Provided for non-commercial research and educational use only.
Not for reproduction or distribution or commercial use.

Volume 33, Number 4, November 2007

y ISSN 0957-4174

Expert
Sysiems
with
Applications

An International

Journal

Editor-in-Chief

Jay Liebowitz g

¥

This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the
author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without
limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s
administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,
or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission
may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Available online at www.sciencedirect.com

ScienceDirect

Expert Systems
with Applications

&5

ELSEVIER Expert Systems with Applications 33 (2007) 881-902

www.elsevier.com/locate/eswa

A model for capturing and representing the engineering design process

Silvio Gonnet **, Gabriela Henning °, Horacio Leone ®

& CIDISI — INGARIUTN — CONICET, Avellaneda 3657, 3000, Santa Fe, Argentina
Y INTEC (CONICET — UNL), Giiemes 3450, 3000, Santa Fe, Argentina

Abstract

This paper presents a Collaborative Model for capturing and representing the engineering Design process (CoMoDe). CoMoDe is a
deductive object-oriented model that, in relation to an engineering design process, is able to capture the different elements that participate
in a design process in an integrated fashion. In particular, it is able to represent (i) the activities, operations, and actors that have gen-
erated each design product, (ii) the imposed requirements, and (iii) the rationale behind each decision. Furthermore, it also offers an
explicit mechanism to represent and trace the different model versions that have participated in the design process. On such a basis, this
proposal introduces specific procedures to handle various situations appearing in cooperative environments. They are: (i) different design
teams perform independent concurrent activities on “a priori”’ independent parts of the artefact being designed and afterwards their
results need to be made consistent; (ii) distinct teams concurrently work on slightly coupled parts of the artefact being designed and con-

flict handling must be addressed along their “parallel” course of actions.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Design process support; Collaborative design; Version management; Situation calculus; Deductive object base

1. Introduction

Engineering design, be it the design of a chemical pro-
cess plant, an information system, or a mechanical piece,
needs knowledge from the specific domain. However, it is
possible to identify a common denominator for the design,
its complexity and the resolution of problems being not
well defined at all. Development of products in many engi-
neering disciplines is a challenging task. Even for quite dif-
ferent types of products, development processes have
strong common characteristics and features, such as the
following:

e Design problems are inherently ill defined; therefore, the
structure of the design process is not known in advance.
It starts with a small set of requirements that include
goals and constraints and evolves through subsequent

* Corresponding author. Tel.: +54 342 4534451; fax: +54 342 4553439,
E-mail addresses: sgonnet@ceride.gov.ar (S. Gonnet), ghenning@
intec.unl.edu.ar (G. Henning), hleone@ceride.gov.ar (H. Leone).

0957-4174/$ - see front matter © 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2006.07.004

stages of increasing complexity in a non-linear manner.

In most cases, there is a lack of a fully articulated meth-

odology so that there is no clear distinction between

solution stages. Furthermore, there might be a need

for a backtracking process to change previously adopted

decisions.

During a design process, various models of the artefact

being designed are generated. They differ in granular-

ity, complexity, and associated assumptions; therefore,

there is an explicit need for properly managing model

versions.

Once a design project is complete, what remains is

mainly the “design product” (the models that were gen-

erated, detailed specifications of the resulting artefact,

drawings, sketches, etc.). However, there is no explicit

representation of how that product was obtained. More

specifically, there is no trace of:

— Which activity/ies originated a given product.

— Which requirements were imposed.

— Which actors performed a given activity.

— Which is the underlying rationale behind a decision-
type activity.

882 S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902

e Due to their size and complexity or specific expertise
needs, design problems are rarely tackled by individuals;
design teams are the usual choice. Thus, teams of human
experts in conjunction with computer-aided tools solve
intricate problems by interacting cooperatively, sharing
resources of various types and intermediate design prod-
ucts (i.e. models that were generated, detailed specifica-
tions of resulting artefacts, drawings, sketches, etc.).

Depending on the domain and on the problem being
addressed, design methodologies can vary. Boyle (1989)
proposes a classification that splits design into three broad
methodologies: analytical, procedural, and experimental
design. The concepts behind this classification are those
of object, attributes, and operations as well as the different
roles that are assigned to humans and machines in these
classes of design methods. The three categories proposed
by Boyle can be summarized as follows:

(1) Analytical or attribute-centered design, in which the
attributes of the objects are used to determine the
appropriate design actions. A design solution is auto-
matically synthesized from the object attributes and
the design objectives.

(i1) Procedural or operation-centered design is based on
using procedures to perform operations on an object
with the aim of transforming it into one having the
desired attributes.

(iii) Experimental search or object-centered design
involves working through an available set of objects
in order to find one whose attributes best match the
design objectives.

In this paper the focus is on procedural design, which is
the most frequent case in engineering design. Design is
viewed in a way similar to that of Boyle (1989) and other
authors (Brown & Chandrasekaran, 1989; Mittal & Araya,
1992) who consider it as an iterative process that operates
under a generate—test—analyze—advise-modify paradigm.
As design artefacts are generated, they are checked against
design objectives.

This scenario increases the need for information sharing
and exchange. Accordingly, several proposals have arisen
to tackle this issue. Most of them try to address the multi-
ple design data representation problem that has appeared
due to the various design tools used by designers during
a design process (Marquardt & Nagl, 2004). Furthermore,
engineering data management systems (EDM), product
data management systems (PDM), and software configura-
tion management systems (SCM) provide assistance in
managing products of a development process (i.e. models,
diagrams, documentation files, etc.) along their life cycle.
Several models have been proposed in literature (Carnduff
& Goonetillake, 2004) to enhance database system facilities
that are used to group mutually consistent component ver-
sions together into useful configurations. As Westfechtel
(1999) has pointed out, EDM, PDM, and SCM systems

focus on the products of development processes, neglecting
the representation of the activities that have generated
them. In consequence, they do not satisfy the need for
keeping consistency, navigability, and traceability among
models (and model’s components) identified along the
design process.

Once a design stage is complete, what remains is mainly
the design product but there is no explicit representation of
how this product was obtained. Even if such knowledge is
found in documents, it is often scattered around technical
domains and improperly categorized (Kitamura & Mizogu-
chi, 2003). Thus, most design knowledge still rests in the
minds of experienced designers and is not available to be
shared or to be employed (for specific advice) as needed
(Liao, 2005). This issue has been dealt with by several
authors (Mandow & Pérez-de-la-Cruz, 2004; Roda, Poch,
& Banares-Alcantara, 2000; Westerberg, Subrahmanian,
Reich, Konda, & the n-dim group, 1997) who acknowledge
that the history of a design process, captured in a useful
way, can form the basis for learning and reuse.

Consequently, to overcome such troubles, not only the
data and their dependencies but also the design process
where the information is created and used need to be thor-
oughly understood. Therefore, the pivotal element in devel-
oping any design support environment is modelling the
design process itself in order to understand and articulate
it. To do so, it is necessary to recognise the design activities
that are performed to evolve from the initial design specifi-
cations to the final engineering design; at the same time, it
is crucial to identify the design decisions associated with
each activity, along with their corresponding assumptions,
simplifications, and underlying rationale. In fact, it is this
design experts’ knowledge that has to become explicit.

This contribution addresses this issue by introducing
CoMoDe, a Collaborative Model for capturing and repre-
senting the engineering Design process. CoMoDe is an
integrated deductive object-oriented model that captures
and represents the products being designed, the activities
taking place in the design process, their associated con-
texts, and the adopted decisions at two different granularity
levels. The proposed model is introduced in the next section
and described more in detail in Section 3. Furthermore,
CoMoDe also offers an explicit mechanism to capture
and trace the different versions that have participated
during engineering design processes. This mechanism is
described in Section 4.

Throughout this contribution, we will consider design
processes in different engineering disciplines. We will
restrict the discussion to software and process systems engi-
neering because our work has been mainly focused on these
disciplines. The ideas presented in Sections 3 and 4 are
exemplified by modelling the design of a chemical plant
to produce polyamide-6.

On the other hand, cooperative tools and methodologies
are currently available to face complex activities under-
taken by designers, such as the ones that belong to the field
of computer supported collaborative work (CSCW). Most

S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902 883

of them focus on communication (messaging) and coordi-
nation features (approval forms, workflow tools, video-
conference tools) (Gzara Yesilbas & Lombard, 2004).
However, there is an absence of tools to support the con-
flict management process (CMP), which takes care of con-
flict detection and resolution tasks.

One of the difficulties associated with the way CMP is
usually tackled is related to one of the points outlined
above. Once a design stage is complete, there is no explicit
representation of how the design products were obtained.
Therefore, on the basis of the knowledge represented by
CoMoDe, Section 5 provides specific procedures to handle
different situations that may arise as the result of working
in a cooperative environment.

Finally, Section 6 emphasizes the main contributions of
the model.

2. Representing how the design process is performed

Designers react contextually according to the domain
knowledge they manage. In consequence, the integrated
model here proposed aims to relate the context where a
design activity is performed to the activity itself; otherwise,
some information about the activity would be lost. There-
fore, CoMoDe aims to capture not only the activities per-
formed during the design process but also why (their
underlying rationale) and when these activities were done
and who (actors) executed them. However, at a more
detailed level, activities operate on the results or products
that are created along the design process, called design
objects, by generating, deleting, modifying, and/or using
them. These design objects also need to be considered in
the model.

The previous analysis indicates that contexts of different
granularity need to be handled by CoMoDe. On the one
hand, there is an activity context, described in Section 3,
which captures those tasks that are responsible for estab-
lishing how the design process advances by means of either
implicit or explicit decision-making activities. On the other
hand, there is an operation context, presented in Section 4,
which is responsible for capturing how products under
development are transformed along the design process.
This process originates new contexts, based on which new
activities will take place.

The proposed model is based on a hybrid approach that
combines object-oriented technology and first order logic.
Moreover, both object-oriented technology and situation
calculus (Reiter, 2001; Scherl & Levesque, 2003) are
employed for modelling the evolution of the design objects.
The model has been formally specified in the O-Telos lan-
guage (Jarke, Jeusfeld, & Quix, 2004), which successfully
combines object-oriented and first order logic properties,
and has been implemented in ConceptBase (Jarke et al.,
2004), a deductive object-oriented data base manager. Con-
ceptBase integrates techniques from deductive and object-
oriented databases in the logical framework of the O-Telos’
data model, a dialect of Telos (Mylopoulos, Borgida, Jarke,

& Koubarakis, 1990). Telos is a conceptual modelling lan-
guage for representing knowledge about information sys-
tems. It is based on the core concepts of object-oriented
technology, integrity constraints, and deductive rules. Telos
resorts to the constraints and deductive rules modelling
constructs to enforce model consistency and to provide
deductive capabilities. In consequence, the object-oriented
concepts supported by O-Telos are employed to map the
objects defined in CoMoDe into a formal representational
language. The rules and constraints expressed as first order
formulas are used to encode the axioms of CoMoDe. There-
fore, the design process model specified in O-Telos and
implemented in ConceptBase allows the obtention of a for-
mal model that is internally consistent and that can be used
to derive other properties of the system specified.

