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1. Introduction

The treatment of HIV/AIDS has evolved in the last 20 years since
the upsurge of its epidemic quality, from no treatment to highly
active antiretroviral therapy (HAART), which has radically changed
the face of the disease [14,15]. HAART has clearly shown to
decelerate AIDS progression and to extend the life of the patient.
Suppressing viral replication with HAART allows the body time to
rebuild its immune system. However, despite the clinical
improvement associated with HAART, current antiviral drug
regimens are not able to eradicate HIV. Note that a curative
treatment of HIV/AIDS is not possible at the present time, and that
whenever HAART is stopped, then after some time HIV becomes
detectable in the blood once again [14,15,28].

The conventional treatment consists of drugs that have to be
taken every day for the rest of someone’s life. People taking
antiretroviral drugs may have low adherence to complicated drug
regimens. Current recommended regimens involve taking several
antiretroviral drugs each day from at least two different classes,
some of which may cause unpleasant side effects such as nausea
and vomiting, making long-term, continuous therapy impractical

for many HIV-infected individuals [28]. About 25% of patients stop
therapy within the first year on HAART because of side effects. As a
result, treatment of HIV infection has become a complicated
balancing act between the benefits of durable HIV suppression and
the risks of drug toxicity [14,15,28]. Therefore, the research in
more effective drug regimens has become an important challenge.

Mathematical modeling has made a substantial impact on our
thinking and understanding of HIV-1 infection. A great number of
deterministic models have been developed to describe the immune
system and its interaction with HIV-1 as well as the effects of drug
therapy [20–22,24,17,18,25,8,22,1,4,16,11]. In most cases, their
mathematical expression are based in relatively complex systems
of non-linear differential equations. Population models are most
commonly used.

Using these models, therapeutic strategies can be simulated
with the purpose of reducing the viral load. Also, different control
problems can be posed and solved when the dynamics is known.
For instance, state feedback and optimal control of HIV infection
have been explored in several other works [18,1,4,16,11,13,3]. The
dynamic contents of these theoretical problems usually imply the
appearance of variable instead of constant doses administration.
The variable drug dosage has been questioned by some authors due
to the possibility of generating drug resistant mutants. However,
recent empirical studies indicate that the relationship between
adherence (i.e. keeping rigidly constant the dose all the time by
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prescription) and the appearance of HIV drug resistance, is more
complicated than assumed initially. For some regimens, resistance
may be more likely to occur in those patients taking more rather
than less of their medications. For other therapies, the opposite
may be true. Recent data indicate that each antiretroviral
therapeutic class has a unique adherence–resistance relationship
[2]. Cases of interrupted medication (significant periods with zero
drug dose) have been reported [12], not implying the prescription
of zero control during part of a recommended protocol. In short, no
conclusive results concerning these problems have reached
generalized consensus. Therefore, due to the adverse effects and
cost of the antiretroviral therapy, the optimal administration of
drugs considering multiple objectives (besides the reduction of
viral load), becomes particularly constructive, and it will be
pursued here.

The continuous-time Pontryagin approach to optimal control is
frequently called upon in this context [18,11]. But these problems
are often quite difficult to solve numerically due to the two point
boundary value problem resulting in the adjoint variables. Also, the
eventual finding of a continuous optimal control strategy is not
quite suitable for practical implementation: neither blood analyses
can be continuously made nor changes in the dose consequently
prescribed, the amount of the drug is not freely divisible, and
provisions for departures from the optimal trajectory are not
implicit in the solution. Discrete-time versions of this approach
(see for instance [5]), offer some positive and negative features, as
will be illustrated below.

Another optimization tool promoted in recent times is ‘model
predictive control’ (MPC, see for instance [7]), based on the so
called receding horizon philosophy: a sequence of future control
actions is chosen according to a prediction of the future evolution
of the model and applied to the system until new measurements
are available. At that time, based on the new measurement, a new
sequence is established which replaces the previous one. This
method is essentially numerical, usually implemented on-line,
which requires significant computer capacity and speed. Off-line
methods include ‘Dynamic Programming’ (adopted here), in its
continuous or discrete-time versions, which allow for state-
feedback control, a decisive capacity when preserving the ‘medical
control’ over the ‘automatic pilot’ point of view.

The paper is organized as follows: in Section 2 the continuos-
time model is described and some of the features of the free-
dynamics behavior are discussed and illustrated, and in Section 3
the introduction of an appropriate control variable is substan-
tiated. Next Section 4 is dedicated to designing a cost objective
functional taking into consideration not only the burden of drugs
application but also the patient’s health evolution during treat-
ment, the opportunity of its improvement, and the practical
restrictions in measuring and applying controls that lead to a
discretized version of the problem. Numerical results are showed
and discussed in Section 5, especially for treating a ‘recent’ patient
(comparing the open and closed-loop approaches) and for an
‘endemic’ situation. The last Section 6 presents the conclusions.

