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Enrique Gaviola (IFEG-CONICET) - Ciudad Universitaria, 5000 Córdoba, Argentina
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Abstract – Complexity develops via the incorporation of innovative properties. Chess is one of
the most complex strategy games, where expert contenders exercise decision making by imitating
old games or introducing innovations. In this work, we study innovation in chess by analyzing
how different move sequences are played at the population level. It is found that the probability of
exploring a new or innovative move decreases as a power law with the frequency of the preceding
move sequence. Chess players also exploit already known move sequences according to their
frequencies, following a preferential growth mechanism. Furthermore, innovation in chess exhibits
Heaps’ law suggesting similarities with the process of vocabulary growth. We propose a robust
generative mechanism based on nested Yule-Simon preferential growth processes that reproduces
the empirical observations. These results, supporting the self-similar nature of innovations in chess
are important in the context of decision making in a competitive scenario, and extend the scope
of relevant findings recently discovered regarding the emergence of Zipf’s law in chess.

Copyright c© EPLA, 2013

Introduction. – In the last decades, the study of com-
plex systems gained interest in the physics community, in-
cluding studies on financial markets [1], bird flocks [2,3],
the human brain [4], cities [5,6], and elections [7] among
other subjects. Using methods borrowed from statis-
tical physics, non-linear dynamics, and network theory,
researchers have improved the understanding of the struc-
ture, properties, and behavior of complex phenomena [8].
However, how complex systems emerge and develop is still
an important open question. Complexity results from
adaptation processes through which systems acquire in-
novative properties [9]. Therefore, how and when in-
novations occur in complex phenomena constitutes an
important subject to be understood.

An innovative event occurs when a new idea, product,
lexicon, or gene is introduced and eventually exploited
by the society or ecosystem. Novelties become innova-
tions only when they bring utility or satisfaction to the
members of the system in question. Innovation is neces-
sary for the growth and development of organizations and
economies [10], and it is believed to operate at the heart of

natural evolution [9] and language evolution [11,12]. An
innovative behavior may enhance the chances of success
in competitive scenarios [13]. However, it requires the in-
vestment of limited resources in testing new possibilities
instead of exploiting well-known solutions. For this rea-
son, it is important to understand how nature and society
optimize between the exploration of new possibilities and
the exploitation of old ones. In particular, this question
is relevant in the context of human decision making when
bounded rationality operates [14,15].

The game of chess [16] has been extensively studied in
science [17–20], especially for decision making [17,18,21],
and it can be used to study innovation phenomena. Chess
is a competitive game with a game tree complexity es-
timated as 10120 different move sequences [22]. Because
of such huge number, all possible games cannot be fully
searched in practice, thus it is necessary to continuously
explore new possible moves. This implies that bounded
rationality and innovation should operate. In addition,
the quantitative characterization of innovation phenom-
ena has been difficult mainly due to the lack of reliable
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Fig. 1: (Color online) Schematic representation of the chess
game tree. The root (red vertex on top) represents the initial
position on the board. The white (black) vertices correspond to
positions after the white (black) player moved. Each directed
edge corresponds to a move. After each move, the game depth
d increases by one. Each edge (vertex) is labeled by a move
(a move sequence) using algebraic chess notation. Note that
the same move, such as Nf6, may appear more than once in
different edges.

datasets. This difficulty could be circumvented by the re-
cent appearance of extensive records of chess games.

In a recent work, Blasius and Tönjes [17] analyzed a
dataset of chess games by mapping move sequences or
games to vertices in a game tree [22]. In particular, they
studied how frequently each vertex in the tree is visited by
a game, showing that the distribution of frequencies fol-
lows Zipf’s law [23,24] over six orders of magnitude. They
explained this finding using a multiplicative process with
fragmentation that can be treated analytically. In their
approach, each game develops following the branches of
already explored parts of the game tree, and thus they fo-
cused on the dynamics within games. However, the char-
acterization of the growing dynamic of game tree in itself
is still an open problem and its characterization is crucial
for the understanding of the role of innovation in chess.