3. Activity context

Engineering design processes are inherently complex.
Therefore, any model aiming to capture them cannot be
simple. From the point of view of supporting the design
process, various essential aspects of the process need to
be modelled, as described in the previous section. All the
required design process elements cannot be included in just
one model view, since such representation would be quite
obscure. To avoid this problem, in CoMoDe, the activity
context is modelled across the following representation
spaces:

e Process representation space, representing the activities
performed during a design project and their associated
operations,

e Requirement representation
imposed requirements,

o Actor representation space, Keeping track of the actors
who performed a given activity,

o Artefact representation space, representing the designed
artefact,

e Decision representation space, capturing the underlying
rationale behind each design-related decision.

space, modelling the

Each representation space encapsulates a particular view
of the design process model and has been formulated under
the minimal ontological commitment design criteria (Gru-
ber, 1995). Therefore, a representation space just focuses
on the main concepts of its associated perspective. This
allows the model to be specialised and further extended
with the concepts of a particular design domain. Fig. 1 pre-
sents an overview of the activity context model, including
the spaces mentioned above and the concepts belonging
to each space.

The core concepts that are included in CoMoDe are the
following:

o Activities: They are the tasks that are carried out during
design processes, such as proposing a given separation

884

S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902

Requirement ‘

1.:*

*
"
resolvt
% *

| Actor'sGoal | 1% Actor |17 -
mem jr
Actor execute Q
Representation R al
Space * | Skill 1.* *| Individual Team
subActivit Activity activity Type Process Representation Space
Tt 5 1. -
* [ﬁ ActivityType |~ characteristicOp| OperationType |*
> 1
operationType
0.1 |] o P P
CompoundActivity BasicActivity mashiarse Operation
1.5
guidedBy T
1.7
Requirement

Representation Space

answer use

*

‘ Resolution

+ al

lternative

DesignObjectType

*]

fi * support *
a%:l Position E’fi obicct .| Argument
T DesignObject
=, —— —.
‘ describ :
PosValue eSCT%8 | posAttribute
Decision Representation Space

Fig. 1. Design process representation: activity context.

structure, analysing whether such structure satisfies the
separation targets that were imposed, evaluating its eco-
nomic potential, deciding among alternative separation
schemes if the process systems engineering domain is
considered.

Design objects: They represent the different products of
the design activities. Typical design objects are models
of the artefact being designed, specifications to be met
(i.e. stream purity specs, products’ throughput for pro-
cess system engineering, quality attributes such as mod-
ifiability or performance for software engineering),
variable values (e.g. reflux ratios, number of stages of
a separation unit, operating temperatures and pressures,
etc). Naturally, these objects evolve as the design process
takes place, giving rise to several versions, which in turn
may comprise one or more model versions.
Requirements: They specify design objectives or goals, as
well as the functional and non-functional characteristics
that the design products must satisfy. Then, they can be
regarded as the driving force of a design process. Since
activities operate on requirements, they are represented
as design objects. They may also evolve as the design
project proceeds.

Operations: They are the ones that actually materialise
the execution of design activities. In particular, opera-
tions materialise the so-called elemental or basic activi-
ties, the ones that cannot be further decomposed into
subactivities. By doing this, operations transform design
objects (i.e. by creating, deleting, or modifying them),
thus allowing the evolution of their associated versions.
Actors: They conduct the execution of activities and
operations by having specific purposes, or pursuing cer-

tain objectives, while attempting to satisfy one or more
requirements.

e Model version: Each model version represents a set of
design objects within the context in which a given design
activity is carried out. Thus, a model version is like a
snapshot, providing a description of the state of the
design process at a given moment.

Despite the separation of the activity context in different
views (see Fig. 1), special attention is given to the relation-
ships among concepts that pertain to distinct views, just as
the guidedBy link existing between the requirement and
activity concepts. The links that explicitly integrate the
model elements are preserved when concepts are specia-
lised. For instance, any specialisation of requirement will
inherit the links it has with other concepts that are defined
in CoMoDe.

3.1. Process representation space

As shown in Fig. 1, this space represents the activities
being performed during a design process. The process rep-
resentation space tries to capture the fact that the design
process is carried out by a set of activities executed either
by designers or by automated tools. Design activitiecs may
be described at various levels of abstraction. Thus, an activ-
ity may be decomposed into a set of subactivities, which
may be organized according to a schedule or performed
without a specified order. The relationship between an
activity and its subactivities, which is depicted in Fig. 1
by an aggregation link, can be represented using first order
logic by the predicate subActivity(a;, a;), which means that

S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902 885

a; is a subactivity of a;. Taking into account this relation-
ship, activities are classified into basic and compound activ-
ities. The first ones are represented in Fig. 1 by the
BasicActivity class. It specialises the Activity class (expres-
sion (1)), and expression (2) imposes the fact that a basic
activity cannot be further decomposed.

(V ap) basicActivity(ay) = activity(ay,) (1)
(Y ap) basicActivity(ay) <=
—(3 a:Activity) subActivity(a, ay) (2)

A compound activity cannot be a leaf node in the activity
hierarchy; thus any activity that is regarded as a compound
activity is not a basic one (expression (3)). Fig. 1 represents
compound activities by the CompoundActivity class, a spe-
cialisation of the Activity concept (expression (4)).

(VY a:Activity) compoundActivity(a) <=
—basicActivity(a) (3)
(V a.) compoundActivity(a.) = activity(a,) (4)

As indicated by expressions (5)—(7), the subActivity rela-
tionship is transitive, irreflexive, and asymmetric.

(Y ay :Activity, ¥ ay, a3 : CompoundActivity)
subActivity(ay, ay) N subActivity(ay, a3)
= subActivity(ay, as) (5)

(VY a: CompoundActivity) —subActivity(a,a) (6)

(¥ a1, ay: CompoundActivity) subActivity(a,, az)
= —subActivity(ay, ay) (7)

Moreover, an activity cannot be a subactivity of two or
more distinct activities that are not related by means of a
subactivity relationship, as prescribed by expression (8).

(V ay: Activity, ay,ay: CompoundActivity)
subActivity(ay, az) N subActivity(as, az) = (8)
ay = a3 V subActivity(ay, a3) V subActivity(as, as)

The recursive decomposition of subactivities leads to an
overall activity structure. The activity structure bottoms
out in basic activities. They are the ones that are actually
executed in a design process. This idea is conceptualised
in the model by introducing the operation concept. An
operation is the basic transformational primitive action,
representing an action on design objects. Indeed, operations
prescribe how the design domain is changed by operating
on design objects along the design process. These concepts
are described more in detail in Section 4. Therefore, opera-
tions are responsible for materialising basic activities. This
fact is represented by the predicate materialise(¢p,a)
(expression (9)), where ¢ represents the sequence of opera-
tions that materialises the basic activity a.

(Y a) basicActivity(a)
<= (¢ :SequenceOfOperations) materialise(¢p,a) 9)

A sequence of operations ¢ is defined by resorting to a
recursive expression (10), where op is an operation, 4 the
empty sequence and e represents the concatenation
between an operation and a sequence of operations.

A

From the previous definitions, it can be inferred that an
activity performs a certain operation if such operation is
part of the sequence of operations that materialises the
activity. This fact is represented by resorting to expressions
(11.a) and (11.b). The first one corresponds to the case in
which the activity is a basic one, while expression (11.b)
corresponds to compound activities.

(V op:Operation, a) basicActivity(a) A perform(a,op)
<= (3¢ :SequenceOfOperations) materialise(p,a)
Nop € ¢
(VY op:Operation, a) compoundActivity(a) N\ perform(a,op)
<= (Ja;:Activity) subActivityOf (a;, a) N\ perform(a;, op)
(11.b)

(11.a)

From the previous expressions, it can be deduced that
an activity a operates on various design objects, denoted
by do. This relationship is not represented in the class dia-
gram shown in Fig. 1 but is inferred by means of the pred-
icate operateOn(a,do) defined in expression (12).

(V a:Activity,do: DesignObject) operateOn(a,do)
<= (3 op: Operation) perform(a,op) N operateOn(op,do)

(12)

As it is shown in Fig. 1, it is possible to identify different
types of activities during a design process. This is so in the
process system engineering domain, where some contribu-
tions are focused on activities that operate on design
objects (Eggersmann et al., 2003) and propose three char-
acteristic kinds of activities: Synthesis, Analysis, and
Decision.

Whereas Synthesis activities create design objects, like
process flow diagrams (PFD), reaction pathways, or math-
ematical models, Analysis activities are in charge of gener-
ating data about the design artefact itself, providing values
for its distinctive attributes. Generally, an Analysis activity
is used to predict the performance of a prospective design
for its intended use from some lumped interpretation of
detailed calculations. Then, based on the available infor-
mation about the design artefact, a Decision activity may
decide whether such artefact is adopted, rejected, or kept
under consideration as a possible alternative to be further
explored.

Though in certain cases it is possible to distinguish
between the main types of activities that participate in a
design process, in others some sort of aggregation may
appear. Taking into account the classification proposed
by Eggersmann et al. (2003), synthesis and analysis can

886 S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902

be lumped and carried out all at once, thus generating dif-
ferent alternatives along with all the necessary information
to decide on the most convenient one. Therefore, a decision
activity can be performed afterwards. In some other cases,
the three types of activities could be aggregated. This
occurs when a computer-aided tool like a mathematical
programming based software implicitly generates, evalu-
ates, and decides among different alternatives, as in the
approach proposed by Floudas (1995) to synthesise heat
exchanger networks.

Consequently, CoMoDe splits up the activity type con-
cept from the activity one. This is done in order to propose
a flexible model that could represent a particular activity
classification adopted during a given design project. Fur-
thermore, the model presented in Fig. 1 allows representing
the aggregation of activity types by adopting a multiple
cardinality (1...*) in the activity type role of the activity-
Type relationship. An activity type has associated some
characteristic operations, which are the ones that can be
executed when the activity is carried out.

3.1.1. Retrieving knowledge about the process representation
space

This section presents a case study focused on the process
representation space. This case study is a well-known
example in the process system engineering community. It
was developed within the CRC 476 IMPROVE project
(Nagl & Marquardt, 1997) and used with different purposes
by several authors (Eggersmann, 2004; Eggersmann et al.,
1999; Heller, Jager, Schliiter, Schneider, & Westfechtel,
2004; Nagl, Westfechtel, & Schneider, 2003). It involves a
design of a chemical plant to produce 40000 tons of poly-
amide-6 per year. In this work, its execution is represented
by the proposed model using the specification provided by
the O-Telos language and their implementation on Con-
ceptBase. As introduced in Section 2, the O-Telos language
was employed to formally specify the proposed model. This
specification integrates the object-oriented model and the
associated axioms. Furthermore, it makes it possible to
obtain a deductive object base, implemented in Concept-
Base, which enables to check and validate the proposed
model.

