimental protocol. (a-e) Top panels represent photographs of experimental equipment. (a) Pavo cristatus visual model adapted from (Hart, 2002; Vor
obyev, 2003). (b) Example of black backpack tag. (c) Experimental pen. (d) Color tags. (e) Female Japanese quail with orange tag. (f-h) An illustrative image as well 
as a brief description of each experiment is provided. (f) Reflectance spectra of backpacks (solid line, with colors representing the color of the tag) and feathers fom 
different birds (discontinuous lines). A larger version of this panel is provided as Supplementary Fig. 1. (g) Experimental pen with three quails with an orange label. 
(h) Experimental pen with five quails with different colors tags (white, black, gray, red, and green).
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Experiment 2. Social behavior in groups with uniformly colored tags

In this experiment, 35 groups of 3 adult females between 150 and 
180 d old were tested. First, during an initial week-long habituation 
period, each individual was fitted with a black backpack (Fig. 1b) 
(Fonseca et al., 2024). After this habituation period, 5 groups were 
moved to the experimental room, and placed in experimental pens of 
118 cm x 45 cm x 45 cm (length x height x width), with white melamine 
walls and floor. The floor was covered with cardboard and rice husk 
substrate. The experimental pens were provided with 2 tolva-type 
feeders and 2 bell-type drinkers, positioned on the four sides of the 
pen, as shown in Fig. 1c. In addition, they had two 13 cm x 15 cm visual 
barriers in the middle of the box. A suspended camera was placed 1 m 
above each experimental pen (Fig. 1c). All cameras were connected by 
closed-circuit to a DVR. Each group was randomly assigned to one of the 
tag colors (black, white, gray, orange, red, purple and green; Fig. 1d) 
and their initially fitted black tags were replaced with the newly 
assigned color tags (Fig. 1e,g). All tests began at approximately 14:00 h. 
The females remained undisturbed until 12:00 h the next day. This 
procedure was repeated until all 35 groups were tested, prioritizing that 
different color groups be represented in each repetition.

From the video recordings, a behavioral analysis of the birds was 
carried out immediately after the colored tags were placed on the birds. 
Social interaction time series were obtained by visually observing video 
recordings and using the ANY-maze™ (Illinois, USA) interface to reg
ister pecking behavior. For each bird, a behavioral event was recorded 
by pressing the corresponding key continuously while the bird was 
performing the specific behavior and releasing the key once the behavior 
ended. The number of events of the following behaviors were obtained 
for each individual within the group: 

- Pecks at conspecifićs tag: the bird uses its beak to touch the con
specific’s tag (Simian et al., 2024).

- Pecks at own tag: during preening intervals, the bird turns its neck 
and pecks at its own tag (Simian et al., 2024).

- Pecks performed towards conspecifics: the bird uses its beak to touch 
a conspecifićs head or body in an area where the tag is not positioned 
(Caliva et al., 2019).

- Pecks received from conspecifics: the bird receives pecks from con
specifics on its head or body in an area where the tag is not posi
tioned (Caliva et al., 2019).

The observer analyzed each video three times, once for each animal 
in the group. The animals were previously identified by their location in 
the pen at the beginning of the analysis. All data analysis and technical 
validation were performed by a trained and experienced observer (Rossi 
et al., 2024).

Experiment 3. AI tracking and social dynamics in groups with 
heterogeneous tag colors

The experimental setup was similar to that of Experiment 2, with a 
few key differences. Ten groups of 5 adult females were tested. After the 
habituation period with black tags, each bird had its tag replaced so that 
all individuals in the same group had different color tags (Fig. 1h). In 
addition to black tags, white tags were also employed as controls due to 
their high contrast with the birds’ feathers. This resulted in the following 
combination, where each of the other colors (i.e., gray, orange, purple, 
red, and green) are represented equally and no colors are repeated 
within a group: 

(1) White – Black – Gray – Orange - Purple.
(2) White - Black - Gray - Orange - Green.
(3) White - Black - Gray - Red - Green.
(4) White - Black - Orange – Purple - Red.
(5) White - Black – Red - Purple – Green.

