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Abstract
Motivation: Single-cell RNA sequencing (scRNAseq) has transformed our ability to explore biological systems. Nevertheless, proficient exper
tise is essential for handling and interpreting the data.
Results: In this article, we present scX, an R package built on the Shiny framework that streamlines the analysis, exploration, and visualization 
of single-cell experiments. With an interactive graphic interface, implemented as a web application, scX provides easy access to key scRNAseq 
analyses, including marker identification, gene expression profiling, and differential gene expression analysis. Additionally, scX seamlessly inte
grates with commonly used single-cell Seurat and SingleCellExperiment R objects, resulting in efficient processing and visualization of varied 
datasets. Overall, scX serves as a valuable and user-friendly tool for effortless exploration and sharing of single-cell data, simplifying some of 
the complexities inherent in scRNAseq analysis.
Availability and implementation: Source code can be downloaded from https://github.com/chernolabs/scX. A docker image is available from 
dockerhub as chernolabs/scx.

1 Introduction
After nearly 15 years of continuous development, single-cell 
transcriptomics continues to have a profound impact on the 
biomedical research field. Over the years, various data- 
processing pipelines have been proposed, as well as visualization 
tools that aimed to ease the analysis of this type of high- 
throughput assays.

The existing software ecosystem is extensive, often exhibiting 
overlap in approaches and solutions. Table S1 presents a com
prehensive comparison of several commonly used tools for 
single-cell RNA sequencing (scRNAseq) data exploration. This 
table provides insight into the extent to which each solution 
covers various aspects of the analysis. iSEE (Rue-Albrecht et al. 
2018), cellxgene (Abdulla et al. 2023), and ShinyCell (Ouyang 
et al. 2021) are noteworthy tools that primarily concentrate on 
data visualization, offering a diverse range of plots and graphi
cal data representations. ShIVA (Aussel et al. 2023) and 
CellSnake (Umu et al. 2023) on the other hand are solutions 
more focused on data processing aspects of single cell analysis. 
There are also more comprehensive tools, such as ASAP (David 
et al. 2020), SEQUIN (Weber et al. 2023), and SCHNAPPS 
(Jagla et al. 2021) that can handle multiple embeddings and 

visualizations, and grant interactive single-cell analysis features 
such as clustering, marker identification, and differential expres
sion analysis. Each one of them addresses differently the 
trade-off between the extend and complexity of the offered 
computational calculations and design criteria in terms of us
ability and ease of interaction with the application. This election 
has profound impacts on the user side. Specifying numerous 
parameters may pose challenges for users who are typically 
more interested in extracting relevant biology from their data 
and may lack the expertise or criteria to define the required val
ues for each presented option. In such cases, while comprehen
siveness is desirable, it may hinder or compromise the tool’s 
ease of use.

Here we present scX, an R package that deploys a user- 
friendly Shiny-based application developed for researchers to 
explore single-cell datasets. From its inception, scX was 
designed as a tool to efficiently bridge the computational side 
of the problem (e.g. data preparation, normalization, 
markers identification, differential expression, etc.) with vari
ous tools enabling the rapid implementation of biological 
analyses derived from these results (interactive 3D visualiza
tions of low-dimensional embeddings, on-the-fly markers 
identification, exploratory data analysis capabilities, 
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availability of a wide array of plot types, etc.). scX becomes 
particularly well suited for two scenarios. For one hand, for 
bioinformatics laboratories looking to share scRNAseq ex
periment data, processed with arbitrary sophistication, with 
biology colleagues aiming to explore them efficiently in a 
user-friendly designed platform. At the same time, our pack
age offers, if required, the ability to carry out a significant 
portion of typical scRNAseq data analysis (normalization, di
mensionality reduction, clustering, marker identification, and 
calculation of differential expression) in a non-interactive 
preprocessing step that can complement or integrate with any 
existing analyses. This ensures that, even users new to com
putational aspects of this field have the opportunity to benefit 
from the streamlined analysis of their data through the tools 
provided by the interactive scX interface.