The specification is obtained by means of the following
rules:

e From the object-oriented model, a static representation
is specified. This knowledge is part of the extensional
database. Fig. 2 shows a partial specification of the
activity concept.

o This specification is completed with the knowledge rep-
resented by the axioms, forming the so-called intentional
database. Axioms that allow deducing new facts, such as
the one represented by expression (5), have been defined
as rules (see transitive rule in Fig. 2); and the ones that
introduce constraints on the model, such as expressions
(6) and (7), have been realized as constraints (see irreflex-
ive and asymmetric constraints in Fig. 2).

The recursive decomposition of subactivities leads to an
overall activity structure, as exemplified in Fig. 3. This fig-
ure represents the activities performed in the design of the
polyamide-6 plant at several abstraction levels. At the most
abstract one, the plant design was carried out by the Design-
Polyamide6 Plant activity. Obviously, it is a compound
activity and it was performed by the following subactivities:
PrepareRequirements, DesignReaction, DesignSeparation,
DesignCompounding, and DecidePlantDesign. Initially,
DesignPolyamide6 Plant carried out the PrepareRequire-
ments compound activity, where the problem to be solved
was defined. This activity was carried out by a sequence
of activities that identified the need for manufacturing
40000 tons per year of the Polyamide-6 product. Thus,
the requirements PlantCapacity and Polyamide-6 Product-
ToManuf were created during the execution of the Define-
Requirements activity. After that, a literature study was
carried out (Literature Research activity), where the Polyam-
ide-6 Product To Manuf requirement was modified with the
new gathered information. Furthermore, the polyamide
reaction system was studied. In order to select between
the anionic and the hydrolytic reaction mechanisms, a more
detailed description about their advantages and disadvan-
tages was needed. In this case, the two alternatives to be
considered were the two reaction mechanisms. The decision
technique was based on the polyamide-6 destination and

Telos Editor

o &

Individual Activity in Class end
Individual BasicActivity in Class isA Activity end

attribute

subActivity © Actiwity
constraint

rule

end

Individual CompoundActivity in Class 1SA Activity with

irreflexive: § forall aiCompoundActivity not (a subActivity a) §;
asymmetric: § forall a1, a2iCompoundActivity (a1 subActivity a2) ==» not (a2 subActivity a1) §

transitive: § forall a3/CompoundActivity a1/Activity (exists a2iCompoundActivity
(a3 subActivity a2) and (a2 subActivity a1)) === (a3 subActivity a1) §

Fig. 2. Activity specification using O-Telos.

S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902 887

£ Canceptbase Graphical Editor —(of %
File Edit Options View Currentconnection

T——ll@ i 1 [oo ["\ [

H@ I 4‘. |
) dncalhastA00, 2 e e

DesignFlowDiagram1

AlternativesbatchCont

SMR i
r Dt
SimulateCSTR

SimulatePFR

nn
(]
DL

DesignFlowDiagram2

SimulateCSTRPFR

SimulateCSTRCSTR

4]

| »

.- Connected with localhost

Fig. 3. DesignPolyamide6Plant activity decomposition.

plant size criteria. Then, the initial abstract flow diagram
(AFD) was generated. The AFD specifies the overall
function of the chemical process and decomposes it into sub-
functions and connections between the subfunctions (Jarke,
List, & Weidenhaupt, 1999). The next decision to adopt was
the plant operation mode. The relevant information for
selecting the operation mode was gathered by resorting to
evaluate the Batch-Operation-Mode-under-Hydrolytic and
evaluate the Continuous-Operation-Mode-under-Hydrolytic
activities, subactivities of the AlternativesBatchCont activ-
ity, for the sake of simplicity of the figure these subactivities
are not shown.

After the start of the project, different alternatives were
evaluated based on the AFD. Reaction (DesignReaction
activity), separation (DesignSeparation activity) and plastic
processing systems (DesignCompounding activity) were
developed concurrently. After the completion of these
activities, a plant concept was established (Decide Plant De-
sign activity).

Fig. 3 only shows the decomposition of the DesignReac-
tion activity. Since different alternatives exist for both the
separation and the reaction phase, the DesignFlowDia-
graml activity revealed that two types of reactors could
be used: (i) a continuous stirred tank reactor (CSTR) and
(ii) a plug flow reactor (PFR). Therefore, two alternatives
were proposed: (i) realization of the reaction by a CSTR;
and the (ii) realization of the reaction by a PFR. Conse-
quently, the simulation of the CSTR (Simulate CSTR activ-
ity) and then the simulation of the PFR (SimulatePFR
activity) were performed. The aim was to find the best
operating conditions for the reactor. After these activities
had been completed and the CSTR and PFR alternatives
elaborated, both alternatives were compared (Comparel
activity). Since none of them performed satisfactorily,

new reaction alternatives had to be considered: (i) realiza-
tion of the reaction by a CSTR (-) CSTR pair; and (ii) real-
ization of the reaction by a CSTR (-) PFR tandem
(DesignFlowDiagram?2 activity). Therefore, new simulation
activities were carried out (SimulateCSTRPFR and Simu-
lateCSTRCSTR activities) and the most suitable alterna-
tive was selected.

The activity structure bottoms out in activities that are
not further decomposed and are, therefore, characterized
as basic activities. As it was defined in the process represen-
tation space, basic activities are materialised by means of a
sequence of operations that are performed on design
objects; for example, operations like propose, that intro-
duces a position with the aim to answer a given requirement.
In this case, the operation that posed the first reaction
alternative (PositionReactionByCSTR) was performed
while a subactivity of DesignFlowDiagraml was carried
out. The various operations that were executed while
addressing the case study are described in the Operation
Context Section, in which the case study is discussed at
the operation context granularity level.

3.2. Requirement representation space

As it is depicted in the class diagram of Fig. 1, the exe-
cution of an activity is guided by one or more requirements.
This is represented by the guidedBy relationship. Therefore,
the design process can be interpreted as a series of activities
guided by requirements. If the guidedBy(a,r) predicate is
defined (activity « is guided by requirement r), then it is
possible to infer the potential requirements that could have
guided the subactivities of a. This fact is represented in
expression (13).

888 S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902

(V a;: Activity, r: Requirement) (3 a.: CompoundActivity,
r;: Requirement) guidedBy(a.,r) N\ subActivity(a;, a.)
A [r=r; V subRequirement(r;,r))
= potential Guide(r;, a;) (13)

The representation of requirements shown in Fig. 1 is
very general and would need to be specialised and extended
to model any particular domain. As it is specified in expres-
sion (13), a requirement may be decomposed into a set of
subrequirements, which specify in a more concrete form
the functional and non-functional properties that the
designed product should meet. The adopted requirements’
representation is similar to the goal representation
employed in the actor model proposed by Eggersmann,
Henning, Krobb, Leone, and Marquardt (2001). There-
fore, a requirement can have zero or more possible struc-
tures (ReqStructure), which are related to one another by
an implicit OR relationship, meaning that these structures
are alternatives (Fig. 4). The class ReqStructure defines the
relationship between a requirement and its subrequire-
ments. It does have a type, which may be either AND or
OR, or in turn, it can assume other types that could be
specified by the user, allowing an extension of the concept
of RegStructure. These categories are defined as subclasses
of the StructureType class. As shown in Fig. 4, the AND
type determines that all subrequirements have to be met;
the XOR (Exclusive OR) type states that exactly one of
the subrequirements has to be satisfied to fulfil the superre-
quirement; and the OR (Inclusive OR) type indicates that
at least one subrequirement has to be satisfied to meet
the super/requirement. The satisfaction of the subrequire-
ments does not guarantee the fulfilment of their superre-
quirements. For enhanced flexibility and modularity in
the construction of complex requirements, the model
allows a requirement structure (RegStructure) to be com-
posed of requirements (by means of the consistOf relation-
ship) and/or structures (by means of the subStructure
relationship). Moreover, the model allows a requirement
to represent the functional and non-functional aspects that
a design product must meet. It can be seen that the require-
ment concept is modelled as an aggregation of (possibly
empty) conditions about products, referred as ProductReq,
the ones that allow specifying an Artefact, and textual
descriptions called fuzzy requirements (FuzzyReq).

FuzzyReq

+| ProductReq

Artefact

<>
subStructure| * StructureType

[[[|
‘ AND H OR H XOR H Precede ‘

Fig. 4. Requirement model.

For this requirement representation, the requirement
decomposition is not straightforward; then, it is necessary
to know the subrequirements r; of r that define the predi-
cate subRequirement(r;,r). Expression (14) defines the
axiom that makes it possible to know the subrequirements
by resorting to the hasStructure and structureConsistOf
predicates. hasStructure(r,st) means that requirement r
has an associated structure st, and the structureConsis-
tOf(st,r) is true if the requirement r is part of the structure
st or one of its substructures, as defined in expression (15).

(V ri, r;:Requirement) subRequirement(r;,r;)
<= (3 st:RegStructure) hasStructure(r;, st)
A structureConsistOf (st, r;) (14)

(VY r;: Requirement, st;:ReqStructure) structureConsistOf (st;, r;)
<> consistOf (st;, r;)
V [(3 st;: RequirementStructure) subStructure(st;, st;)

A structureConsistOf (st;, ;)] (15)

Often, requirements may not be stated explicitly or with
enough details at the beginning of the design process
(Brown & Chandrasekaran, 1989). In general, they are
refined and specified more precisely as a greater compre-
hension of the design problem is reached (Boyle, 1989;
Cameron, Fraga, & Bogle, 2005; Goel, 1994). Then, it is
very important to represent how requirements evolve dur-
ing a project execution. This is described in Section 4, in
which a requirement is represented as a design object having
a life cycle.

3.2.1. Retrieving knowledge about the requirement
representation space

As shown in the class diagram depicted in Fig. 1, the
execution of an activity is guided by one or more require-
ments, fact that is represented by the guidedBy relationship.
Indeed, the proposed model allows abstracting the require-
ment concept, focussing on: (i) the relationships among
requirements and the design activities guided by them
and (ii) the different design alternatives that arise as
answers to requirements. This knowledge can be retrieved
from the model implemented in ConceptBase by querying,
navigating the knowledge base by guidedBy relationship,
and its inverse, guide. Fig. 5 illustrates these relationships
and other links as PotentialGuide, which enables to know
the requirements that could have guided an activity
(expression (13)). Furthermore, Fig. 5 illustrates that an
activity can operate on a requirement, because this is a
design object.

As regards the requirement concept, Fig. 6 shows the
main requirement that has guided the case study. It is rep-
resented as an instance of the model introduced in Fig. 4.
Therefore, Requirement] has associated a requirement
structure (ReqStructl) that specifies a set of requirements
must be fulfilled (they are linked by an AND connector).
Some subrequirements specify conditions on the product

S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902 889

£ ConceptBase Graphical Editor
File Edit Options View Current connection

localhost:4001

superReduirement

“ Connected with localhost

Fig. 5. A view of activity and requirement relationships.