Each combination was tested twice, resulting in 10 experimental 
groups. All tests began at approximately 14:00 h, and birds remained 
undisturbed during the following 4 d period. As explained below, these 
video recordings were used both to test the capability of the AI tracking 
algorithm to identify quails according to the tag color and to evaluate 
the temporal dynamics of spatial use and social dynamics within the 
groups. For this, video-recordings were converted into images at 1 s 
intervals for behavioral analysis and variable estimation. As detailed 
below, these images were analyzed automatically using a computer 
vision model based on Li et al. (2023) and used in Marin et al. (2024). 
Specifically, version 9 of the oriented object detection model, YOLO was 
used (Wang and Liao, 2024), see Section Analysis of videos using AI 
tracking algorithm for further details. As stated previously, YOLO is a 
popular object detection model with stable and accurate detection per
formance that has been previously used for detecting poultry images 
(Doornweerd et al., 2023; Yang et al., 2022; Doornweerd et al., 2024; 
Guo et al., 2023; Li et al., 2023). The computer vision model required 
prior training and validation, for which a separate set of images was 
obtained from videos as explained in the next section.

Training and validation of AI tracking algorithm for detection of quail with 
colored tags in images

Twenty-two 30-min videos were randomly selected, assuring that all 
ten groups were represented at least twice and that the recording had 
been performed during the daytime. From these videos 791 images were 
obtained for the training and validation set. RoboFlow (Roboflow, Inc., 
Lowa, USA), a platform for creating, training and deploying computer 
vision models, was used. Labeling for object detection (i.e., quail with 
each tag color) was performed in Roboflow using a horizontal rectan
gular bounding box. The dataset was split into three groups: 60% for 
training, 27% for validation, and 13% for testing. The model was trained 
and validated on Roboflow using the web interface. Preprocessing steps 
only included auto-orient and resizing (stretched to 800 × 600). No 
augmentations were applied. The code is available upon request to 
authors.

Performance evaluation

To determine the performance of oriented object detection, preci
sion, recall, F1 score, and the average precision metric (mAP) were 
estimated across all classes in model as follows: 

Precision (%) = (100×True positive)/(True positive+ False positive)

Recall (%) = (100×True positive)/(True positive+ False negatives)

F1 score = 2 × ((Precision×Recall) / (Precision+Recall))

mAP =
1
N

∑N

i=1
APi 

where “True positives” is the number of cases in which both algorithms 
and labels show bird presence; “False positives” is the number of cases in 
which algorithms wrongly predicted bird presence; and “False nega
tives” is the number of cases in which algorithms wrongly predicted bird 
absence. The mAP averages over the average precision of each class APi, 
where the subindex i runs over each class corresponds to black, white, 
gray, orange, red, violet, and green color tags, thus N=7. For estima
tions, an intersection over union (IoU), indicating the overlap of the 
predicted bounding box coordinates to the labeled box (ground truth) 
was 0.7, and the confidence level 40. The developed computer vision 
model was saved as a .pt file for use in further behavior analysis.
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Analysis of videos using AI tracking algorithm

A 1 h time frame between 8:00 and 9:00 h on the last day of testing 
was analyzed. The computer vision model was deployed in Python’s 
Integrated Development and Learning Environment (Python 3.11.6, 
Delaware, USA) in a local machine with the processor Intel® Core™ i7- 
8700 CPU @ 3.2 GHz, RAM 16 GB. Images extracted from video re
cordings at 1 s intervals underwent processing through the trained and 
validated computer vision model. The model generated detailed infor
mation in the form of rectangular bounding boxes encompassing each 
bird with a colored tag, including the specific parameters Xmin, Ymin, box 
width, and box length. Furthermore, the coordinates for the center of 
each bounding box were computed on both the x- and y-axes, repre
senting the centroid coordinates for every bird in the image (Marin et al., 
2024). The centroid coordinates obtained for each animal in the frame 
was used for tracking. From these coordinates the following variables 
were estimated: 

- Correct identification (%): the percentage of 1 s time intervals in 
which the model detected the tag color only once. If the tag was 
detected twice within the same interval, even if bounding boxes 
overlapped, it was not considered a correct identification.