2. Description of the 3rd-order model of HIV dynamics

HIV is a very complex disease involving multiple interactions
between the virus and the host immune system. However, the
main characteristics of the infection can be ascertained from
relatively simple equations [22]. This basic model has three
variables: healthy (CD4+) T-cells (x), infected (CD4) T-cells (y) and
free virus copies or virions (z). It is a one-compartment model (the
compartment is the blood), where healthy cells encounter free
virions and become infected cells and the rate of production of new
infected cells is proportional to the product of the density of
uninfected cells times the density of virions. The dynamics consists

of a system of three nonlinear ordinary differential equations
(ODEs):

ẋ ¼ l� dx� bxz
ẏ ¼ bxz�my
ż ¼ ky� gz

(1)

Sometimes a concise form for these equations is used, namely

X , ðx; y; zÞ0
Ẋ ¼ f ðXÞ; (2)

where f is the vector field given by the right-hand-side of Eq. (1).
The ‘population dynamics’ point-of view is implicit in this

model structure. The parameter l represents the constant rate of
production of the uninfected CD4+ T-cells from the thymus. The
infection rate is represented by the weighted product of ‘predator-
prey’ populations bxz; the weight b interpreted as a ‘constant rate’
of infection. The term dx is the death rate of healthy T-cells. From
the uninfected T-cells, the productively infected T-cells y are
produced at the same rate bxz. The respective death rate of y-cells
is my. It is also assumed that each productively infected cell y

produces k viral copies per unit of time, and that the death rate of
virions is of the form gz.

The numerical simulation of the model illustrates the evolution
of infection in an individual human without the intervention of
antiretroviral drugs. It is found that the system has two
equilibrium points. The infection-free (or ‘healthy’) equilibrium
point ðxh; yh; zhÞ ¼ ðl=d;0;0Þ and the unique ‘endemic’ equilibrium
ðxe; ye; zeÞ ¼ ðmg=bk;l� dxe=m;kye=gÞ. Initial conditions near the
healthy (unstable) equilibrium evolve towards the endemic
(stable) equilibrium. The therapeutic (or control) process consists
basically in reversing this propensity of the flow, i.e. in driving the
organism as close as possible to the (unstable) healthy equilibrium.

Several simulated trajectories are shown in Figs. 1 and 2, where
the time parameterizes each curve. The rays in the plot of Fig. 1 join
points of equal time in trajectories starting from different initial
conditions and x0�500. Fig. 2 shows only a few individual
trajectories, including some with x0 � 500 and no synchronizing
rays. The successive stages of HIV-1 infection can be distinguished
in the flow. The first stage, called the acute infection, is
characterized by an initial overshoot in the productively infected
cells y and the viral load z. This was also better depicted through
the xðtÞ; yðtÞ; and zðtÞ trajectories individually [16,4]. The healthy
CD4+ cells x decline from 1000 cells per cubic millimeter to 400 in
this stage. After the viral peak has been reached, the uninfected cell
population increases but finally it is stabilized in a lower value. A

Fig. 1. Flow of free dynamics (u�0), with rays connecting synchronous points in

different trajectories.
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set point is virtually reached for all variables after about 400 days.
This stage is known as the asymptomatic period of AIDS disease.
See Ref. [22] for the complete analysis of this model, where it is
pointed out that this type of predator-prey interaction, reducing
the abundance of predators (virions), may cause an increase in the
number of prey (uninfected CD4+ T-cells), which in turn causes
predators to rise again, leading to the observed oscillations.

The parameters of the model have been estimated by different
authors (see [23,25,27], etc.). The nominal values range around
those adopted here

l ¼ 9
d ¼ 0:009
b ¼ 4� 10�6

m ¼ 0:3
k ¼ 80
g ¼ 0:6

The values of these parameters should be updated by using further
experimental data. One of the tools helping to design these
experiments for better accuracy is the calculations of sensitivities.
The ‘sensitivity’ Sb of the model with respect to the parameter b is
usually defined by the n-column vector

Sb ,
@f
@b

(3)

where fðt;X; PÞ is the ‘flow’ of the vector ODE (2), where the
presence of parameters is made explicit through the vector P ¼
ðl; d;b;m;k;gÞ in f ðX; PÞ: The solutions of the ODEs are condensed
in f; i.e.

@f
@t
ðt;X; PÞ ¼ f ðfðt;X;PÞÞ; (4)

which allows to find [10] an ODE for the matrix SP ¼
ðSl; Sd; Sb; Sm; Sk; SgÞ; namely

ṠP ¼
@ f

@X
ðfðt;X; PÞ; PÞ � SP þ

@ f

@P
ðfðt;X; PÞ; PÞ (5)

SPð0Þ ¼ 0: (6)

The qualitative behavior of the solutions to (5) is most valuable to
determine the best time to record experimental measurements, as
will be seen in the next section.

3. Curtailing the infection. The therapy process as a control
system

Basically, the antiretroviral drugs can be grouped into the
following three categories [15]:

(i) Inhibitors of the reverse transcriptase enzyme (RTIs): If RT is
inhibited, HIV can enter a cell but will not successfully infect it;

a DNA copy of the viral genome will not be made and the cell
will not make viral proteins.