ConceptBase Graphical Editor =181 x|
DOE [HE o b= &4 v -

[l i

Connected with localhost

Fig. 6. A partial view of requirement model and its instances.

being designed; for that reason, they are linked with a
ProductReq instance. For example, the PlantCapacity
and Polyamide-6 ProductTo Manuf requirements that were
introduced by DefineRequirements activity. Polyamide-
6 ProductToManuf specifies some properties on the input
(InputReq) and the output (PA6Req) of the plant, as the
e-caprolactam (¢CL) residue must be less than 0.1%.
Fig. 6 introduces non-functional requirements, as Fuzzy

Reql and FuzzyReq2, requirements related to the minimi-
sation of capital and operating costs.

An observation worth mentioning is related to the vari-
ous requirements that were posed while the case study was
carried out and when those requirements appeared. Indeed,
requirements might be created during every type of activ-
ity. This can be seen from an examination of the case study.
Though the main requirement was to manufacture

890 S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902

40000 tons per year of the Polyamide-6 product, fact that
was represented by the PlantCapacity instance, the artefact
to be designed also had to comply with other objectives
that appeared during the design process, such as the one
requiring the product to be manufactured via the hydro-
lytic route (PlantReq). This requirement arose as a result
of the LiteratureResearch activity where an analysis of
two reaction alternatives was carried out.

3.3. Actor representation space

As introduced in the process representation space, activ-
ities are executed either by designers or by automated tools,
thus, actors. The actor representation space presented in
this paper extends the actor model introduced by Eggers-
mann et al. (2001). This extension is made with the aim
of proposing an integrated model and answering questions
such as “who performed a given activity?”’, “which require-
ments did the actor try to meet?”.

The main concepts are shown in Fig. 1 where it is possi-
ble to observe that each activity is related to the actor who
executes it (execute relationship in Fig. 1). An actor may be
either an individual (expression (16)) — a human being or a
computational program, or a team (expression (17)). The
team concept allows modelling a set of actors.

(V ac;) individual(ac;) = actor(ac;) (16)
(VY ac,) team(ac,) = actor(ac,) (17)

Thus, a team may be decomposed into a set of actors. The
relationship between a team and its members is captured by
an aggregation link (Fig. 1). This relationship is repre-
sented in first order logic by the member(ac,ac,) predicate,
which means that ac is a member of the ac, team. As the
subActivity relationship, member is transitive (expression
(18)), irreflexive (expression (19)), and antisymmetric
(expression (20)).

(Y acy :Actor, acy, acy : Team) member(acy, acy)

A member(acy, acs) = member(acy,acs) (18)
(Y ac:Team) —member(ac, ac) (19)
(Y acy,acy : Team) member(acy, acy) =

—member(ac,, acy) (20)

It is important to remark that an actor can be member of
zero, one, or more teams, as it is represented in Fig. 1, by
the multiplicity * (zero or more) in the member relation-
ship. However, an individual cannot be considered as a
team (expression (21)), thus, it cannot have members
(expression (22)).

(VY ac:Actor) team(ac) <= —individual(ac) (21)
(VY ac;) individual(ac;) <= —(3 ac:Actor) member(a, ac;)
(22)

Each individual has defined a set of skills (expression
(23)). This relationship is represented by the link between

the Individual and Skill classes in Fig. 1, and it represents
the knowledge of a particular actor. The Skill class, which
encapsulates information about the abilities of actors, is
quite general. It can be specialised and extended to repre-
sent the special characteristics of a particular domain.
For example, it may be enriched to represent the compe-
tency concept proposed by Harzallah and Vernadat (2002).

(V ac) individual(ac) = (3 s:Skill) hasSkill(ac,s) (23)

The team concept allows representing the compound
skills that are needed for performing many design activities.
They are not organizational units because the present work
is focused on process support/process tracing. Expression
(24) enables the skill inference of a given ream.

(V ac,:Team, s: Skill)(3 ac:Actor) member(ac,ac,)
A hasSkill(ac,s) <= hasSkill(ac,, s) (24)

Moreover, the model shown in Fig. 1 represents the fact
that activities are executed by those actors having the nec-
essary skills to carry them out. As it has been shown, the
actor, activity, and skill classes are connected to one
another in order to represent both the actors’ skills and
the skills needed to carry out the various activities. Expres-
sion (25) prevents the execution of one activity by one actor
without the needed skills. The predicate performedBy(a,ac)
means that the activity a was performed by the actor ac
(execute relationship in Fig. 1) and need(a,s) represents
the skill needed to perform the activity a (relationships
between Activity and Skill class in Fig. 1).

(V ac:Actor,s: Skill, a: Activity) need(a,s)
A performedBy(a,ac) = hasSkill(ac,s) (25)

As previously specified, the activity concept represents
basic and compound activities. Therefore, if an actor per-
forms a compound activity, then the subactivities would
be carried out by the actor itself or by a member of the
team represented by the actor (expression (26)).

(Y acy: Actor, ay, : Activity) (3 a.: CompoundActivity)
subActivity(ay, a.) \ (performedBy(a., acy)
V (3 ac,: Team) performedBy(a., ac,)
A member(acy, ac,)) = performedBy(ay, acy) (26)

Each actor has goals (actor’s goals) that express the actor’s
intentions and desires. The actor’s decision of executing a
given activity for reaching one or more goals with the final
aim of satisfying a set of requirements is represented by the
promote links among the activity, actor’s goal, and require-
ment entities (Fig. 1). These links reflect the actor’s
intention.

3.3.1. Retrieving knowledge about the actor representation
space

The model shown in Fig. 1 allows the representation of
the actor (individual or team) that has executed a given
activity. This knowledge is explicitly modelled by the

S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902 891
£ ConceptBase Graphical Editor = DIZI
File Edit Options View Current connection
— K 759 b
OB I MR oo o= A 7 (S
Elwocainosta0or - G =

<] I

Connected with localhost

Fig. 7. Some actors involved in the execution of the case study.

execution relationship between the Activity and Actor clas-
ses. As seen in the case study, the actor performs a given
activity with the aim of meeting a given goal (stated by
means of one or more requirements). This knowledge is
structured in the model shown in Fig. 1 by using: (i) the
execute relationship, (ii) the Actor’sGoal class, which cap-
tures the goals of the actor; and (iii) the promote relation-
ships that link both the requirement to be met with the
activity performed to attain it and the activity with the
sought goal. For example, Fig. 7 shows that the DesignRe-
action activity was carried out by the ChemicalEngTeam
team and the members of this team were Mary, Juliet
and Harry. Each actor is shown with his/her skills.

3.4. Artefact representation space

The main product of the design process is the artefact
being designed. With the aim of proposing a domain inde-
pendent model, the representation of the design product is
encapsulated in the Artefact class, a subclass of Design
Object (see Fig. 1). Thus, the same modelling criterion used
in the definition of the requirement concept is once again
adopted. The Artefact class encapsulates relationships with
the main concepts included in CoMoDe. Thus, as any Artze-
fact is a design object, the operations that materialise basic
activities may operate on it.

On the other hand, the Artefact class can be specialised
and/or extended to represent the design products that per-
tain to a particular domain. For example: (i) in the soft-
ware engineering domain it is possible to specialise the
Artefact class with the UML concepts (Booch, Rumbaugh,
& Jacobson, 2005), or with the software architecture
domain concepts (Bass, Clements, & Kazman, 2003; Rol-
dan, Gonnet, & Leone, 2005); (ii) in enterprise engineering,
it is feasible to specialise the artefact concept with the

building blocks of enterprise modelling languages as Coor-
dinates (Mannarino, 2001), TOVE (Fox & Gruninger,
1998), or CIMOSA (computer integrated manufacturing-
open systems architecture) (Vernadat, 1996); (iii) and in
the process systems engineering domain, the Arzefact class
can be enriched with the concepts of a chemical process
modelling language, as MODEL.LA (Stephanopoulos,
Henning, & Leone, 1990).

3.4.1. Retrieving knowledge about the artefact representation
space

As it was previously indicated, the Artefact class encap-
sulates the main design product in a generic, domain in-
dependent way. Therefore, such concept needs to be
specialised. This can be done by resorting to any language,
such as CLiP (Bayer & Marquardt, 2004), suited to repre-
sent models employed at a conceptual design level. In this
case study, the MODEL.LA (Stephanopoulos et al., 1990)
language was employed. Therefore, the Artefact represen-
tation space was enriched with the MODEL.LA building
blocks. Fig. 8 shows a partial view of this particular exten-
sion of the artefact space. The model incorporates the con-
cept of generic unit (MLAGenericUnit), which is a subclass
of the Artefact class, and other classes are used to complete
the definition, such as MLAPort class, representing ports.
Additionally, Fig. 8 shows the Polyamide6 Process instance
and its input and output flows (MLAInputStream and
MLAOutputStream, respectively), generated by the Create-
AFD activity.

3.5. Decision representation space
With the aim of representing the rationale associated

with the execution of a given activity, the IBIS model
(Kunz & Rittel, 1970) has been adopted and extended.

892 S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902

- ConceptBase Graphical Editor

MLAInputStream

MLAOutpuiStream

4 IIf
“ Connected with localhost

Fig. 8. A partial view of the MODEL.LA based extension of the artefact representation space.

The IBIS model focuses on articulating key design issues.
An issue is a question to be answered and a position is
an alternative that exists for solving such issue. CoMoDe
extends this idea by (i) introducing requirements, which
specify issues, (ii) decomposing positions into artefacts,
attributes (PosAttribute), and values (PosValue), and also
by (iii) adding resolutions, which represent the selection
(or refusal) of an alternative with the aim of resolving a
requirement (see Fig. 1).

Therefore, a position encompasses: (i) a design artefact,
such as a software architecture, a flowsheet structure, a
mathematical model describing part of the chemical pro-
cess being considered, the geometry of a piece of equip-
ment, etc., its (i) attributes and (iil) corresponding values.
As it was indicated, an artefact represents the product that
it is being designed, whereas the attributes and values char-
acterise the position. Then, the different alternative prod-
ucts that arise in the design process are represented by
the position concept. A position is qualified by one or more
arguments and addresses at least one requirement (expres-
sion (27)). An argument either supports or objects a position.
It allows testing whether the position is capable of fulfilling

the prescribed requirements by means of the answer
relationship.

(V p) position(p) <= (3 r:Requirement) answer(p,r) (27)

A position p is accepted to answer a requirement r (predi-
cate accepted(p,r)) by a resolution res, if res tries to resolve
the requirement r and accepts p as a valid answer (expres-
sion (28)). Expression (29) presents the refusal of a position
by a resolution.

(V p : Position, r : Requirement) accepted(p,r)

<= (3 res : Resolution) accept(res, p) A resolve(res,r) (28)
(V p: Position, r : Requirement) refused(p,r)

<= (3 res : Resolution) refuse(res,p) A resolve(res,r) (29)

Positions, artefacts, attributes, values, resolutions, and
arguments evolve during the execution of a design project
and their various states are fundamental for representing
the different contexts where activities are performed. Then,
they are modelled as design objects (see Fig. 1), and the rep-
resentation of their evolution is described in the Operation
Context section.