- Inter-individual distance (cm): the Euclidian distance between the 
centroid coordinates (x,y) of each pair of birds estimated in an image. 
For example, if the coordinates for bird 1 are (x1,y1) and for bird 2 
are (x2,y2), the distance between them in pixels can be calculated 
using the following formula (Guzman et al., 2013): 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x1 − x2)
2
+ (y1 − y2)

2
√

- This measurement is then transformed to cm, using the length of the 
experimental pen as a scale to estimate equivalence between pixel 
and cm (Guzman et al., 2013).

- Average inter-individual distance (cm): the average distance be
tween two birds during the 1 h test period.

- Social circle (cm): the average value of social distance between all 
birds in the 1 h test period.

- Speed (1 cm/s): the change in position of the animal (centroid co
ordinates, x,y) during a 1 s interval (i.e., velocity). For example, 
considering the centroid coordinates for bird at time t as xt,yt and 
after 1s as xt+1,yt+1, the following formula calculates the distance 
between them in pixels (Barberis et al., 2023; Doornweerd et al., 
2024; Okinda et al., 2020): 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xt − xt+1)
2

+ (yt − yt+1)
2

√

1 

This measurement is then transformed to cm, using the length of the 
experimental pen as a scale to estimate equivalence between pixel and 
cm (Barberis et al., 2023). 

- Average speed (cm/s): the average speed of the birds during the 1 h 
test period.

- Ambulation (%): Percent of time during the 1 h test period in which 
the animal showed speeds above 1 cm (Barberis et al., 2023; Caliva 
et al., 2019).

Heatmaps of the localization of each animal within pens were con
structed using two-dimensional kernel density estimation (Fernandez 
et al., 2021; Kembro et al., 2019). This process specifically utilized the 
ksdensity function in MATLAB version R2023a, 9.14.0.2337262 (Math
Works, Inc., Massachusetts, USA), and the coordinates of the animals 
obtained during the 1 h test period.

Statistical analysis

All statistical analyses were performed with R software using the 
library lme4, and glmmTMB and glmer functions. Generalized Linear 
Mixed Models (GLMM) were used to determine behavioral differences in 
Japanese quail associated with the use of color marking. In experiment 
2, a ZERO-Inflated Model component was incorporated into the model 
considering the structure of the data. In this case, the model was 
adjusted to a Negative Binomial distribution for all variables, taking as a 
decision criterion a lower AIC compared to other distributions. In 
experiment 3, the data for speed was fitted to a Gamma and the per
centage of ambulation were fitted to a Normal distribution. For all an
alyses, experimental batches and experimental pens were used as 
random factors and tag color as a fixed factor. A P-value of less than 0.05 
was considered to represent significant differences.

Results

The spectrum of each feather and tag is provided in Fig. 1f and in 
Supplementary Fig. 1. Feathers exhibited a brightness between 10.9 to 
29.5%. Contrarily, backpacks showed variability in their level of 
brightness with black showing the lowest levels and white and gray 
showing the highest levels (Table 1).

The quail’s perceived difference between feathers and each tag color 
in terms of dS and dL contrasts are shown in Fig. 2. The greatest dS 
contrast to feathers was observed by purple and green (Fig. 2a). White, 
black, gray, orange and red tags fell below the threshold for optimal 
chromatic perception of 5 JND (Just Noticeable Differences; Fig. 2a, red 
line). Regarding dL contrasts, variability was observed between the 
feathers from each bird and tags. In general, tags showed greater 
luminance receptor stimulation than feathers (Fig. 2b), surpassing the 5 
JND threshold. Thus, birds should easily perceive the achromatic 
contrast between feathers and tags. However, in 2 out of 5 birds, orange, 
purple, red and green tags showed dL values below the threshold for 
achromatic perception (Fig. 2b, red line). Also, for the black tag 1 out of 
the 5 birds showed dL values below the threshold.