In this letter, we investigate the evolution of the game
tree to find the underlying processes which describe how
innovation works in chess. Questions such as when and
where new vertices appear in the already explored game
tree, or how the associated frequencies grows, are empir-
ically addressed and answered. These investigations have
allowed us to propose a simple generative mechanism re-
producing the observations of an extensive chess database.

Results. – We analyze a dataset including around
1.4 million chess games played between 1998 and 2007 in
ChessDB [25]. Each possible move sequence corresponds
to one directed path in a game tree, starting from the root
vertex or the initial position of the game. See fig. 1. The
moves are represented by edges. Note that there is one-to-
one correspondence between move sequences and vertices
in the game tree. We grow an initially empty game tree
by sequentially adding the chronologically sorted games in
the dataset. The depth d of a vertex is its distance from
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Fig. 2: (Color online) Tree width Nd vs. the number of games
td that reached depth d for the game tree in the chess dataset
(cyan circles). We only show the cases of d = 2, 4, 9, 16 for
clarity and the data is logarithmically binned for td > 100.
Fitted results of the form Nd = t∗

d(t/t∗
d)

λd for large values of
td are shown in black solid lines. Inset: the estimated values
of λd are plotted as a function of d (cyan circles) and as a
function of the estimated values of ln t∗

d (magenta squares).
The black dashed line corresponds to the fit λd = 1−Bd where
B = 0.854 ± 0.002 (R2 = 0.998), and the black solid line to
λd = a + (1/A) ln t∗

d (see eq. (3)), where a = −0.24 ± 0.04 and
1/A = 0.160 ± 0.006 (R2 = 0.99).

the root. We define that an innovative event occurs when-
ever a game generates a new branch in the existing tree.
The t-th game may generate a new branch at depth db(t)
and will end at depth de(t) ≥ db(t). Here t plays a role of
ordinal time or time in short. Note that each game may
introduce only one new branch or none, where db(t) is not
defined for the latter case.

For each innovative event occurring at depth db(t), the
tree width or number of vertices Nd at depth d evolves
as Nd(t) = Nd(t − 1) + 1 if db(t) < d ≤ de(t) or Nd(t) =
Nd(t−1), otherwise. Let td(t) be the number of games that
reached at least depth d after t games have been played.
From now on, the variable t is omitted if not necessary.
As shown in fig. 2, we find that

Nd(td) �
{

td, td � t∗d,
t∗d(td/t∗d)

λd , td � t∗d,
(1)

where t∗d is a crossover value of td. The exponent λd,
characterizing the innovation rate, saturates exponentially
with d as

λd = 1 − Bd (2)

with B � 0.85 (fig. 2, inset). The scaling Nd ∼ tλd

d

for td � t∗d corresponds to Heaps’ law commonly found
in the vocabulary growth of literary corpora or lan-
guages [26–28]. Moreover, it is found that the crossover t∗d
exponentially grows with the Heaps’ exponent as

t∗d ∼ exp(Aλd). (3)

48005-p2



Innovation and nested preferential growth in chess playing behavior

0 0.2 0.4 0.6 0.8 1
r

0

2

4

6

8

10

q(
r)

, n
’π

(r
n’

|n
’)

0 100 200
d

e
,d

b

0

0.2

0.4

0.6

0.8

1

S
t(d

e),
S

t(d
b) t=2

10

t=2
14

t=2
20

t=2
10

t=2
14

t=2
20

0 100 200 300 400
d

e

-15

-10

-5

0

ln
{-

ln
[F

t(d
e)]

}
10

0
10

2
10

4
10

6

n
10

-6

10
-4

10
-2

10
0

p(
n)

(a) (b)

(c)

Fig. 3: (Color online) (a) The probability of generating a new
branch, p(n), as a function of the vertex frequency n (cyan
filled circles). The log-binned data (magenta circles) is fitted
by p(n) ∼ n−ν (black dashed line) with ν = 0.881±0.009 (R2 =
0.9998). (b) Empirical probability density function, q(r), of
the frequency ratio r = n/n′ (cyan histogram) and its an-
alytical expression, q(r) = 2/[π