S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902 893

£ ConceptBase Graphical Editor
File Edit Options View Current connectio

oo

x

‘ attr
|

=lolx

L4

4

[1ocathost:4001

| PositionReactionByCSTR l

\ PnsitinnReactionByPFR]

PositionReactionByCS...

l PositionReactionByCS... |

oljest

Resolution1

4 Il

- Connected with localhost

Fig. 9. Positions answering Requirement!.

3.5.1. Retrieving knowledge about the decision
representation space

While performing the case study, different positions have
been proposed with the objective of satisfying the require-
ments that were specified. Since it is desirable to know why
a position was refused or selected, it is necessary to docu-
ment the actor’s decisions and to link the various design
alternatives with the arguments that support or object them.
Fig. 9 presents a partial view of how the information associ-
ated to the underlying rationale that was captured during the
case study has been structured. It shows that the four
positions that were proposed provide an answer to the
Requirementl requirement. It also shows that the first
two proposed positions (PositionReactionByCSTR and
PositionReactionBy PFR representing the reaction by CSTR
and PFR units respectively) were considered inadequate
(there is a refuse link between Resolutionl and Posi-
tionReactionByCSTR and another refuse link between
Resolutionl and PositionReactionByPFR) as a result of
Comparel activity. The decision was based in the Argumentl
and Argument2 arguments. This latter fact is represented by
the object links between PositionReactionByCSTR and
Argumentl, and PositionReactionByPFR and Argument?2.

As seen, the IBIS extension incorporated in CoMoDe
allows for representing in an integrated form: (i) the design
alternatives that arose as answers to the imposed require-
ments (for simplicity reasons, Fig. 9 just shows only one
requirement), (ii) the arguments that support or object
the different positions, and (iii) the resolutions that were
adopted in each case.

4. Operation context
Each basic activity performed during a design process is

represented, at the lower level of granularity, in the Opera-
tion Context through the execution of a sequence of oper-

ations, which transforms the products of the design
process (design objects). While a design process is carried
out, design objects evolve into multiple versions. Conse-
quently, this granularity level focuses on representing (i)
the various states (versions) of the design objects along
their life cycle, and (ii) how these states are derived.

As it was previously introduced, activities operate on the
outcomes or products of the design process, called design
objects (Fig. 1). A design object represents any entity that
can evolve during a design project. It is represented at
two levels, the repository and the versions level (Fig. 10).
The repository level keeps a unique entity for each design
object that has been created and/or modified due to model
evolution during a design project. This object is regarded as
a versionable object (0). Furthermore, relationships among
the different versionable objects are maintained in the repos-
itory. These relationships correspond, according to the
notation being used, to the rules that allow associating
objects in order to develop syntactically valid models.

On the other hand, the versions level keeps the different
versions of each design object. These are called object ver-
sions (v). The relationship between a wversionable object
and one of its object versions is represented by the version
association and the version(v,0) predicate. Therefore, a
given design object keeps a unique instance in the reposi-
tory, and all the versions it assumes along the design pro-
cess in different model versions belong to the versions level.

At a given stage during the execution of a design project,
the states assumed by the set of relevant design objects,
from now on called model version, supply a snapshot
description of the state of the design process at that point.
According to the proposed representation, a new model
version m,, is generated when an activity « (a basic activity)
is executed. A basic activity « is materialised by a sequence
of operations ¢ and the new model version m, is the
result of applying such sequence ¢ to the components of

894 S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902

BasicActivity

SUCCESSOor| « I =

_Versions

ModelVersion

predegessor

- belong

ObjectVersion

L PropValue
1.%

version[{ * *

- version
Repository [op;
origin

VersionableObject |: objectType
n

Domain

propertyType

| DesignObjectType I’—EPEII
1

insfance

,,,,,,,, end iati
{ml* asspciation[Type

container*___pari[* |

DomainRelationship |

Fig. 10. Version administration model (operation context).

a previous model version m,,. The predecessor model version
m,, constitutes the context where the activity a was per-
formed and the successor model version m, represents the
resulting context. This model evolution is posed as a history
made up of discrete situations. The situation calculus
(Reiter, 2001; Scherl & Levesque, 2003) is adopted for
modelling such version generation process. Therefore, the
new model version m,, is achieved by performing the fol-
lowing evaluation: apply(¢,my,) = m,,.

The apply function is defined in expression (30), where
SequenceOfOperations is the set of all possible operation
sequences ¢ (defined in expression (10)) and ModelVersion
is the set of possible model versions m.

apply : SequenceOfOperations x ModelVersion
— ModelVersion (30)

The primitive operations that were proposed to represent
the transformation of model versions are add, delete, and
modify. By using the add(v) operation, an object version
that did not exist in a previous model version can be incor-
porated into a successor one. Conversely, the delete(v)
operation eliminates an object version that existed in the
previous model version. Also, if a design object has a version
v,, the modify(v,,v,) operation creates a new version v, of
the existing design object, where v iS a successor version
of v,. Thus, an object version v is added after applying the
sequence of operations ¢ to model version m when the
new version v is created by means of an add or modify oper-
ation (expression (31)). On the other hand, the expression
(32) represents the fact that an object version v is deleted
after applying the sequence of operations ¢ to model ver-
sion m when the version v is deleted by the delete or modify
operation.

(VY ¢:SequenceOfOperations, v: ObjectVersion,
m:ModelVersion) add(v) € ¢ V (3 v,: ObjectVersion)
modify(v,,v) € ¢ = added (v, apply(¢p,m)) (31)

(V ¢ :SequenceOfOperations, v: ObjectVersion,
m:ModelVersion) delete(v) € ¢ V (3 v,: ObjectVersion)
modify(v,v) € ¢ = deleted (v, apply(p, m)) (32)

From these definitions, and by using the format of the
successor state axioms proposed by Reiter (2001), a formal
specification of the cases in which an object version belongs
to a model version is presented. In expression (33), the pred-
icate belong(v,m) is true when the object version v belongs
to the model version m. Thus, an object version v belongs
to a model version that arises after applying sequence of
operations ¢ to model version m, if and only if one of the
following conditions is met:

(1) v is added when the new version is created; or

(i) v already belonged to previous model version m
(belong(v,m)) and it is not deleted when ¢ is applied
to it.

(V ¢:SequenceOfOperations, v: ObjectVersion,
m: ModelVersion) belong (v, apply(¢p,m))
<= belong(v,m) V added (v, apply(p, m))
A (—deleted (v, apply(¢,m))) (33)

From this expression, the object versions that belong to a
certain model version can be determined. Then, it is possible
to reconstruct a model version m;;; by applying all the
sequences of operations from the initial model version my
(expression (34)).

M1 = apply(P;py, mi);m; = apply(p;,mii); .. 5
my = apply (¢, mo)
M1 = apply($,.1, apply(¢;, apply(. . .apply (¢1,mq) .. .)))
miy = apply(¢1 LR X ¢i+lvm0)
(34)

Once the versions belonging to a model version are
defined, the relationships existing among object versions
have to be specified. First, it should be noted that in this
proposal, object versions belonging to a model version are
not explicitly associated with other versions belonging to
the same model version. These links are represented at
the repository level (see Fig. 10). Consequently, the rela-
tionship existing between two object versions must be
inferred from the relationship established between the
objects that have been versioned by them. This fact is

S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902 895

represented in expression (35), in which an association a is
inferred between two object versions, namely v; and vy,
belonging to the same model version m (inferredAssocia-
tion(ay, vy, v,,m)) if and only if there exists an association
ay between the two versionable objects 0; and o, (associa-
tion(ay, 01,03)), of which vy and v, are versions, respectively
(version(vy,0,) and version(vy, 0,)).

(V vy, v2: ObjectVersion, m:ModelVersion, ay : Association)
inferredAssociation(ay., vy, vy, m)
<= (3 01,0,: VersionableObject)
belong(vy,m) A belong(vy, m) A version(vy,o;)
A version(vy, 02) A association(ay, 01,0,)
(35)

The proposed scheme is strengthened by object-oriented
modelling elements, which represent the relationships exist-
ing among object versions of different model versions, allow-
ing the navigation along the history of the object versions
that comprise a given model version. The relationships
among object versions are represented by means of explicit
links at the versions’ level, named history (Fig. 10). Each
transformation operation that is applied to a model version
incorporates the necessary information in terms of the pre-
vious link to trace the model evolution. The incorporation
of history relationships allows the definition of attributes
oriented towards the characterization of the history of the
executed operations; for instance, attributes aim to capture
temporal information (when the operation was performed)
and documentary information (tool employed, actor carry-
ing out the operation, reasons for doing it).

4.1. Extension of the version administration model

This basic model can be specialised according to the par-
ticular domain being tackled. The specialisation can be
done in terms of the different operations that are applied
to the distinct design objects, in terms of the different design
objects that participate in the design process, and in terms
of the allowed relationships among design objects.

4.1.1. Extension of primitive operations

Due to the increasing complexity and to the dynamic
changes occurring in the several engineering domains, it
is not possible to represent ““a priori” all the elements for
all projects and situations in an information model (Bayer
& Marquardt, 2004). The primitive operations add, delete,
and modify are not sufficient to capture and trace how a
design process has been carried out. Then, the previously
introduced model must be specialised according to the par-
ticular domain being tackled. The particular operations
must be expressed in terms of added and deleted predicates
previously defined in expressions (31) and (32). For exam-
ple, the refine(v, o) operation allows decomposing an object
version v into one or more versions of design objects, where
o is a set of object versions v;.

(VY ¢:SequenceOfOperations, a: PObjectVersion, v;,
v:0bjectVersion, m: ModelVersion)
refine(v,0) € ¢ Av; € o
= deleted (v, apply($p, m)) A added (v;, apply(¢p,m)) (36)

The definition of new operations, in a similar way to
expression (36), allows enlarging the set of operations,
incorporating domain specific ones. This can be done with-
out modifying the successor state axiom (expression (33)).

A possible extension is related to the different operations
that are carried out when performing Synthesis, Analysis,
or Decision activities in the domain of process systems engi-
neering. For example, in the proposal by Eggersmann et al.
(2003) operations like propose, add, delete, modify, merge,
select, and request were identified during the execution of
the Synthesis activities. The propose operation conveys
the action of putting forward something new as product
data (design object). Merge creates something new by com-
bining already existing elements in a consistent way, select
chooses something from a given set of possibilities, and
request solicits additional information, allowing a synthesis
activity to be interactive. In turn, during an Analysis activ-
ity, operations like calculate, estimate, determine, experi-
ment, and request can be recognised. In order to present
their meaning, let us consider that after executing a synthe-
sis activity, product data will exist, but some of their attri-
bute values may be unspecified. These values are needed as
a basis for subsequent decisions. One of the most common
cases is to perform calculations (operation calculate) in
order to provide the missing information. If calculations
are not possible or cannot be afforded, values can be esti-
mated. In other situations, attribute values may be
obtained in the literature or by browsing databases (deter-
mine). The engineer may perform an experiment activity to
test a proposed design and generate additional data.
Finally, decision activities may include operations such as
choose, evaluate, justify, and request. A choose operation
refers to the selection of one or more design products
among a number of possible alternatives. Before choosing
among them, some information generated during an anal-
ysis activity is compared with the requirements to be ful-
filled. In this way, an evaluation operation provides
arguments to justify a decision. Similarly, justify offers a
rationale for the selection of a certain alternative. The
request operation solicits additional information, allowing
a decision to be interactive. As already seen, requesting
for new information can occur at every stage of the design
process and is therefore not specific to a particular activity.