(ii) Protease inhibitors (PIs): If HIV protease is inhibited, cleavage
of the viral polyprotein will not occur, and viral particles that
lack functional enzymes will be made. The net effect of
blocking HIV protease is that noninfectious viral particles are
made.

(iii) Fusion Inhibitors (FIs): These work by inhibiting the binding of
HIV to uninfected CD4+T-cells (used in patients with multi-
drug HIV resistance).

In this work we will only consider the action of RTIs. Although
the medication process is clearly viewed as a control action exerted
over the patient’s organism (the ‘plant’), the physical identification
between manipulated and control variable has not always been
clear. Most scientists work with drug efficacy (between 0 and 1) as
the input (control), equivalent to a coefficient multiplying the
parameter b [18,3,16,25,11,13]. But in absence of an adequate
pharmaco-dynamical model relating efficacy to real dose, the
optimization results obtained this way apply to abstract efficacies,
entailing only vague guidelines for drug prescription. For this
reason, in the mathematical model used here, the control u

represents the amount of drug (i.e. the dose) manipulated by
clinicians. Consequently, the parameter b in Eqs. (1) and (2) should
be thought as a function of the doses u (without loss of generality, a
power series). Here an approximation to this form is adopted,
namely:

b�b0 � a1u� a2u2 (7)

where the values of the parameters were estimated from
experimental data, through standard least-squares regression
techniques, and under the following assumptions:

(i) HIV-1 viral load reduction curves for patients under mono-
therapy (a daily dose of u ¼ 1:2 g of aprecitabine, an RTI in
clinical development) can be approximated from clinical data
[6] and the observations quoted in [25], namely:

(ii) For a short period after therapy has begun, x remains
approximately constant (say xðtÞ� x̃ , xð0Þ).

Then, the equations for ẏ and ż in the model (1) become linear
and their solution imply:

zðtÞ� ðk1ea1t þ k2ea2tÞzð0Þ; (8)

with coefficients depending on xð0Þ; yð0Þ;b0;a1;a2. Data extracted
from the literature [6,25] correspond to treatments of recently
discovered infections, resulting in the following estimates

b0 ¼ 4� 10�6 (9)

a1 ¼ 0:88� 10�6 (10)

a2 ¼ 0:3� 10�6 (11)

Fig. 3 depicts the sensitivity of the system with respect to
parameters b0;a0; and a1; calculated from Eq. (5) with a naturally
augmented set of parameters P and for a constant u-value of 1.2 g.
Some observations and comments from these numerical results:

(i) There exists a ‘peak’ in all sensitivities at around 20 days. In the
modeling context (see [10]) this means that measurements of
all variables around t ¼ 20 should be preferred in order to
assess reliable values for b0;a0 and a1.

(ii) Similar sensitivity values are obtained for a0 and a1, from
which it can be inferred that both parameters are equally
necessary in the expansion of the original parameter b.

Fig. 2. Individual trajectories of the free dynamics in phase space.
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(iii) The high value of sensitivity with respect to b0 means that b is
an appropriate parameter to be ‘controlled’. In other words,
the administration of drugs (in amounts u) that directly affect
the value of b; will in turn influence the dynamics in a degree
related to Sb.

4. The total cost associated to a therapeutic strategy

A typical objective functional, representing the ‘‘total’’ cost to
minimize amongst all acceptable therapies may be designed as
follows

JðuÞ ¼
Z T

to

a1zðtÞ þ a2ðxðtÞ � x̄Þ2
h i

eat þ a3u2ðtÞ
n o

dt

þ a4z2ðTÞ; (12)

consisting of a ‘‘trajectory cost’’ Qðt0; T; x0; y0; z0;uÞ (usually
expressed as the integral of the Lagrangian function Lðt; x; y; z;uÞ
modeling the cost differentials occurring during treatment), and a
‘‘final penalty’’ Kðx; y; zÞ associated to the departure from desired
(target) states at the end of the therapy. The Lagrangian in this case
includes nontrivial terms ½a1zðtÞ þ a2ðxðtÞ � x̄Þ2	 penalizing the
departure of the variables from their ‘healthy’ equilibrium values.
This is a difference with other dynamic programming attempts to
this problem (see for instance [19] and some of the references
therein), that only take into account the drug cost u2ðtÞ during
treatment. Adding state-trajectory costs will prevent from total
drug interruption at any intermediate time within optimal
therapies. The choices made here, namely

Lðt; x; y; z;uÞ ¼ ½a1zþ a2ðx� x̄Þ2	eat þ a3u2 (13)

Kðx; y; zÞ ¼ a4z2 (14)

reflect the emphasis on abating virions (or ‘viral copies’, namely in
terms a1zðtÞ and a4z2ðTÞ) and the deviation of x-cells from the
equilibrium x̄ ¼ 1000 cells/mm3. The a3u2ðtÞ term represents the
effective cost of drug consumption. The squares in the previous
terms are only used for convenience in determining optimal
controls analytically, as will be discussed later.

The (opposite) discount factor term eat , i.e. with a�0; punishes
the ‘‘permanence’’ of the disease. The penalty on departures of the

state variables from their target values (x̄ ¼ 1000; z̄ ¼ 0) is greater as
time increases. It is assumed that the immune response of the patient
deteriorates with time, and then the same infectious situation causes
more harm as time goes on, so its ‘‘cost’’ should increase with time.