√
1 − r2] (black dashed line),

compared with the rescaled form n′π(rn′|n′) of the condi-
tional growth probability distribution, π(n|n′) (magenta con-
tinuous line). (c) Fraction St(de) (St(db)) of games with game
lengths (branching depths) larger or equal to de (db) after
t games have been played are plotted as solid lines (broken
lines). Different colors indicate different values of t. The
curves of St(de) collapse into one, while the curves of St(db)
depend on t. Inset: fit of a Gumbel distribution for maxima
Ft(de) = 1−St(de) = exp(− exp(−(de−μe)/βe)) (black dashed
line) with μe = 58.2± 0.2 and βe = 24.1± 0.1 (R2 = 0.995) for
the largest-t case (cyan circles).

Double-scaling behavior in eq. (1) was also found by
Gerlach and Altmann [28] in the context of vocabulary
growth. They showed that this double-scaling is associ-
ated with a double-scaling in Zipf’s law [29–33]. We con-
firm this double-scaling in the depth-dependent Zipf’s laws
in our dataset (not shown).

In order to understand the underlying mechanism of the
evolution of the game tree, we characterize the innovation
and exploitation processes. Let n(t) be the frequency of
occurrence of a given move sequence after t games were
played. For the innovation process, the probability p(n)
that a game reaching a vertex with frequency n generates
a new branch turns out to be

p(n) � n−ν , (4)

where ν � 0.88 (fig. 3(a)). For the exploitation process,
we study the conditional probability, π(n|n′), that a game
follows an existing edge from a vertex with frequency n′ to
one of its child vertices which has frequency n. We mea-
sure π(n|n′) as the games traverse the edges of the grow-
ing tree. For instance, fig. 3(b) (continuous magenta line)
shows π(n|n′ = 100) obtained from moves with depths

d ≥ 5 in order to assert an adequate statistics. Similar re-
sults are obtained for other values of n′ (not shown). We
found that π(n|n′) is an homogeneous function satisfying

π(n|n′) =
1
n′ q

( n

n′

)
, (5)

where q(r) is the probability density function of frequency
ratios, r = n/n′ (fig. 3(b), cyan histogram). The proba-
bility density, q(r), is measured along the growing process
of the tree. Moves ending in vertices with n < 100 or
d < 5 are discarded from the statistics in order to avoid
discretization effects in the shape of q(r). The functional
form q(r) = 2/[π

√
1 − r2] (fig. 3(b), black dashed line) was

previously determined by Blasius and Tönjes [17] mea-
suring the values of r as the games traverse the already
grown tree. As q(r) is an increasing function of r, branches
with larger frequencies are played more frequently, and
therefore it corresponds to a preferential growth process.
However, it is different from the typical case where the
preferential growth/attachment probability grows linearly
with the frequency [34–38]. We remark that the scaling
behaviors of eqs. (4) and (5) have been measured over the
whole tree, and therefore corresponds to the behavior of
a depth independent process. This, and the functional
form of π(n|n′), evidences the self-similar nature of the
evolution of the game tree.

Next, we consider the effect of the growing stage of the
tree on the statistical properties of the game length de.
The fraction St(de) of games that did not end until length
de follows a Gumbel distribution for maxima [39], and it is
independent of the number of games that have been played
(fig. 3(c), inset). On the other hand, the fraction St(db)
of games that did not branch until depth db does depend
on t (fig. 3(c)). Therefore, it turns out that game lengths
are almost independent of the growing stage of the tree.