These operations are expressed in terms of added and
deleted predicates defined previously in expressions (31)
and (32), respectively. For example, the evaluate(v,,o)
operation generates a set of arguments that qualify a given
position v,, where o embraces the arguments v,. The defini-
tion of the new operation in a similar way to expression
(37) allows the primitive operations to be extended without
modifying the successor state axiom presented in expres-
sion (33).

896

(V ¢:SequenceOfOperations, o: PObjectVersion,
U4, V:ObjectVersion, m:ModelVersion)
(evaluate(v,,o) € ¢) A v, € a = added(v,,apply(¢, m))
(37)

4.1.2. Extension of design objects

Another possible extension is related to the distinct
design objects that participate in the design process, as well
as to the allowed relationships among them. In order to
make this extension possible in a flexible way, the Domain
package is defined (see Fig. 10). This package is understood
as a language that allows us to define the various design
object types with their properties and relationships between
them. Thus, an instance of DesignObjectType class is cre-
ated for each design object type identified in the design pro-
cess domain. The properties that can evolve while the
design is being carried out are defined by instances of Prop-
erty class. Finally, DomainRelationship class represents the
allowed relationships between design objects.

Then, to capture and maintain the evolution of the
design process, the design object types defined in the context
activity (in Requirement, Artefact, and Decision representa-
tion spaces, see Fig. 1) have to be defined as instances of
Domain package. Fig. 11 shows a partial view of design
object and domain relationship instances.

S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902

4.1.3. Retrieving knowledge at the operation context level

This section presents a case study focused on the Oper-
ation Context level. The main axiom specified at this level
is the successor state axiom defined in expression (33),
where a formal specification of the cases in which an object
version belongs to a model version is presented. Its specifica-
tion using the O-Telos language is shown in Fig. 12. It is
introduced as a rule of model version.

The next figure, Fig. 13, shows a partial view of the
graphical representation of one of the steps of the design
process generated by ConceptBase. It corresponds to the
synthesis of the AFD. As it is illustrated in the figure, the
CreateAFD activity has the CreatelnputOutputStructure
and CreateRecycleStructure basic activities as subactivities.
As it is shown in Fig. 13, the basic activities are materia-
lised in a sequence of operations that are performed on
the design objects, allowing their evolution to a new ver-
sion. The ModelVersion_2 model version was the activity
context of the CreatelnputOutputStructure basic activity
and that model version has been inferred from the object
base by means of expression (33). This expression has been
written in O-Telos as presented in Fig. 12. The instances
that belong to the model version are versions of the design
objects that are part of the requirement, artefact and deci-
sion representation spaces. When the fiCreatelnput Output-
Structure sequence of operations was applied to the
ModelVersion_2, this last evolved to a new model version,

Accept: Refuse:
DomainRelationship DomainRelationship|
container
Resolution: container
\ DesignObjectType
Use: -
DomainRelationship| |
part part 1part container,
Position: Argument:
DesignObjectType | part container DesignObjectType
container e /
Support: Object: Resolve:
DomainRelationship| DomainRelationship| [DomainRelationship
Answer:
DomainRelationship
\ part! Requirement: part |
DesignObjectType
PosArt:
DomainRelationship
\ part Artefact:
PosPVal: DesignObjectType
[DomainRelationship
\ part PosValue:
DesignObjectType
container
Describe:
[DomainRelationship
PosPAtt:
DomainRelationship| part
\ part PosAttribute:

DesignObjectType

Fig. 11. Domain representation: a partial view of its extension.

S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902 897

Telos Editor

Individual Modelversion in Class isA Abstractversion with
attribute
belong : Objectversion;
modelHistory . Modelversion,
deleted : Objectversion,
added : Objectversion
rule

=== {m belongv) §
end

hbelongRule : § forall wOhjectversion miModelVersion ((exists pm/MaodelVersion
{m modelHistory pm) and (pm belongv)) or {m added v)) and ¢not {m deleted v))

Fig. 12. Successor state axiom using O-Telos.

£ ConceptBase Graphical Editor -18] x|
File Edit Options View Current connection
: =] ‘ RS | .{ e | | =l
+ ¥ Creat attr | '(X E'E
G ([PR oo o] 2y =t i
R e -
[ocamost:ann iiiiiia i gng g g S i Gt 0

Modelersion_2

come

Recyslas
-“
CreateRecycleStiucture .

— |]

] :dpnut‘a‘u’

[4]

il

- Connected with localhost

Fig. 13. Partial view of the CreateAFD activity that was captured in ConceptBase.

called ModelVersion_3, conforming a new context to new
activities. Therefore, ModelVersion 3 is the context of the
CreateRecycleStructure basic activity. Furthermore, the
contexts of the CreateAFD compound activity are inferred.
They are labelled as deduced and represent that ModelVer-
sion_2 is the context of this compound activity, and Model-
Version_4 is its resulting context.

Fig. 14 lists the object versions that belong to the model
versions illustrated in Fig. 13. These are ModelVersion_3
and ModelVersion_4. The predecessor attribute represents
the previous model version. Furthermore, the figure illus-
trates a partial view of two object versions, ObjectVersion_3
and ObjectVersion_4. 1t is possible to see that object ver-
sions are linked to versionable objects, as VersionableOb-
ject 3 and VersionableObject_4, respectively. These
versionable objects are related to the design object type
they represent, as a flow (MCMLAFlow).

5. Supporting the conflict management process

On the basis of the knowledge captured by CoMoDe,
this section provides specific procedures to handle different
situations that may arise as the result of working in a col-
laborative environment.

In this proposal, it is considered that different design
teams may perform independent concurrent activities on
““a priori” independent or slightly coupled parts of the arte-
fact being designed. As Kvan (2000) states, it is the most
common type of concurrent work, with different actors
contributing what they can in different domains of exper-
tise at moments when they have the most suitable knowl-
edge for a particular situation. Independent activities
mean two or more actors operating in their particular
model versions that were derived from a common model
version without having an “a posteriori” conflict.

898 S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902

E,l:ﬂlre - ConceptBase User Interface in Java ;li]il
File Edt Browse Options History Windows Help
8 |) S e S
E Telos Editor 2 2 Euhjedverslnn_:i P ? [beration successful) A n{ o
Wodelversion_3 in Modelversionigw with s Objectersion_3
belong =R Sheckalization of |Modzversion
COMPUTED _belong_id_2142 : Objectyersion_1; isd -Computed Attributes

COMPUTED _belona_id_2154 . OhjectVersion_2;
COMPUTED_belong_id_2166 © OhjectVersion_3

& “u addHistory

o= — Objectversion_3_addHistory - ModelvVersion_2

predecessor & v bbject
COMPUTED_predecessor_ld_2042 - Modelversion_2 +“u Obl
end e —in
isf

Modelversion_4 in ModelversionVigw with
helong

1_3_ohject: Versl

¢ “u designObjectTyne
o= — WgrsionableObjecl_3_desionObjeciType | MCMLAF low

Qhject_3

COMPUTED belong id 2274 : ObjectVersion B;

COMPUTED belong_id_2142 : ObjectVersion_1, o = afiribute

COMPUTED_belong_id_2154 ; ObjectVersion_2; o — gitribute

COMPUTED_belong_id_2166 © Ohjectversion_3;

COMPUTED _belong_id_2250 : ObjectVersion_4;

COMPUTED_belong_ld_2262 : Objectversion_s; ‘ ok || Teloskuror “ View Obloct as Tree

GOMPUTED belong_ld_2286 : ObjectVersion_7;

3 objectversion_4

COMPUTED_belong_id_2310 . ObjectVersion, QI

GOHF‘UTED:DeIDIlg_\d_ZZHE Objectvers
| L 9; "y Objectversion_4
COMPUTED belong_id_2322 : ObjectVersion_10

P
or isA =1on with
COMPUTED_predecessor_id_2108 : ModelVersion_3 - v addHistory
end o — Objectersion_d_addHistory: ModelVersion_3
¢ “w Dbjecl
= Z ¢ " Objectversion_4_ohjact: VersionahleOhjact_4
History Window -=n
A
30 ASK | ‘ ¢ deslanobieciTyne
uery: o = yersionableOhlect_4_deslanOblectType - MCMLASection
Beclass Modabersor s odeNersion i o~ e] [omen]
retrieved_atinbute o = atlribute
belong - ObjectVarsion
retrieved_attriaite -
aredacessor : Abstracivarsion Ok | TelosEditor “ view Ohject as Tree |
end I I!l
Query successiul
Version: Mow Module: System %37 0016

Fig. 14. Partial view of object versions belonging to the contexts of the CreateRecycleStructure activity.

For illustration purposes, let us consider the case study
employed. The ModelVersion_5 model version (Fig. 15)
represents the state of design process after the literature
review has been carried out (LiteratureResearch activity),
the flowsheet synthesis activity revealing that there are
three main parts of the process to be designed (reaction,
separation and extrusion) has been executed (CreateAFD
activity) as well as the decision between batch and contin-
uous operation has been made (AlternativesBatchCont
activity). A block flow diagram representing the continu-
ous polymerization of polyamide-6 is shown in the partial
view of ModelVersion_5 in Fig. 15. Then, DesignReaction

execute i

DesignReaction

materialise-._ ¢

activity carries out the reaction design and the separation
design is performed by DesignSeparation activity. There-
fore, distinct design actors concurrently work on slightly
coupled parts of the artefact being designed, and it is nec-
essary to unify these partial design representations in a
unique model version representing the complete state of
the design process. In this case, conflict handling must be
addressed along the “parallel” course of actions, generat-
ing the new model version ModelVersion_8 (Fig. 15) that
unifies both representations.

As seen in the previous paragraph, a cooperative
design environment may lead to several design state

materialise

DesignCompounding ‘

water (Viw,1)

caprolactam, st additives fiber;
caprolactam (ve,) pdimer (Vea.) D) llers (Va,1)
Reactor Section | (Visa) | Separation Section | (Viet)| Extrusion Section nylon6 (v,,1)
(V) T (vaa) (Ver))

Partial View of ModelVersion_5

Fig. 15. Conceptual representation of the capture of the design process.