The values of the coefficients have been tuned so as to obtain
partial costs (each summand in (12)) proportional to 25, 10, 45, and
20% of the total cost associated to a typical trajectory, which is
normalized to unity, i.e.

a1 ¼ 0:25c1

a2 ¼ 0:10c2

a3 ¼ 0:45c3

a4 ¼ 0:20c4;with
c1 ¼ 5:970� 10�6

c2 ¼ 1:2962� 10�7

c3 ¼ 0:003858
c4 ¼ 0:000164
a ¼ 0 ðno inverse discountingÞ;0:005 ðinverse discounting caseÞ
t0 ¼ 0
T ¼ 180 days

The initial and final times (t0 and T respectively) deserve special
comment. The t0 ¼ 0 adoption is appropriate for time-constant
models and Lagrangian cost functions, although the insertion of a
discount factor may change the perspective. Regarding the
optimization horizon T, its adopted value is based on empirical
evidence: viral load reduction to below limits of assay detection
(50 copies/ml) in a treatment-naı̈ve patient usually occurs within
the first 12–24 weeks of therapy [29].

The usual theoretical approach to the solution to the optimal
control problem just posed, when there are no special restrictions,
evolves through the following steps:

(i) Define the ‘Hamiltonian’ of the problem (see [5,26]), i.e.

Hðt;X; ‘;uÞ , Lðt;X;uÞ þ ‘0 f ðX;uÞ; (15)

where ‘ is a new vector-valued variable, of the same

dimensions than X, called the ‘costate’ or ‘adjoint variable’,

related to the Lagrange multipliers appearing in static

constrained optimization, and whose precise role in the

present context is described below.
(ii) Asses whether the problem is ‘regular’, i.e. if there exists a

continuous function:

u0ðt;X; ‘Þ , arg min
u

Hðt;X; ‘; uÞ; (16)

called the ‘H-minimal control’. If the answer is negative, the

problem needs to be reworked or treated along other lines.
(iii) The u-minimal Hamiltonian H0 can then be defined:

H0ðt;X; ‘Þ , Hðt;X; ‘;u0ðt;X; ‘ÞÞ; (17)

(iv) and the Hamiltonian equations of the problem result:

Ẋ ¼ @H0

@‘

 !0
; Xð0Þ ¼ X0 (18)

‘̇ ¼ � @H0

@X

 !0
; ‘ðTÞ ¼ @K

@X
ðXðTÞÞ (19)

which poses a two-point boundary value problem, usually

very difficult to solve, even numerically.

4.1. The need for discretization

The posing of a continuous-time optimal control problem is not
practical for HIV treatment. Notwithstanding the patient’s health

Fig. 3. Sensibility of state z with respect to parameters b0;a1;a2:

V. Costanza et al. / Biomedical Signal Processing and Control 4 (2009) 139–148142
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undergoes a continuos deterioration, possibly following a model
like Eq. (2), the assessment of the situation can only be made
through periodic blood analyses and doctor inspections, and the
present administration of drugs can only be made through discrete
amounts and changed every some time according to prescriptions.
This means that, even when the system evolves in continuous time
and the cost objective can theoretically be posed in the same
context, the discrete nature of:

(i) measurements’ availability for the state variables,
(ii) the discrete nature of admissible control values,

(iii) the existence of restrictions in the admissible control values,
which hinders the continuity of the H-minimal control
function u0 of Eq. (16), and

(iv) the usual delay between physician interventions and control
decisions, forces to consider a mixed continuous/discrete
approach. In what follows, the values of the states and control
variables will be then discretized according to the following
scheme

X , fxL; xL þDx; xL þ 2Dx; . . . ; xUg
Y , fyL; yL þDy; yL þ 2Dy; . . . ; yUg
Z , fzL; zL þDz; zL þ 2Dz; . . . ; zUg
U , fuL;uL þDu;uL þ 2Du; . . . ;uUg

(20)

where the values of the lower ðLÞ and upper ðUÞ bounds and the
grid size ðDÞ for each variable should depend on real constrains on
the appreciation of measurement devices, the possibilities of dose
subdivision, calculation capabilities, and expectations. However it
is important to note that the adopted values for yL and zL should be
strictly greater than zero to avoid an unrealistic stagnation of the
variables y; z (see Eq. (2)). This will be discussed further, together
with the numerical trials and results. The cost takes now a slightly
different form

J ðuÞ ,

XT=h

k¼0

Z tkþ1

tk

a1zðtÞ þ a2ðxðtÞ � x̄ð Þ2Þeat þ a3u2
k

h i
dt þ a4z2ðTÞ

tk , t0 þ hk

(21)

where xðtÞ; yðtÞ; zðtÞ must be understood, in each interval ½tk;tkþ1Þ,
as the rounded result of the state-transition function
fðt; t0; x; y; z;uð:ÞÞ associated with the continuous-time model
(1), namely