In the second experiment, the pecking behavior of individuals within 
groups of homogeneously colored tags was assessed, and the results are 
shown in Fig. 3. Significant effects of tag color (P<0.05) were observed 
for Pecks at own tag (Fig. 3a), Pecks performed towards conspecifics 
(Fig. 3c) and Pecks received from conspecifics (Fig. 3d) but not for Pecks 
at conspecifics tag (Fig. 3b). Specifically, quail with white (P=0.0007), 
gray (P=0.039), violet (P=0.024), and green (P=0.022) backpacks 
pecked more at their own tags compared to those with the control black 
tags (Fig. 3a). However, birds in groups with orange tags performed and 
received fewer pecks (P<0.01) directed at the head or body compared to 
those in groups with other colored tags (Fig. 3c and d, respectively).

In the third experiment, the performance of YOLO for tag color 
identification in images was assessed. The estimated Precision, Recall 
and mAP was 95.9%, 95.9% and 97.3%, respectively. Fig. 4a shows the 
Confusion Matrix estimated during validation, which quantifies how 
many times the algorithm assigns the color correctly. Note that for all 
tag colors, the probability of true positives (diagonal) exceeds 0.9 (i.e., 
90%). The highest level of false predictions occurs between black and 

Table 1 
Ranking of Backpack tag colors according to brightness from lowest to highest 
values.

Rank Backpack color Brightness (%)

1 Black 6.2
2 Orange 38.7
3 Green 44.7
4 Red 45.2
5 Violet 46.0
6 Gray 79.0
7 White 84.0
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gray tags, with 6% of false positives. Misclassifications with the back
ground are most frequent for black tags, followed by purple and gray 
tags.

To further understand how the combination of tag colors could affect 
individual identification within social groups using YOLO over time, we 
ran the model on 1 h-long behavioral videos, sampling every second. 
Fig. 4b shows the percentage of overall correct identifications done by 
YOLO for each tag color across the 10 social groups studied. All colors, 
except black and gray, showed over 90% correct identification in all 
groups.

Fig. 5 provides examples of behavioral estimations calculated using 
the spatial coordinates of each bird with a colored tag. The distance 
between each bird in each frame was measured (Fig. 5a) and subse
quently plotted as a function of time (colored lines in Fig. 5b). From this 
inter-individual distance, the average value was estimated representing 
the social circle (black dotted line in Fig. 5b). From these time series it is 
evident that in groups, some birds stay predominately far away from 
each other, while others stay in close proximity to each other (Fig. 5b, 
d). This is quantitively displayed in Fig. 5d, where the average distance 
between each bird in the example social group is shown in a heat map 
with red indicating birds stayed further apart than the estimated social 
circle and blue indicating they stayed closer. The ambulation of each 
bird is shown in Fig. 5c. Note that, in this social group example, most 
ambulation occurred in bouts with most animals moving around at the 
same time. Lastly, the heatmaps of spatial localization of each bird from 
the example group are presented in Fig. 5 e-i. Some of the animals stay 
predominantly on a certain side of the box since water and food were 
available at each side. For example, the bird with the black tag pre
dominantly stays on the left (Fig. 5f) and the one with the red tag on the 
right side of the box (Fig. 5i), which is consistent with an average inter- 
individual distance of 81 cm (Fig. 5d).

Lastly, in these multi-colored tag social groups, speed (Fig. 6a) and 
percentage of time spent ambulating (Fig. 6b) by each individual were 
assessed according to tag color. Although inter-individual differences 
are apparent, they are not associated with tag color (P>0.10). Average 
inter-individual distances for all color combinations are presented in 
Supplementary Fig. 2.

Discussion

Artificial marking of animals for identification is frequently 
employed by researchers in the behavioral, biomedical, agricultural, and 
environmental sciences (Dennis et al., 2008). In the context of precision 
farming, studies have relied on marking backpacks with different colors 
for identification of individuals within flocks (Derakhshani et al., 2022; 
Fujinami et al., 2023; Shahbazi et al., 2023). However, to the best of our 
knowledge, this is the first study to evaluate the impact of backpack tag 
color on poultry behavior. We show that care should be placed on the 
color selection of tags, not only because certain colors such as white, can 
lead to more birds pecking at their own backpacks, but also because 
certain color combinations could be prone to identity switches by the AI 
algorithm YOLO (i.e. black/gray).