2 Methods
The scX app can be easily launched by executing two R func
tions (see Fig. 1). Starting from a provided count matrix, a 
SingleCellExperiment object, or a Seurat object, the function 
“createSCEobject” handles the offline pre-processing of the 
data. This function automatically executes a series of compu
tational steps leveraging the functionality implemented in the 
“scran” Bioconductor package. We adopted a normalization 
by deconvolution scheme (Lun et al. 2016) to eliminate sys
tematic differences between libraries The identification of the 
most variable features involves fitting a trend on the variance 
versus mean of log-normalized expression profiles and identi
fying genes with a positive biological variance component. If 
requested, a graph-based cell clustering procedure can be 
implemented. By default, it performs a Louvain clustering 
over a mutual-K nearest neighbor graph (k¼20) estimated 

considering Euclidean cell–cell distances in the sub-space 
spanned by the 20 largest PCA components. It is also possible 
to specify any other graph-based clustering method available 
from the igraph package. Advanced users can directly specify 
an NNGraphParam object (from the bluster Bioconductor 
package) to achieve maximum control in the specification of 
this graph-based clustering task. Differential expression 
analysis and marker identification are conducted on one or 
more user-specified partitions, relying on the functionality 
implemented in the “findMarkers” function. For marker 
identification, a Wilcoxon rank sum test is considered by de
fault, but other options (t-test, binomial test) can also be 
specified. For every cluster, pairwise tests are performed 
against any other cluster and, by default, genes are ranked 
based on the maximal observed p-val (pval.type¼“all” in the 
paramFindMarkers input parameter). Optionally, the user 
can adopt other strategies to consolidate DE signals. 
Furthermore, ad-hoc pre-calculated lists of markers can also 
be provided.

2.1 Summary module
This module provides a summary of the primary descriptive 
details of the working dataset, such as the number of cells 
and genes, the mean number of genes detected per cell, etc. 
Additionally, it allows the visualization of the number of 
counts and detected features in connection with various 
metadata covariates, enabling the evaluation of potential 
batch-related issues.

2.2 Exploratory data analysis module
This module facilitates the exploration of relationships be
tween the covariates included in the metadata of the SCE ob
ject (specified by the “metadataVars” and “partitionVars” 

Figure 1. A schematic illustration of the scX workflow is depicted on the left-hand side. The right-hand side exhibits several instances of scX’s analysis 
and visualization capabilities.
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parameters of creatSCEobject). In the “Categories” section, 
bar plots can be used to analyze one- or two-dimensional dis
tribution functions involving categorical covariates. The 
“Matrix” tab enables the generation of bivariate count 
tables. The “Field” section of this module allows the explora
tion of how the value of one or more continuous covariates 
changes concerning another variable, which can be either nu
merical or categorical. Various types of plots, including box 
plots, heatmaps, dot plots, or stacked violin plots, can be gen
erated to assist in this analysis.

2.3 Markers module
The “Cluster markers” section facilitates the analysis of 
marker genes identified during the preprocessing step. When 
a user selects a cell displayed in the embedding window, a 
marker gene table is generated, including various metrics for 
each gene marker. By default (pval.type¼“all” in the 
paramFindMarkers input parameter of the createSCEObject 
function), “summary.stats” reports the weakest observed dif
ferential expression signal between the analyzed cluster and 
any other cluster. “log.FDR” is the logged largest observed 
false discovery rate (FDR)-corrected p-value, and “boxcor” is 
the Pearson correlation value between the gene expression 
profile and a binary indicator vector of the cluster of interest. 
The table can be saved in various formats (.csv, .xlsx, .pdf) or 
copied to the clipboard. Notably, clicking on a gene in the ta
ble allows the visualization of the corresponding expression 
field in the embedding window. Additional graphical charac
terizations are provided as violin and spike plots presented at 
the bottom of the page.

In the “Find new markers” section, users can investigate 
markers for specific sets of cells, selected on the fly from 2D 
embeddings using the box or lasso tools (see the online man
ual for an animated GIF tutorial). Putative markers are iden
tified by ranking genes in decreasing order based on their 
estimated boxcor values (above a minimum value of 0.3). 
The marker table, along with the corresponding cell list, can 
be downloaded. Similarly, to the previous section, clicking on 
a marker row generates a visualization of the marker’s ex
pression pattern in the embedding dataset, and additional 
graphical characterizations in the form of violin and spike 
plots are also produced.

2.4 Gene expression module
The “Gene Expression” module facilitates the exploration of 
expression patterns for one or more genes of interest. 
Expression changes in response to different categorical and/ 
or numerical covariates can be assessed, and coexpression 
patterns between pairs of genes can be analyzed. In the 
“Categories” section, one or more genes of interest can be se
lected (or uploaded from a file). The module displays the av
erage expression of these genes across the embedded dataset 
in the “Scatter” window. Visualization options, including 
heatmaps, dot plots, and stacked violin plots, are also avail
able for analyzing the expression of these genes concerning 
different categorical covariates found in the metadata. The 
“Field” section allows for the analysis of gene expression in 
conjunction with numerical covariates that may be present in 
the metadata within the SCE object. This can include varia
bles like the number of counts or pseudotime values. Finally, 
the “Co-expression” section allows for the examination of 
coexpression patterns between selected gene pairs in the em
bedding space window. The percentage of co-detection events 

within categorized groups of cells can also be assessed 
and visualized.