ðxðtÞ; yðtÞ; zðtÞÞ0 ¼ fðt; tk; xk; yk; zk; ũkÞ (22)

ðxkþ1; ykþ1; zkþ1Þ0 ¼ roundðfðtkþ1; tk; xk; yk; zk; ũkÞÞ (23)

ũkðtÞ�uk (24)

and where ‘round’ acts over the values ðxðtkþ1Þ; yðtkþ1Þ; zðtkþ1ÞÞ0 ¼
fðtkþ1; tk; xk; yk; zk; ũkÞ in a ‘safe’ way, precisely

xkþ1 , closest smaller value next to xðtkþ1Þ in X
ykþ1 , closest bigger value next to yðtkþ1Þ in Y
zkþ1 , closest bigger value next to zðtkþ1Þ in Z

The adopted value of h ¼ 15 days takes into consideration the
observed ‘peak time’ (of approximately 20 days) occurring in the
state variables and sensitivities (see Fig. 3). The possibility of a
hiding acute infection period is discarded this way, since at least
the results of a blood analysis reflecting the situation will come at
some intermediate point.

The Hamiltonian formulation of the problem above reads (see
[5] for details)

J ðuÞ ¼
XN

k¼0

Lkðxk; yk; zk;ukÞ þ a4z2ðTÞ; (25)

where N , T=h, and the discrete Lagrangian Lkðxk; yk; zk;ukÞ ¼
LkðXk;ukÞ is now

LkðXk;ukÞ ,

Z tkþ1

tk

½ða1zðtÞ þ a2ðxðtÞ � x̄Þ2Þeat þ a3u2
k 	dt; (26)

for k ¼ 0;1; . . . ;N � 1. The discrete Hamiltonian of the problem can
be defined in a convenient form

Hk , Lk þ ‘0kþ1 f k; (27)

where the costate (column) vector ‘k 2R3 plays the role of the
gradient of the value (or Bellman) function as in the continuous
time setup (see for instance [5,26]). After taking variations in the
cost functional the usual Hamiltonian dynamics get condensed in
the following scheme

‘k ¼
@ f k

@X

� �0
‘kþ1 þ

@Lk

@X

� �0
; (28)

@Hk

@u
¼ @Lk

@u
þ ‘0kþ1

@ f k

@u
¼ 0; (29)

subject to the final condition

‘N ¼
@K

@X

� �0����
N

¼ 2a4ð0;0; zðTÞÞ0; (30)

where the following interpretation of the discrete state-transition
function is adopted

Xkþ1 ¼ f kðXk;ukÞ , fðtkþ1; tk;Xk;ukÞ: (31)

Notice that it is possible to work backwards from the final
condition (30). The local optimal control value uN�1 can in principle
be extracted as the u-solution to Eq. (29). Then this uN�1 is replaced
in (28) with k ¼ N � 1, and then the ‘N�1 becomes available. And
then the process follows for k ¼ N � 2; . . . ;0. But no restrictions in
the values of u can be easily imposed in this formulation, nor any
prescription to transform the eventual results to a state-feedback
form. These inconveniences have influenced the decision to use
dynamic programming as the actual numerical method of solution,
to reserve the Hamiltonian formalism for checking the validity of
results, and to record the values of validated costates as useful
additional information (each ‘k becomes the vector of ‘marginal
costs’ from stage k on).

5. Numerical results

Due to the nonlinearity of the disease represented by the
population models such as the one used in this work, the
identification and characterization of the patient state may be
non-trivial. That is, a similar set of values in viral load and immune
cells population can correspond to different stages of the infection
and evolution perspectives, as can be observed in the flow of the
system in Fig. 1. This way, the physician’s intervention plays a
major role in the therapy’s efficiency since by means of the clinical
history of the patient, medical interrogation, and complementary
tests, the real stage of the infection can be determined and
eventual corrections over existing protocols can be made. In this
section two typical situations will be treated numerically,
discussed, and illustrated: (i) initial conditions describing a patient
having viral load and immunological cells populations near the
beginning of the infection (acute infection), and (ii) a patient near
the endemic equilibrium point (asymptomatic phase). A nontrivial
ða 6¼0Þ inverse discount factor in the objective cost will be only
applied in Section 5.1.3.

V. Costanza et al. / Biomedical Signal Processing and Control 4 (2009) 139–148 143
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5.1. Treatment of a recently discovered infection

In this subsection the optimal treatment of a patient with a
recently discovered infection, for instance with initial conditions
near (see Fig. 1)

x0 ¼ 800 cells=mm3; y0 ¼ 30 cells=mm3;

z0 ¼ 3500 copies=ml;
(32)

is illustrated. Dynamic programming was implemented for a range
of states around these initial conditions, covering expected
behaviors of the patient under different medication strategies.
The adopted discretization or spacing (D) of the variables and their
corresponding lower (L) and upper (U) bounds are listed bellow:

Dx ¼ 50; Dy ¼ 10; Dz ¼ 50; Du ¼ 0:2; (33)

xL ¼ 600; yL ¼ 1; zL ¼ 10; uL ¼ 0; (34)

xU ¼ 1000; yU ¼ 91; zU ¼ 5010; uU ¼ 1:6: (35)

It must be remarked that the lower thresholds yL and zL are given
positive values. This is to avoid that, after an eventual rounding of
their values, the discretized trajectories reach any point with y ¼
z ¼ 0; since in that case the optimal strategy would continue with
u�0 till the end, which is certainly erroneous (and dangerous).
Indeed, the real system never reaches y ¼ z ¼ 0 from an initial
condition different from the unstable equilibrium, which means
that any remaining infection ðy>0; z>0Þ will grow if u ¼ 0; and
this growth should eventually be controlled with some u>0.