Now we introduce theoretical considerations in order to
understand the mechanism that generates the game tree.
We assume that games are infinite in length and there-
fore td = t for all d. This assumption is justified by our
previous observation about the statistical independence
between the game lengths and the tree growth. From now
on, we consider the asymptotic behavior for large t. Ac-
cording to a depth-dependent mean-field approach, the
branching factor Kd at depth d satisfies

Kd(t) = Nd+1(t)/Nd(t) ∼ tB
d(1−B), (6)

and the average frequency per vertex at depth d is given
by

nd = t/Nd(t) ∼ tB
d

. (7)

Combining eqs. (6) and (7) we obtain

Kd ∼ n1−B
d . (8)

The branching factor at depth d grows sub-linearly with
the frequency nd. The derivative of the branching factor
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with respect to t leads to

dKd

dt
∼ n−B

d

dnd

dt
∼ p(nd)

dnd

dt
. (9)

In the last expression we assumed that the branching fac-
tor increases whenever a game arriving at the vertex gen-
erates a new branch. The arrival of new games at the
vertex at depth d occurs at rate dnd/dt, and the gener-
ation of new branches with probability p(nd). Therefore,
the approximate relation, ν � B, is obtained. We should
remark that our theoretical considerations correspond to a
mean-field approximation, in the more general case ν and
B might be different. However, as we will show with our
numerical simulations, the approximation, ν � B, is good
enough when B � 0.85 and it is robust under model vari-
ations. The fact that the growth exponent ν is indepen-
dent of d is consistent with a self-similar growth process
where at each vertex the same stochastic mechanism op-
erates. Note that the innovation rate per vertex, dKd/dt,
is not constant as opposed to the constant growth rate in
the standard formulation of the Yule-Simon preferential
growth process [34,35].

Based on the theoretical considerations, we propose
a generative mechanism consisting of nested preferential
growth processes. We grow an ensemble of one hundred
game trees each generated by one million games. Then,
we calculate λd as a function of d and t∗d from the av-
erage of Nd(t), in order to compare the results with the
empirical case (see fig. 4). Each simulation starts from
a tree with the root vertex only, and games are added
one by one. If the (t + 1)-th incorporated game reaches
a vertex v with frequency nv(t), the vertex v generates
a new child vertex with probability p(nv(t)). Otherwise,
with probability 1 − p(nv(t)), the game continues to one
of the existing child vertices of v. We use two types of
preferential growth probabilities. A non-linear preferen-
tial growth according to eq. (5), and a linear preferential
growth given by π(n|n′) ∝ n. More specifically, when
there is not a branching event, a move from a vertex v to
one of its child vertices u is performed with probability,
π(nu|nv) = q(nu/nv)/[

∑
u′ q(nu′/nv)], for the non-linear

case, and with probability, π(nu|nv) = nu/nv, for the lin-
ear case. After the game traverse the tree, the vertex fre-
quencies in the corresponding path are increased by one.
In the simulations, we choose the value of the parameter
ν that provides the best prediction for B = 0.85 in or-
der to reproduce the empirical case. For the non-linear
preferential growth probability, the best prediction of B
occurs at ν = 0.95, and in the linear case at ν = 0.85
(inset in fig. 4, plus signs and circles, respectively). As we
previously pointed out, in both cases the approximation,
B � ν, holds. Moreover, the scaling behavior between the
crossover point t∗d and λd properly reproduce the empirical
case (inset in fig. 4, crosses and squares, respectively). In
the absence of preference, i.e. π(n|n′) independent of n,
the simulation results deviates significantly from the em-
pirical case (not shown). Finally, the proposed mechanism
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Fig. 4: (Color online) Simulation results for the models im-
plementing the nested preferential growth mechanism. Tree
width, Nd, is plotted as a function of the number of games, t,
and depths, d = 2, 4, 9, 16, for the model with linear preferen-
tial growth probability (cyan circles). The data is logarithmi-
cally binned for t > 100. The black solid lines are fitted results
of the form Nd = t∗

d(t/t∗
d)t

λd . Inset: the estimated values of
λd are plotted as a function of d for the non-linear (linear)
preferential growth probability using magenta plus signs (cyan
circles), and as a function of the estimated values of ln(t∗

d) us-
ing magenta crossings (cyan squares). The black dashed line
corresponds to λd = 1 − Bd with B = 0.846 ± 0.005 (R2 =
0.98), and the black solid line to λd = a + (1/A) ln t∗

d, where
a = −0.15 ± 0.02 and 1/A = 0.116 ± 0.003 (R2 = 0.996). Both
are fits to the curves of the linear preferential growth case.

turns out to be robust against variations of its details. For
example, the replacement of eq. (4) by fragmentation pro-
cesses [17] or the introduction of noisy selection of child
vertices [30] leads to qualitatively the same results (not
shown).