2.5 Differential expression module
In this section, the results of the differential expression analy
sis can be assessed. An interactive selection of threshold val
ues for both logFC (logarithm of fold change) and the FDR 
significance level is available. The list of differentially 
expressed genes is downloadable in various formats (csv, pdf, 
and xlsx). This section also generates a Volcano plot graphi
cal representation, along with visualizations (violin plots, 
spike plots, heatmaps, and dot plots) that facilitate a more 
comprehensive understanding of expression patterns for up- 
and down-regulated genes.

2.6 Visual tools module
This module provides many tools to produce pdf plots with 
more complex or specific layouts involving gene expression 
patterns and covariate variables.

2.7 Case study
We focused on the study conducted by Tusi and collaborators 
on hematopoietic lineages in mouse basal bone marrow cells 
(Tusi et al. 2018). The authors performed a population bal
ance analysis (PBA) to predict cell fate probabilities and iden
tified seven putative commitment probabilities for each 
hematopoietic progenitor. We employed scX to preprocess 
and re-visit their scRNAseq data (metadata and raw counts 
were downloaded from the paper’s supporting webpage, and 
the used R script was included as Supplementary Material 
File). For our analysis, we retained the original 2D data pro
jection (generated using a force-directed graph layout algo
rithm on a knn graph), and a Louvain partition of the filtered 
4763 cells. Upon initial exploration a pronounced batch ef
fect associated with “basal_bm1” cells, originating from a li
brary processed in a specific sequencing run (seq_run_1), was 
identified (see Fig. 2A). Consequently, we filtered out this 
run, retained 4016 cells, and re-created the SCEObject for 
further analysis.

We then considered the 2D force-directed layout (FDL) 
representation shown in Fig. 2B, where different colors were 
used for the 12 clusters of the original Louvain partition. We 
focused on characterizing the terminal group identified as ba
sophilic or mast cells (Ba in Fig. 2B). This group exhibited 
high commitment probabilities to the Ba attracting state, as 
visualized in the PðBaÞ field over the graph (inset of Fig. 2B). 
Notably, these cells were included in a broader Louvain clus
ter (cluster 6, gray dots in 2b). The “find-new-marker” func
tionality was then employed to identify specific gene markers 
for this set of cells. The top five ranked marker genes found 
by our tool were: Cpa3, Ms4a2, Gzmb, Cyp11a1, and 
Fcer1a, with boxcor values of 0.553, 0.509, 0.506, 0.496, 
and 0.486, respectively. The expression field of Cpa3 is 
shown in Fig. 2C. To validate these putative markers we re
ferred to the work of Miao and collaborators, who developed 
the single-cell clustering assessment framework (SCCAF) 
strategy for cell type discovery from single-cell expression 
data (Miao et al. 2020). We found that the first three marker 
genes identified by scX were also top-ranked features in 
SCCAF’s logistic regression model for recognizing the Ba cell 
group [cluster 10 in Fig. 5d of (Miao et al. 2020)]. 
Additionally, we found further support for the complete set 
of scX-identified markers in several bibliographic references 
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(Metcalfe et al. 2016, Siddhuraj et al. 2017, Hiroyasu et al. 
2021, Silva-Gomes et al. 2021, Miyake et al. 2023).

2.8 Computational demands
To test the computational demands of a typical scX pipeline 
we considered the mouse nervous system’s scRNAseq data 
from Zeisel et al. (2018). Running-time and peak memory 
consumption tests were conducted on an Intel(R) Xeon(R) 
Silver 4116 CPU @ 2.10 GHz, 514G RAM server, consider
ing incrementally subsampled datasets. Details and results 
are summarized in Table S2. The most demanding step was 
data preprocessing (createSCEobject function), requiring a 
peak of 24 Gb of RAM and 180 minutes for N¼ 160 000 
cells. We found that peak memory usage and running time 
scaled linearly at a rate of 1.3 Gb/10k-cells and 10.4 minutes/ 
10k-cells, respectively (see Supplementary Material Fig. SF1). 
It is important to note that the number of partitions and clus
ters can influence the processing time of a given dataset. For 
visualization purposes a subsampling strategy can be speci
fied at pre-processing time (default setting of 50 000 cells) to 
ensure a smooth interactive experience.