Figs. 4 and 5 show projections (individual components) of the
optimal state-trajectories fðx
ðtÞ; y
ðtÞ; z
ðtÞÞ;0 � t � Tg over the
ðt; xÞ and ðt; zÞ-planes, respectively (to save room the y-component
is not depicted since it is qualitatively very similar to the z-
component). In a 3-dimensional phase-space, with t as a
parameter, these trajectories resemble a contracting flow, and
once the flow reaches a point, from there on the trajectory, being
optimal, is unique. This aspect is partially reflected in the
projections: eventual bifurcations at some point ðt; x
ðtÞÞ indicate
that there exist M>1 different values of ðy
ðtÞ; z
ðtÞÞ giving rise to
m � M trajectories after t. But in general it can be observed that the
variables are driven towards the desired values ðx̄; ȳ; z̄Þ.

Fig. 6 show optimal control strategies corresponding to
different initial state conditions. It is observed that the final stage
requires an optimal control of u ¼ 1:6 g which reflects the

influence of the strong final penalty Kðx; y; zÞ ¼ a4z2 (the virions z

have values in the order of 500 near the end of the treatment (see
Figs. 7 and 11), which forces high values of the control to abate zðTÞ
near zero). Also it can be observed that most optimal strategies

Fig. 4. x
ðtÞ optimal trajectories, each for a fixed x
ð0Þ and different y
ð0Þ;z
ð0Þ.

Fig. 5. z
ðtÞ optimal trajectories, each for a fixed z
ð0Þ and different x
ð0Þ;y
ð0Þ:

Fig. 6. Typical optimal u
ðtÞtrajectories.

Fig. 7. Optimal trajectory x
ðtÞ constructed under ‘‘worst-situation’’ rounding, and

continuous-time evolution corresponding to the same controls.
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require mild values of the control ð0:4 � u � 1Þ in the central
stages of the treatment, all below the usually recommended
u�1:2 g [6], reinforcing the possibility of variable doses with
smaller impact.

5.1.1. Open-loop trajectories for a particular initial state of the patient

Typical initial conditions associated with a recent infection
situation are

x0 ¼ 850 cells=mm3; y0 ¼ 41 cells=mm3;

z0 ¼ 3710 copies=ml:
(36)

The optimal control strategy was recovered from the dynamic
programming solution to the problem set by Eqs. (21), (22), (33)–
(35). It is shown in Fig. 12. The corresponding optimal state-
trajectory was also stored during the solution process, and it is
depicted as broken lines in Figs. 7 and 8. At each sampling time
there also starts a curve, solution to the continuous-time flow of
Eq. (2), showing the expected evolution of the system during the
next sampling period. That curve is truncated at the end of this
period, according with the adopted discretization of the states, and
in the figures can be observed that this rounding is made along the
‘worst situation’ rule, i.e. going down when looking for the next
admissible x-value, and up for y and z-values. Finally, in the figures
are also depicted the evolution of the patient subject to the same
control strategy but without any rounding of the states, denoted as
‘model trajectories’.

The open-loop optimal solutions succeed in reducing the
number of viral copies below the 50 copies/ml in the desired time
of 180 days. The virions decrease strongly at the beginning and the
end of treatment, remaining around 1200 copies/ml during most
of the period, which is not too bad as long as no deleterious ‘peaks’
occur. At the extreme stages the optimal drug doses is high (1.4 g
and 1.6 g respectively), but during most of the treatment the values
stay around 0.6 g, half of the tested protocol value (see Fig. 12).
Also, during the application of the control strategy the number of x-
cells is always higher that 600 cell/mm3, considered clinically
acceptable [15].

Numerical checking for optimality of these solutions were
performed, by comparing costs with neighboring trajectories,
which resulted greater as expected. But also a partially theoretical
check was attempted. Fig. 9 shows a comparison between the
norm of the costate calculated from discrete Hamilton equations
and from dynamic programming. The coincidence is good enough
for our purposes, since the theoretical approach does not take into

account the discretization nor the upper bound in the u-values (see
Eq. (29)). Notice that with unbounded controls, and to cope with
the strong final penalty on z, the optimal drug doses for the last
stage would have most probably been greater than 1.6 g. And this
difference is reflected in the discrepancy between ‘-values in the
last sampling period, which in turn propagates through earlier
stages until reaching a complete agreement.