S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902 899

representations at a given time point (ModelVersion_6 and
ModelVersion_7 in Fig. 15) and a new model version that
unifies them has to be generated (ModelVersion_ 8 in
Fig. 15). Thus, this model version has to unify the work
performed by various actors (activities DesignReaction
and DesignSeparation in the scenario illustrated in
Fig. 15). For this reason, the new model version can be
inferred as the application of the sequence of operations
resulting from the concatenation of sequences ¢; and ¢y
to the model version ModelVersion_5. Thus, ¢, is equal
to ¢; ® ¢ and ModelVersion 8 results from apply(¢p; ® ¢,
ModelVersion_5). Then, potential conflicts can arise there
and the next subsections provide specific procedures to
handle different situations. Once a conflict has been
detected, the information captured and structured by the
design process model (Fig. 1) enables capitalising the
knowledge about how this conflictive situation has been
obtained.

5.1. Detecting conflicting concurrent versions

Usually, actors operate on design objects, which are the
basis for solutions obtained by other actors. If these objects
change, some solutions may turn out to be inconsistent.

In order to achieve this consistent model merging
between ModelVersion 6 and ModelVersion_7, it is neces-
sary to find if the sequence of operations resulting of the
concatenation of two sequences (¢, = ¢;® ¢;) could be
applied or not to the common model version (ModelVer-
sion_5). Thus, it is necessary to specify the preconditions
to apply a sequence of operations ¢ to a given model ver-
sion m, fact that is expressed by the poss,,(¢,m) predicate
in expression (38).

(V ¢ :SequenceOfOperations, m: ModelVersion)

poss,, (¢, m) <= (¥ op;: Operation,op; € ¢)

poss,(op;, o, m) (38)
Therefore, if a precondition is violated a conflict is detected
(expression (39)). Now, a sequence of operations ¢ may be
applied to a model version m if each operation op; belong-
ing to ¢ can be applied to m, as well as op; can be applied in
all the situations generated by applying the i — 1 previous
operations in the sequence, where op; is the ith operation
belonging to ¢. This fact that is defined by the
poss,(op;, ¢, m) predicate, is introduced in expression (40).
(Y ¢y, P, :SequenceOfOperations, m:ModelVersion)

confliCtso(¢la ¢)27 m) = possso(d)la m) A possm((bz, m)

A ﬁpOSSSO(d)] L d ¢27 m) (39)

(Y ¢:SequenceOfOperations, m:ModelVersion)
(Yop,: Operation,op; € ¢,

3 ¢, ¢, : SequenceOfOperations, p = ¢, ® op, ® p,)
poss,(op;, ¢, m) <= (¥ m;:ModelVersion,

m < m; < apply(¢, @ op;,m)) poss(op;, m) (40)

The poss(op,m) predicate expresses that an operation op is
applicable to a given model version m. This fact is repre-
sented by the following axioms:

e operation add(v) can be applied to model version m if
the object version v does not belong to m (expression
(41));

e operation delete(v) can be applied to the model version
m if the object version v belongs to m (expression (42));

e operation modify(v; v;) can be applied to m if v; belongs
to m and v; does not belong to it (expression (43)).

(V v:ObjectVersion, m:ModelVersion)

poss(add(v), m) <= —belong(v, m) (41)
(V v:ObjectVersion, m:ModelVersion)
poss(delete(v), m) <= belong(v, m) (42)

(V v;,v;: ObjectVersion, m:ModelVersion)
poss(modify(v;, v;), m) <= belong(v;,m) A —belong(v;, m)
(43)

It should be remarked that this type of formalization
can also be made for extended operations. Since extended
operations are expressed in terms of basic ones, the possi-
bility of applying an extended operation can be formally
expressed by resorting to the primitive operation axioms
(expressions (41)—(43)).

Note that a sequence ¢ can be applied to m if each oper-
ation of ¢ is applicable to m and does not violate the pre-
conditions of the other operations belonging to ¢. Fig. 16
illustrates the sequence of operations ¢, applied to model
version my, resulting on model version m,. Operations
0p1,0p>,...,0p, belong to the sequence ¢,. It must be
remarked that the framework does not store all model ver-
sions, the only model versions kept there are those gener-
ated after applying a sequence of operations; in Fig. 16,
model versions m, and m,. Thus, as the sequence is
¢, = {opi1,0p,...,0p,}, there exists n — 1 model versions
(Mop1, Mop2, - - -, Mgpy—1) that are not maintained by the
framework. They are inferred by means of expression
(33). Therefore, the sequence ¢, can be applied to model
version m,, (expression (38)) if each operation op; that com-
prises it can be applied to m,, and the i — 1 successor model
versions generated when the operations are applied (expres-
sion (40)). Then, posss(¢,,m,) is true if poss,(op;, ¢p, m,) is
true for each operation op; that belongs to ¢,. In this case,
POSSU(OPbmo)a posso(opz,mg), posso(opz,mopl), -ees POSS,
(Opnsmo)» posso(opm mopl)’ s ’posso(opmmopn—l)~

As a consequence, if the sequence of operations resulting
from the concatenation of sequences the ¢; and ¢, has to
be applied to ModelVersion_5, to unify both model ver-
sions, poss,(¢pe¢i, ModelVersion_5) will be true if no con-
flicts among the applied operations appear. A conflict will
arise if an operation modifies the preconditions needed to
perform another operation of the sequence. Expression
(44) introduces the conflict,(¢,op;;m) predicate to deter-
mine which operation op; produces the conflict.

900 S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902

¢P= {"Pla opa, ..., OPn}

[:
Py e Oy my

opn\ o “‘)

Mopn-1 p \-\m.I’,:f

- my = apply(¢p,my)

Fig. 16. Version generation approach.

(V ¢:SequenceOfOperations, m:ModelVersion)
(3 op;:Operation, op; € ¢) conflict,(P,op;, m)
<= —poss,(op;, o, m) (44)

For illustration purposes, if the design of the reaction and
the separation sections are carried out by activities Design-
Reaction and DesignSeparation (Fig. 15), respectively, then,
these activities are materialised by sequences ¢; and ¢y, and
possg(pi:, ModelVersion_5) and poss,,(¢r, ModelVersion_J5)
are true. If the actors operate on disjoint subsets of object
versions belonging to ModelVersion_5, then possg(¢p;e
¢, ModelVersion_5) is true and that means that there is
no conflict (conflict,(¢p;, pi, ModelVersion_5) evaluates to
false) and model version ModelVersion 8 is obtained.
However, when both actors operate on and modify the
same design object, conflicts may appear. For instance,
when they modify the same stream that connects the output
of the reactor section with the input of the separation sec-
tion (vg, in Fig. 15), the predicate poss,(¢;® ¢, Model-
Version_J5) evaluates to false, thus indicating that there is
a conflict (conflicty,(p,, i, ModelVersion_5) is true). Let
vsis,1, bE the original object version that belongs to Model-
Version_5 (belong(vsis,1, ModelVersion_5) is true), repre-
senting the conflicting stream. A new version of the
stream is generated (belong(vsa, ModelVersion 6) is
true) by the execution of a modify operation (modify
(Vg1 Vi 2) € ¢;) while the reactor design activity is carried
out. In parallel, the separation design activity creates an-
other version of the stream (belong(vy, 3, ModelVersion_7)
is true) due to another modify operation (modify
(Ufiss,1, Ufins,3) € ¢x). This scenario presents a conflict because
modify(vss.1,Vss2) deletes the precondition needed to
perform modify(vs.1,Vs3). Therefore, poss,(modify(vss 1,
Vfis.3), @i ® P, ModelVersion_5) evaluates to false.

5.2. A heuristic to extend the conflict detection process

It is important to consider that the conflict,,(¢p1, p2,m)
predicate introduced in expression (39) does not cover all
possible causes of conflicts when the work carried out by
various actors is unified in a new model version. When
an actor uses a version of a design object as a source of
information to synthesize an artefact and, in parallel,
another actor modifies or deletes this version, a potential
conflict may exist and it has to be detected.

For example, Fig. 17 presents a scenario on the case
study being considered. Let vj,; be an object version of
a stream that belongs to ModelVersion_5. The stream inter-
connects the reactor (v, ;) with the separation section (v, ;).
A new version of the stream is generated while the reactor
design activity is carried out, because a modify operation
(modify(vyis,1,Vyis,2) € ¢;) is performed. In parallel, the sep-
aration design activity synthesizes the separation section,
evolving it into a more detailed representation as a result
of a refine operation (refine(v1,{vs1.1,052.1,03.1}) € Gr)-
To perform this operation, actor z does not modify the
stream version (vs,;) but uses it. Fig. 17 shows that
the result obtained by applying ¢, to ModelVersion_5 is
the ModelVersion_8 model version, where the input of
Usi,1 IS Upgo. In this situation, possg(¢;® ¢r, Model
Version_5) will evaluate to true. Actually, there is a poten-
tial conflict because the input of vy ; iS vjs2 in ModelVer-
sion_§ and it is not the input stream version (vy.,;) used by
actor z when he/she was executing DesignSeparation
activity.

To identify such potential problem, the following heuris-
tic is defined: given an initial model version, m,,, two concur-
rent successor model versions, m; (m; = apply(¢$;,m,)) and
my, (my = apply(¢r,m,)), and two object versions v; and v,

7
execute)
Actor;

’ DesignReaction

materialise

e
ol -

execul‘e

F
=2,

- - Alg BNER
it! Separation 14
L Secton =)
- .71‘ ot Y \.i ¥ 2 f‘)\ o

L BA A SR matedafisé\

A

[3
3l

)

|

Ay
\ S
vV, <)
53‘1
L
5 g

Poleni
conflict =~

Fig. 17. Capturing the Polyamide-6 design process. Concurrent work on slightly coupled parts.

S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902 901

belonging to model version m, (m, = apply(¢p; ® ¢i,m,)),
then a potential conflict would occur in model version m,,
as a result of applying sequence ¢; ® ¢, to the previous
model version m,, if it is verified that:

e versions v; and v, are linked by an association gy (this
association is inferred by means of expression (35)),

e and versions v; and v, do not belong to the previous
model version m,,

o and one of the versions (v;) belongs to the model version
which is a consequence of applying ¢, to m,,

e and the other version (v,) belongs to the model version
which is the product of applying ¢, to m,,

This heuristic is formally stated by expression (45).

(Y ¢;, ¢y:SequenceOfOperations, m:ModelVersion,
vy, 0:0bjectVersion) potential Conflict(vy, v, §;, ¢y, m)
< (3 apdssociation) inferredAssociation
(ax, v1, 02, apply (¢, ® ¢, m)) A —belong(vi, m)
A belong(vy, apply(¢;,m)) N\ —belong(va, apply(¢p;,m))
A —belong(vy, m) A belong(vs, apply(¢,, m))
A —belong(vy, apply(¢p,, m)) (45)

The potentialconflict(vy 2, V1 1, Qi Pr, ModelVersion_5) pre-
dicate, in the scenario presented by Fig. 17, evaluates to true
when a potential conflict exists between vy > and v ; in the
model version resulting from applying the sequence ¢; ® ¢
to ModelVersion 5.