Birds’ color perception abilities significantly influence behavioral 
experiments in ornithology, as their responses to color cues are context- 
dependent and shaped by ecological/evolutionary factors. Galliform 
(eg., Japanese quail, chicken and peafowl) photoreceptors are charac
terized by a violet spectrum (λmax 415 to 426 nm) visual pigment in the 
single cone containing a transparent T-type oil droplet. Moreover, 
excluding double cones, the potentially tetrachromatic color vision 
system of the peafowl (Fig. 1a), has three spectral loci of maximal 
wavelength discrimination, where the cone spectral sensitivities overlap 
at approximately 462, 517 and 576 nm (Hart, 2002). This enhanced 
color vision requires careful consideration in experimental setups, as the 
color stimuli must align with the birds’ perceptual capabilities to yield 
valid results (Garcia et al., 2021). Moreover, studies have shown that 
color preferences can vary widely among species, impacting their re
sponses to visual cues (Kelber, 2018). For instance, certain colors may 
attract specific species more effectively, which can skew data if not 
properly accounted for (Aviles et al., 2010). Therefore, researchers must 
tailor their experimental designs to incorporate the specific color 
perception profiles of the target species, ensuring that findings accu
rately reflect their natural behaviors and preferences (Olsson, 2016).

Using an avian vision model, we show that from a chromatic 
standpoint, only green and purple tags present dS values above the 5 
JND threshold. This indicates that Japanese quail are able to easily 

Fig. 2. Chromatic (dS) and achromatic (dL) color perception contrasts between colored backpack tags and feathers. Feathers were obtained from 5 different female 
Japanese quail as indicated with the circle color. The red line in both panels indicates the threshold of 5 JND (Just Noticeable Differences) above which the bird is 
considered to perceive the contrast between the feather and tag.
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perceive the contrast between the feather and these tag colors (Fig. 2a). 
However, from an achromatic (luminance) standpoint higher variability 
was observed between the feathers of different birds and tag colors. In 
general, with some exceptions, the tags presented dL values above the 
JND threshold, thus presenting a perceivable achromatic contrast to 
feathers. Interestingly, in certain females, the orange, red, or black tags 
showed neither chromatic nor achromatic contrast with their feathers. 
This lack of contrast suggests that these tags could remain inconspicuous 
in quail with specific plumage characteristics, offering the advantage of 
going undetected. In this context, it should be noted that, besides the 
wild-type plumage coloration studied herein, several other quail 
plumage colors occur naturally by mutation of single genes, e.g. 
extended brown, yellow, silver, lavender, roux, imperfect albinism and 
rusty (Minvielle et al., 2009). These feathers can differ significantly in 
melanin and phaeomelanin content (Minvielle et al., 2009). Plumage 
color mutants, such as “orange” present light reddish-brown and light 
black predominantly, instead of the heavy brown and heavy black of the 
wild type (Ito and Tsudzuki, 1994). Thus, although not specifically 
evaluated herein, some of the colors tested, such as black, white and 
orange, could show less contrast to feathers in some of these lines, or 
with feathers from other parts of the body not analyzed in this study.

Although most tags presented either a chromatic or luminance 
(achromatic) contrast with feathers perceptible to birds, the effect on 

behavior was color dependent. Even when the chromatic contrast, dS, 
fell below the JND threshold, birds with higher dL and brighter back
packs tended to peck more at their backpacks, as in the case of white and 
gray tags. This suggests that the brightness of the material could be 
important in modulating pecking behavior. Indeed, white backpacks 
were the brightest 84%, Table 1), with a reflectance above 90% from 
450 to 700 nm (Supplementary Fig. 1), presented the greatest achro
matic contrast (dL) and presented the highest level of self-pecking. It is 
noticeable that white is a naturally occurring feather color in quails. 
Females have predominately white feathers on their breast; and white 
flight feathers are observed in the albino quail, in dotted white mutants 
(Tsudzuki et al., 1992). Males during winter season as well as photo
castrated males are also provided of white breast feathers (Roberts et al., 
2009). In groups of wild-type quails, social interactions towards the 
albino’s quail have been shown to be different than towards their 
wild-type counterparts. For example, Blohowiak and Siegel (1983)
showed that wild-type females prefer mating with wild-type or redhead 
color males more than with albino males (Blohowiak and Siegel, 1983). 
In the same study, regarding dominate-subordinate relationships among 
males within a pen, they observed that redhead and wildtype males 
dominated their albino flockmates (Blohowiak and Siegel, 1983). 
Nevertheless, in our study, although birds with white and gray tags were 
found to peck more at their own tag within their groups, no increases in 