5.1.2. The need for closed-loop strategies

The open-loop trajectories (Figs. 7 and 8) show that the
difference between the evolutions of the real patient and its
expected discretized behavior is not negligible, specially between
the 45 and 105 days. The discretized trajectory being optimal can
not be improved, but it is possible to correct the situation after a
significant departure from the expected state is noticed. The actual
state Xk of the patient, assessed through reliable measurements,
might be considered as a ‘perturbation’ from the expected one X
k .
And then, the ‘closed-loop’ methodology in control theory suggests
to consider a new optimization problem, starting at Xk and for the
remaining stages from k to N.

After the appropriate admissible grid approximation fXk to Xk is
selected, the new optimization problem does not need additional
calculation if dynamic programming has been used to determine
the open-loop optimal solution, and if the valuable information has

Fig. 8. Optimal trajectory z
ðtÞ constructed under ‘‘worst-situation’’ rounding, and continuous-time evolution corresponding to the same controls.

Fig. 9. Comparison between the norm of the costate calculated from discrete

Hamilton equations and from dynamic programming.
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been stored when generated. At each point in the admissible
state grid and at each stage k dynamic programming usually
stores:

(i) the optimal control u
kðfXkÞ to be applied during the stage k,
(ii) the value of the optimal cost for trajectories starting at fXk and

evolving during stages k to N, and
(iii) the state X
kþ1 reached after applying u
kðfXkÞ during the stage k.

Therefore, by tracking the steps from fXk;u


k ðfXkÞ through the

end, the new optimal control strategy becomes available. Actually,
in practical terms just the information u
kðfXkÞ should be used with
certainty, i.e. the first control value of the new strategy. Because, if
incoming data Xkþ1 at the next stage if found to differ from X
kþ1 in a
grid appreciable amount, then a new closed-loop correction will be
needed.

Figs. 10 and 11 show the application of this methodology to the
same problem stated, but considering the measured (actually the
continuous-time Xkþ1 ¼ fðtkþ1; tk;Xk;u



kÞ) state of the patient as

‘perturbations’ from the expected (discretized optimal) state

X
kþ1 ¼ ½fðtkþ1; etk; X̃k;u


kÞ	. Notice that, in general, X
kþ1 6¼ gXkþ1.

The ‘exponentially weighted open-loop trajectories’ are
obtained from applying the Dynamic Programming optimal recipe
to the model. The expected behavior, however, would be the
‘Dynamic Programming discrete trajectories’, which clearly depart
from the model in open-loop. The first significant detected
departure motivates a correction to the open-loop prescription,
which results in the ‘model closed-loop trajectory’ when is applied
to the patient.

The closed-loop control reduces the differences between the
states of the patient and the expected one, and the abatement of
virions z is better than the obtained in open-loop all over the period
of treatment, while the healthy cells x recuperate also better under
feedback control conditions. Changes in the closed-loop control
doses during treatment are not trivial, as can be observed in Fig. 12,
which strengthen the merit of close monitoring by the medical
doctor during treatment.

In Table 1 the costs of open and closed-loop trajectories are
given. As expected, closed-loop costs more since it is not optimal
with respect to the original set-up. The decision to consider the real
behavior of the patient as ‘perturbations’ from the expected
discretized solution, and the corrections made at the tk’s in the
values of the ‘new initial’ states Xk (for the remaining stages
k; kþ 1; . . . ;N), change the optimal control strategy for the
remaining horizon, and then it should have a greater cost. When
corrections are frequent, as in the example shown, these
differences in cost may be significant.

5.1.3. The effect of an inverse discount factor

There exists empirical support (and the model reflects it) of
‘silent’ or relatively stable periods occurring after infection peaks.
But these should not be assumed as healing phases. It has been
noted [9] that chronic inflammation is taking place after peaks,
affecting blood vessels in the whole organism, and increasing
cardiovascular risk, together with related sequels in brain

Fig. 10. Comparison of closed-loop and inverse-discount optimal x-trajectoties.

Fig. 11. Comparison of closed-loop and inverse-discount optimal z-trajectoties.

Fig. 12. Comparison of closed-loop and inverse-discount optimal control

trajectoties.

Table 1
Cost values for open and closed-loop control, and for inverse-discount evaluation.

Trajectory cost Final penalty Total cost

Open-loop trajectory 1.0344 2.9520 3.9864

Closed-loop trajectory 1.0128 4.0180 5.0308

Discounted trajectory 1.0453 2.9520 3.9973
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irrigation and the functioning of kidneys, liver and lungs. This
chronic inflammation seems in turn to lower the effectiveness or to
generate intolerance to subsequent therapies. Also it is known that
treatments are less tolerated when the patient does not begin
taking drugs at an early stage. Therefore, even when the model is
kept having nearly time-constant coefficients, the need to promote
early treatment (or to penalize the postponing of control actions)
can be made explicit through the addition of the ‘inverse discount’
term eat in the Lagrangian function.