3 Conclusions
We developed scX, a Shiny-based application that enhances 
collaboration between bioinformaticians and experimental 
biologists in joint projects. The platform is user-friendly and 
highly interactive, fostering a collaborative environment that 
could significantly advance the development of joint projects.
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Figure 2. (A) 2D tSNE embedding used to highlight the large batch effect affecting “basal_bm1” cells. (B) FDL visualization of Tusi dataset. Louvain 
clusters and labels for the seven PBA inferred terminal states can be appreciated (Ba, basophilic or mast cell; D, dendritic; E, erythroid; GN, granulocytic 
neutrophil; Ly, lymphocytic; M, monocytic; Meg, megakaryocytic; MPP, multipotential progenitors). The dotted square schematizes the interactive cell 
selection process. The field of commitment probability values to the Ba state is displayed in the inset. (C) Expression field of the top ranked Cpa3 putative 
marker gene.
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Data availability
Source code can be downloaded from https://github.com/cher 
nolabs/scX. User manual available at https://chernolabs. 
github.io/scX/. A docker image is available from dockerhub 
as chernolabs/scx.

References
Abdulla S, Aevermann B, Assis P et al. Cz cell×gene discover: A single- 

cell data platform for scalable exploration, analysis and modeling of 
aggregated data. bioRxiv. https://doi.org/10.1101/2023.10.30. 
563174, 2023, preprint: not peer reviewed.

Aussel R, Asif M, Chenag S et al. ShIVA: a user-friendly and interactive 
interface giving biologists control over their single-cell RNA-seq 
data. Sci Rep 2023;13:14377.

David FPA, Litovchenko M, Deplancke B et al. ASAP 2020 update: an 
open, scalable and interactive web-based portal for (single-cell) 
omics analyses. Nucleic Acids Res 2020;48:W403–14. 05.

Hiroyasu S, Zeglinski MR, Zhao H et al. Granzyme b inhibition 
reduces disease severity in autoimmune blistering diseases. Nat 
Commun 2021;12:302.

Jagla B, Libri V, Chica C et al. SCHNAPPs - single cell sHiNy 
APPlication(s). J Immunol Methods 2021;499:113176.

Lun ATL, McCarthy DJ, Marioni JC. A step-by-step workflow for low- 
level analysis of single-cell RNA-seq data with bioconductor. 
F1000Res 2016;5:2122.

Metcalfe DD, Pawankar R, Ackerman SJ et al. Biomarkers of the in
volvement of mast cells, basophils and eosinophils in asthma and al
lergic diseases. World Allergy Organ J 2016;9:7.

Miao Z, Moreno P, Huang N et al. Putative cell type discovery from 
single-cell gene expression data. Nat Methods 2020;17:621–8.

Miyake K, Ito J, Nakabayashi J et al. Single cell transcriptomics clarifies 
the basophil differentiation trajectory and identifies pre-basophils 
upstream of mature basophils. Nat Commun 2023;14:2694.

Ouyang JF, Kamaraj US, Cao EY et al. ShinyCell: simple and sharable 
visualization of single-cell gene expression data. Bioinformatics 
2021;37:3374–6.

Rue-Albrecht K, Marini F, Soneson C et al. ISEE: interactive 
SummarizedExperiment explorer. F1000Res 2018;7:741.

Siddhuraj P, Mori M, Bjermer L et al. Distinct tryptase and cpa3- 
positive basophil phenotypes in healthy individuals, asthma, and 
copd. Eur Respiratory J 2017;50(suppl 61):OA4848.

Silva-Gomes R, Mapelli SN, Boutet M-A et al. Differential expression and 
regulation of MS4A family members in myeloid cells in physiological 
and pathological conditions. J Leukoc Biol 2021;111:817–36.

Tusi BK, Wolock SL, Weinreb C et al. Population snapshots predict early 
haematopoietic and erythroid hierarchies. Nature 2018;555:54–60.

Umu SU, Rapp Vander-Elst K, Karlsen VT et al. Cellsnake: a user- 
friendly tool for single-cell RNA sequencing analysis. Gigascience 
2023;12:giad091.

Weber C, Hirst MB, Ernest B et al. SEQUIN is an R/shiny framework 
for rapid and reproducible analysis of RNA-seq data. Cell Rep 
Methods 2023;3:100420.

# The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics Advances, 2024, 00, 1–5
https://doi.org/10.1093/bioadv/vbae062
Application Note

scX: a  tool for scRNAseq exploration                                                                                                                                                                                      5 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/4/1/vbae062/7663491 by guest on 04 Septem
ber 2024

https://github.com/chernolabs/scX
https://github.com/chernolabs/scX
https://chernolabs. github.io/scX/
https://chernolabs. github.io/scX/
https://doi.org/10.1101/2023.10.30.563174

	Active Content List
	1 Introduction
	2 Methods
	3 Conclusions
	Acknowledgements
	Author contributions
	Supplementary data
	Conflict of interest
	Funding
	Data availability
	References