Fig. 3. Pecking behavior performed within homogeneous colored tag groups. Number of (a) pecks performed towards their own accelerometer. (b) pecks performed 
towards the accelerometer of conspecifics, (c) pecks performed towards the head or body of conspecifics and (d) pecks received by conspecifics directed to the head 
or body. Each individual is represented with a circle, for boxplots, boxes represent 25th and 75th percentiles of the sample data, the middle red line the 50th, and the 
whiskers the 1.5 times the interquartile range. a-c Post hoc analysis results are shown using blue lower-case letters. Groups that do not share the same letter differ 
significantly (P<0.05).
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the number of pecks toward conspecifics were found.
Groups presenting tags with high chromatic contrast with feathers, 

such as purple and green (Fig. 2a), also presented higher levels of 
pecking at their own tag compared to groups using the black “control” 
tags. In contrast, the social groups with animals that orange and red tags, 
where tags present low chromatic contrast with feathers (Fig. 2a) and 
low brightness (Table 1) did not present significant differences with 
black “control” tags. Moreover, those with orange tags even showed 
significantly lower values of pecking towards and from conspecifics. 
This phenomenon can also associate with the previously discussed lack 
of chromatic and achromatic contrast between feathers and the orange, 
red and black tags observed in some females. Within mixed-colored 
groups, no effects on speed and ambulation were observed regarding 
tag color. It is also important to note that none of the groups evaluated 
presented animals with marked signs of lesions that could be associated 
with inappropriate (non-adaptive) levels of aggression during the 
habituation and testing periods. Thus, observed pecks towards tags and 
conspecifics could mostly be associated with exploratory and/or social 
interactive/affiliative behaviors. Further studies using less reflective 
materials for the backpacks, standardized images of birds with back
packs, as well as comparative studies using mutant color quail would be 
worthy to further explore the bird’s perception of the tags in situ.

With the use of color tags, an elevated level of precision and accuracy 
of the AI models for multi-animal tracking was observed. When they 
occurred, most misclassifications were found between black and gray 
tags. In this case, the reduced accuracy could be attributed to the al
gorithm’s heightened likelihood of confusing gray backpacks with black 
ones, and vice versa, compared to other colors (i.e., white, orange, 
green, purple, and red). This misclassification likely arises from the 
similarity between black and gray, making accurate identification more 
challenging. Thus, combining these two colors should be avoided in 
future studies. Since the identity of the individual can be recovered in 
subsequent time points after a misclassification, a correction code can be 
applied to rectify these errors. Furthermore, the AI model could also be 
improved by incorporating Multi-Object Tracking “MOT”, for example, 
using the popular tracking-by-detection algorithm Simple Online 

Realtime Trackin, “SORT” previously used in broilers (Doornweerd 
et al., 2024).

Multiple animal tracking plays a vital role in predicting animal 
movement and behavior analysis (Liu et al., 2024). It finds extensive 
applications in various fields, including agriculture, animal husbandry, 
and ecology (Liu et al., 2024). However, in complex environments and 
real farm environments, the task of monitoring poultry becomes 
complicated. Birds in flocks are sometimes occluded by other birds and 
the variation of ambient light conditions and shadows significantly 
affect sensor stability (Okinda et al., 2020). In flocks with unmarked 
birds, computer vision models ID-switches are a common occurrence 
(Doornweerd et al., 2024). Thus, colored marks ensure that even when 
tracking is lost or identifies switches for any reason, the true identity of 
the bird can be regained minimizing the long-term impact of algorithmic 
errors.