Discussion. – The self-similar nature of the game tree
and its generative mechanism implies a lack of typical
scales of the innovation phenomena in chess. Equation (4)
indicates that there are no vertices with particularly large
frequencies after which further innovation becomes impos-
sible. In other words, in chess there is no winning strategy,
but there is always a possibility for innovative solutions to
be introduced. Moreover, the observed preferential growth
mechanism suggests that the exploitation also works in a
self-similar way.

Our findings in chess exhibit similarities to vocabu-
lary growth in language evolution. The crossovers in the
Heaps’ law in eq. (3) have a direct interpretation in vo-
cabulary growth. According to Gerlach and Altmann [28],
such crossover is rooted in the existence of two types of
words, core words and non-core words, due to a separation
of time scales in the language evolution process. This sug-
gests the existence of core and non-core move sequences
in the game tree. However, notice that the dataset do not
contain games from the beginning of chess-playing, but

48005-p4
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from the year 1998. Therefore, the initial linear growth
of Nd(t) might be the consequence of non-realistic inno-
vations due to random fluctuations for small values of t.
Nevertheless, our simulations shown in fig. 4 do not im-
plement a delayed beginning of the measurement process
of the tree growth, and still exhibit a transition between
two regimes predicting the right relationship between the
crossover point t∗d and λd (eq. (3)). Moreover, we simu-
lated a delayed start of the measurement process by using
the last 106 games generated from a simulation with 107

games. We found no significant differences with the re-
sults in fig. 4 (not shown). Therefore, the crossover in
the Heaps’ law and the existence of core and non-core
moves are intrinsic properties of the the tree evolution.
For the long time behavior, it has been found that the
Heaps’ exponent is larger in languages with a larger de-
gree of inflection, where through declination and conjuga-
tion several words may be generated from root words [30].
This is consistent with our results if we make an anal-
ogy between the degree of inflection and a depth in the
tree, because λd grows with d. Thus, we provide further
evidence about the origin of the non-universal Zipf’s ex-
ponents [33].

Conclusions. – In this work we studied how innova-
tions are introduced into chess games by analyzing the
evolution of the game tree. In our picture, move sequences
are in one-to-one correspondence with the vertices in the
tree. The probability that a new innovation event occurs
at a vertex decays as a power law of the frequency at which
the vertex is reached. Already known move sequences are
played or exploited according to their frequencies, follow-
ing a preferential growth process. Our model is consistent
with previous results on the static properties of the al-
ready explored game tree [17], and introduces important
clues about its growing dynamics. We found striking sim-
ilarities between the evolution of the chess game tree and
vocabulary growth. Based on our empirical findings, we
proposed a generative mechanism that reproduces the ob-
servations and is robust with respect to variations of its
details. All these findings provide insights into innovation
phenomena in the context of decision making.
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[27] Serrano M. Á., Flammini A. and Menczer F., PLoS
ONE, 4 (2009) e5372.

[28] Gerlach M. and Altmann E. G., Phys. Rev. X, 3
(2013) 021006.

[29] van Leijenhorst D. C. and Van der Weide T. P., Inf.
Sci., 170 (2005) 263.

[30] Zanette D. and Montemurro M., J. Quant. Linguist.,
12 (2005) 29.

[31] Cattuto C., Barrat A., Baldassarri A., Schehr

G. and Loreto V., Proc. Natl. Acad. Sci. U.S.A., 106
(2009) 10511.

48005-p5



J. I. Perotti et al.
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