6. Conclusions

The main contribution of this paper is the proposition of
an integrated model of the knowledge employed in the engi-
neering design process (CoMoDe), a first step towards the
development of a computational environment to support
that process. As Marquardt and Nagl (2004) explained,
one of the most important issues to successfully establish
design process excellence is a lack of common understand-
ing and terminology related to the design process and its
results. In order to tackle this problem, Yang and Marqu-
ardt (2004) suggested the use of the ontology technology
to provide physicochemical concepts as the basis of an
ontology-based conceptual modelling tool. CoMoDe goes
further on, representing the essential concepts of design
processes and their products in an integrated way. There-
fore, the integrated model proposed in this paper provides
two fundamental steps towards the development of compu-
tational tools to support the engineering design process and
to guide designers in the different activities of a design pro-
ject. First, the model proposed in the operation context
granularity level offers an explicit mechanism to capture
and trace the different model versions that participated in
the design process. Second, the knowledge captured in the
operation context level is structured and organised with
the aim to manage the knowledge acquired; therefore, the

knowledge captured is structured in several representation
spaces and allows us to know the activities, operations
and actors that generated each design product, the require-
ments that were imposed as well as the rationale behind
each adopted decision. It also enables the analysis of the
reasoning line employed during the design process, setting
the grounds for learning and future reuse.
The main capabilities of CoMoDe are listed below:

e The proposal allows us to represent the various design
states by capturing design object versions that arise dur-
ing a design process. It is worth noticing that not only the
states of the artefact being designed can be represented
but also the different states of all design objects, i.e., arte-
facts, requirements, arguments, resolutions, positions,
attributes, and values. The design objects to be captured
can be defined according to the needs of a particular
domain. It is possible by the domain model integrated
in the version administration model (see Fig. 10).

e The requirement concept allows the representation of
design goal aspects. Its definition is extensible according
to a given design domain.

e The proposed extension of the IBIS model allows repre-
senting the design decisions and their rationale by an
explicit model of the alternatives’ selection process and
the justification of a given decision by means of argu-
ments. Moreover, the IBIS concepts are modelled as
design objects, and then their evolution can be captured.
Therefore, it is possible to represent how a decision
taken (represented by the resolution concept and the
items associated with it) was changed when a greater
knowledge was acquired (mainly represented by the
argument concept). Taking this point into account, an
important contribution is the representation of the his-
tory of the operations that originated a given design.
This knowledge establishes the basis for knowing how
a given version of a design object was obtained, and to
understand how a design process was carried out. This
knowledge is also fundamental to define the partial
workflow of design processes.

e Design processes are captured by introducing a minimal
impact on the design activities performed by designers.
This feature establishes a distinction with the proposal
of Eggersmann, Schneider, and Marquardt (2002),
which considers capturing the design process by inter-
viewing the designer after completing (part of) the
design process.

o Situational calculus represents the activities carried out
during a design process, and therefore, it enables to cap-
italise the information on how the various design objects
were obtained. Thus, the history of operations performed
on versions of design objects can be kept. Furthermore,
the preconditions needed to perform a sequence of oper-
ations enable the detection of potential conflicts between
model versions developed in parallel. This conceptual
framework provides the foundations for the proposal of
formal means for detecting potential conflicts.

902 S. Gonnet et al. | Expert Systems with Applications 33 (2007) 881-902

The model was formally specified using the O-Telos
language, which allows the integration of object-oriented
technology with the first order logic in a concise repre-
sentation. Finally, the proposed model was tested by
applying it to a case study on the design of a polyamide-
6 plant.

Acknowledgement

The authors wish to acknowledge the financial support
received from CONICET, Universidad Nacional del Litor-
al, Universidad Tecnoldgica Nacional and Agencia Nac-
ional de Promocién Cientifica y Tecnoldgica (PICT 12628).

References

Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in
practice (2nd ed.). Addison-Wesley.

Bayer, B., & Marquardt, W. (2004). Towards integrated information
models for data and documents. Computers and Chemical Engineering,
28, 1249-1266.

Booch, G., Rumbaugh, J., & Jacobson, 1. (2005). The unified modeling
language user guide (2nd ed.). Addison-Wesley Professional.

Boyle, J.-M. (1989). Interactive engineering system design: a study for
artificial intelligence applications. Artificial Intelligence in Engineering,
4, 58-69.

Brown, D., & Chandrasekaran, B. (1989). Design problem solving.
Knowledge structures and control strategies. Pitman.

Cameron, I., Fraga, E., & Bogle, 1. (2005). Process modelling goals:
concepts, structure and development. In L. Puigjaner & A. Espuna
(Eds.). European symposium on computer-aided process engineering
(vol. 15, pp. 265-270). Elsevier.

Carnduff, T., & Goonetillake, J. (2004). Configuration management in
evolutionary engineering design using versioning and integrity con-
straints. Advances in Engineering Software, 35, 161-177.

Eggersmann, M. (2004). Analysis and support of work processes within
chemical engineering design processes. Fortschritt-Berichte, VDI
Reihe 3, Nr. 840, Diisseldorf, VDI-Verlag.

Eggersmann, M., Krobb, C., Gonnet, S., Mannarino, G., Leone, H., &
Henning, G. (1999). Modeling of the design process as an enterprise
activity. In Proceedings of Enpromer’99, Brasil.

Eggersmann, M., Henning, G., Krobb, C., Leone, H., & Marquardt, W.
(2001). Modeling of actors within a chemical engineering work process
model. In Proceedings international CIRP design seminar (pp. 203—
208).

Eggersmann, M., Schneider, R., & Marquardt, W. (2002). Modeling work
processes in chemical engineering — from recording to supporting. In J.
Grievink & J. van Schijndel (Eds.). European symposium on computer
aided process engineering (vol. 12, pp. 871-876). Elsevier.

Eggersmann, M., Gonnet, S., Henning, G., Krobb, C., Leone, H., &
Marquardt, W. (2003). Modeling and understanding different types
of process design activities. Latin American Applied Research, 33,
167-175.

Floudas, C. (1995). Nonlinear and mixed-integer optimization: funda-
mentals and applications. Oxford University Press.

Fox, M., & Gruninger, M. (1998). Enterprise modelling. A Magazine,
19(3), 109-121.

Goel, V. (1994). A comparison of design and nondesign problem spaces.
Artificial Intelligence in Engineering, 9, 53-72.

Gruber, T. (1995). Toward principles of the design of ontologies used for
knowledge sharing. International Journal of Human-Computer Studies,
43(5, 6), 907-928.

Gzara Yesilbas, L., & Lombard, M. (2004). Towards a knowledge for
collaborative design process: focus on conflict management. Computers
in Industry, 55, 335-350.

Harzallah, M., & Vernadat, F. (2002). IT-based competency modeling and
management: from theory to practice in enterprise engineering and
operations. Computers in Industry, 48, 157-179.

Heller, M., Jdger, D., Schliiter, M., Schneider, R., & Westfechtel, B.
(2004). A management system for dynamic and interorganizational
design processes in chemical engineering. Computers and Chemical
Engineering, 29, 93-111.

Jarke, M., Jeusfeld, M., & Quix, C., editors. (2004). ConceptBase V6.2
user manual.

Jarke, M., List, T., & Weidenhaupt, K. (1999). A process-integrated
conceptual design environment for chemical engineering. Lecture
Notes in Computer Science, 1728, 520-537.

Kitamura, Y., & Mizoguchi, R. (2003). Ontology-based description of
functional design knowledge and its use in a functional way server.
Expert Systems with Applications, 24, 153-166.

Kunz, W., & Rittel, H. W. J. (1970). Issues as elements of information
systems. Institute of Urban and Regional Development. Working
Paper 131. University of California, Berkeley.

Kvan, T. (2000). Collaborative design: what is it? Automation in
Construction, 9, 409-415.

Liao, S. (2005). Expert system methodologies and applications — a decade
review from 1995 to 2004. Expert Systems with Applications, 28,
93-103.

Mandow, L., & Pérez-de-la-Cruz, J. (2004). Sindi: an intelligent assistant
for highway design. Expert Systems with Applications, 27, 635-644.
Mannarino, G. S. (2001). Coordinates, Un lenguaje para el modelado de

empresas. PhD thesis, Universidad de Buenos Aires, Argentina.

Marquardt, W., & Nagl, M. (2004). Workflow and information centered
support of desing process — the IMPROVE perspective. Computers and
Chemical Engineering, 29, 65-82.

Mittal, S., & Araya, A. (1992). A knowledge-based framework for design.
Artificial intelligence in engineering design (vol. I): design representation
and models of routine design (pp. 273-296).

Mylopoulos, J., Borgida, A., Jarke, M., & Koubarakis, M. (1990). Telos:
representing knowledge about information systems. ACM Transac-
tions on Information Systems, 8(4), 352-362.

Nagl, M., & Marquardt, W. (1997). SFB-476 IMPROVE: Informatische
Unterstiitzungiibergreifender Entwicklungsprozesse in der Verfahrens-
technik. In M. Jarke, K. Pasedach, & K. Pohl (Eds.), Informatik ‘97:
Informatik als Innovationsmotor Informatik aktuell (pp. 143-154).
Springer-Verlag.

Nagl, M., Westfechtel, B., & Schneider, R. (2003). Tool support for the
management of design process in chemical engineering. Computers and
Chemical Engineering, 27, 175-197.

Reiter, R. (2001). Knowledge in action: logical foundation for describing
and implementing dynamical systems. The MIT Press.

Roda, 1., Poch, M., & Banares-Alcantara, R. (2000). Application of a
support system to the design of wastewater treatment plants. Artificial
Intelligence in Engineering, 14, 45-61.

Roldéan, M. L., Gonnet, S., & Leone, H. (2005). A version support model
for architecture based design process. In ASSE 2005: Simposio
Argentino de Ingenieria de Software (pp. 19-33).

Scherl, R., & Levesque, H. (2003). Knowledge, action, and the frame
problem. Artificial Intelligence, 144(1-2), 1-39.

Stephanopoulos, G., Henning, G., & Leone, H. (1990). MODEL.LA. A
modeling language for process engineering. Part I: The formal
framework. Computers and Chemical Engineering, 14(8), 813-846.

Vernadat, F. (1996). Enterprise modelling and integration: principles and
applications. Chapman & Hall.

Westerberg, A., Subrahmanian, E., Reich, Y., Konda, S., & the n-dim
group (1997). Designing the process design process. Computers and
Chemical Engineering, 21(Suppl.), S1-S9.

Westfechtel, B. (1999). Models and tools for managing development process.
Lecture notes in computer science (1646). Springer.

Yang, A., & Marquardt, W. (2004). Ontology-based approach to
conceptual process modeling. In A. Barbosa-Pévoa & H. Matos
(Eds.). European symposium on computer-aided process engineering
(vol. 14, pp. 1159-1164). Elsevier.