The coordinates obtained from the multiple animal tracking can be 
used to calculate the time series of a wide variety of behavioral variables 
as shown herein: inter-individual distance, spatial use, speed and 
ambulation. All of these variables can present complex temporal pat
terns that can change over time. Inter-individual distances are dynamic, 
and differ according to the behavior displayed (Keeling, 1994) and the 
stocking density (Keeling and Duncan, 1989; Rodriguez-Aurrekoetxea 
and Estevez, 2014). Locomotion (i.e., speed and ambulation) presents 
not only circadian and ultradian rhythms, but also long-range correla
tions at shorter time scales (Barberis et al., 2023; Guzman et al., 2017; 
Kembro et al., 2013; Kembro et al., 2023). Quail locomotor dynamics is 
modulated by factors such as social hierarchy (Alcala et al., 2019), stress 
(Kembro et al., 2008) and food availability (Kembro et al., 2009). Var
iables that characterize dynamics, such as rhythms and long-range 
correlations, are often more sensible in detecting behavioral changes 
than traditional measures such as the percent of time spent performing a 
specific behavior (Alcala et al., 2019; Kembro et al., 2009; Kembro et al., 
2024; Rutherford et al., 2004). Thus, the ability to correctly keep track 
of the identities of individuals within social groups over long periods of 
time opens up a wide range of possibilities for developing new assays for 
the study of locomotor and social behavior. Since this tracking can be 

Fig. 4. Detection capabilities of the computer vision model in correctly classifying individuals based on tag color in mult-colored tag social groups. (a) Confusion 
Matrix was estimated using RoboFlow. (b) Overall correct identification was estimated after running the model on 1 h long behavioral videos, with a 1 s sampling 
rate. The percentage of overall correct identifications was calculated based on the total time points a bird with a colored tag appeared in the corresponding frame. If 
the tag was found twice that time point was not counted as a correct identification. Boxplots are presented for each tag color, with each colored circle representing 
the overall average for each color tag across all 10 groups studied. All colors, except black and gray, showed over 90% correct identification (dotted black line) in 
all groups.
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combined with accelerometry, the study of the temporal dynamics of 
behavior can be further extended to include for example reproductive 
(Rossi et al., 2024) and dustbathing behaviors (Fonseca et al., 2023).

It is important to note that while this study was conducted in a 
controlled laboratory setting with only seven color combinations, the 
approach could be applicable to larger, more complex experimental 
designs. In theory, if individual identification of a large number of birds 
is required, backpacks with varied color patterns or symbols could be 3D 

printed. For instance, in a farm setting, a subset of animals could be 
marked with multi-colored backpacks and identified by strategically 
placed cameras. Moreover, scaling this method for commercial farm use 
would require further validation. This includes testing the AI’s ability to 
recognize multi-colored backpacks, assessing the long-term effects of 
backpack use on animal welfare, and examining the social dynamics 
within groups where only a subset of animals is marked.

Fig. 5. Examples of behavioral estimations using spatial coordinates of birds with colored tags. (a) Image representing the social distance between each bird in a 
social group using colored lines at a specific time point. (b) Using the same color scheme as in panel a, the social distance between each individual is shown as a 
function of time. Thick, dotted black line shows the estimated social circle. (c) The distance ambulated by each individual during the 1 s intervals is shown as a 
function of time. (d) Heat map of the average social distance between each bird during the 1 h test. Reds indicate birds staying farther apart than the estimated social 
circle and in blue those closer than the social circle. (e–i) Heatmaps of spatial use of each bird.
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Conclusion

Automatically tracking individual birds within social groups using 
computer vision, combined with other remote sensing technologies like 
accelerometers, opens new frontiers in poultry behavioral research. This 
approach allows for long-term, high-temporal resolution studies of so
cial dynamics, reproduction, and the effects of environmental enrich
ment on locomotor dynamics and spatial use. By assessing both 
individual and collective behavioral dynamics, welfare studies can ac
count for inter-individual differences in environmental perception and 
health. As changes in bird behavior often signal welfare issues, early 
detection is crucial for timely intervention and prevention of manage
ment problems.
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