In Figs. 10 and 11 the optimal solution to an exponentially
weighted trajectory cost is added to the close-loop behavior
corresponding to a ¼ 0: In the inversely discounted case a value
of a ¼ 0:005 was used, which more than duplicates the
state-departure differential costs near the horizon: eaT ¼
exp ð0:005 � 180Þ�2:46. Since the control-weight r was kept the
same for a�0; then the exponential factor worked as an extra-
penalization of state departures, which in optimal control always
means a sub-penalization of the control effort. The result was that,
with a>0, trajectories improved when comparing to the case
a ¼ 0, due to the application of bigger control values. Therefore the
total optimal costs for the discounted and neutral cases (both
open-loop) were very similar (see Table 1) since their components
compensated each other.

5.2. Medication of an endemic situation

The ‘endemic’ equilibrium of the uncontrolled system repre-
sents a patient that has been infected long ago, and that has
reached an apparent steady state (while subsequent blood
analyses may suggest a regular behavior, there will obviously
exist a global deterioration due to the high discrepancy from
‘healthy’ equilibrium values). Therefore a strategy to pull out the
patient from the endemic toward a healthy condition should be
adopted. From the control point of view the problem looks as a
‘change of set-point’, i.e. to conduct the system from an
equilibrium to another. In this case it is required to go from a
stable to an unstable steady state, which is likely to imply a
significant control effort. An illustration of the dynamic program-
ming approach to this problem is given in Figs. 13–15 . An initial
condition near the endemic equilibrium was chosen:

x0 ¼ 600 cells=mm3; y0 ¼ 11cells=mm3;

z0 ¼ 1760 copies=ml;
(37)

and the following discretization parameters

Dx ¼ 50; Dy ¼ 10; Dz ¼ 50; Du ¼ 0:2; (38)

xL ¼ 500; yL ¼ 1; zL ¼ 10; uL ¼ 0; (39)

xU ¼ 1000; yU ¼ 91; zU ¼ 2510; uU ¼ 1:6: (40)

The closed-loop trajectory shows a better tracking of the real
patient behavior to the cost of abandoning the optimality of the
dynamic programing solution (which actually produces the curves
with the ‘open loop’ legend). The qualitative evolution of the x- and
z-trajectories reflect their resistance to abandon the endemic
region, which insinuates only after approximately 100 days. But,
on the other hand, only mild doses of drugs are necessary during
most of the treatment, and the high doses are concentrated at both
extremes of the optimization period.

6. Conclusions

The elaboration on a multi-objective cost optimization
expounded in previous sections sustains several propositions,
such as

� It may be appropriate to adopt strategies of variable drug
administration during the period of treatment of an HIV-infected
patient. Recent evidences indicate that the generation of

Fig. 13. Comparison of open and closed-loop optimal x-trajectoties for the endemic

case.

Fig. 14. Comparison of open and closed-loop optimal z-trajectoties for the endemic

case.

Fig. 15. Comparison of open and closed-loop optimal control trajectoties for the

endemic case.
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resistance to drugs by the virions is a complex phenomenon, not
directly related to keep or quit high doses constant (adherence).
Therefore the schemes of treatment proposed in this work, that
imply variable doses (see especially Figs. 6, 12, and 15), deserve
to be explored in greater depth. The current protocols of
antiretroviral drugs administration imply the quantification of
immunological and virological variables each 3–4 months. The
tools devised here may assist the medical professional in
monitoring the patient by means of more frequent blood
analysis, which might be taken as an extra burden, but benefits
appear through

(i) the reduction of indirect effects over the patient’s health
coming from a smaller impact of lower doses, and

(ii) the savings in public funds implied by a lower average of drug
consumption.

� No interruption of drug treatment seems possible under the
adopted model and evaluation scheme. The infected cells and
virions can not be abated to zero with reasonable doses of the
control variable. Then, any remaining infection will grow and
produce a dangerous peak in absence of a new drug doses,
however small, prescribed by the dynamic programming
solution.
� Optimal solutions can not be thought as enduring recipes. The

supervision of their application by the medical doctor is essential
during treatment, since most probably there will exist ‘perturba-
tions’ in state values. The state of a patient may appreciably differ
from the expected optimal ‘open-loop’ trajectory. The ‘closed-
loop’ scheme gives ‘better’ results: having dynamic program-
ming solutions at hand allows the physician to correct the state
as time proceeds and to recover the optimal control strategy
from that time on, without need for further calculations.
� The relative weights of the partial costs should also be tuned by

the professional. The optimal strategies can, in principle, be
simulated and assessed along variable sets of priorities before
selecting the definitive cost functional. There exists practically
no methodology for the design and tuning of the objective cost,
not even for the most frequently used Lagrangian functions (see
[5] for the linear-quadratic LQR context).
� Other parameters in the model of the dynamics and the constrains

should be ascertained, and eventually updated by the potential
user of the proposed method. Sensitivity analysis can help to
determine the appropriate values of parameters for different
patients and drugs used, and to select the best time instants to take
the measurements that substantiate these values.
� There exist several approaches to the optimal control problem at

hand. Some alternatives to dynamic programming are less
versatile, like the discrete Hamiltonian approach referred to in
several points of Section 4; or plainly inadequate to describe the
relation patient–doctor, as the continuous-time application of
Hamilton equations or the Pontryagin principle. But all of them
can provide useful information and eventually validate dynamic
programming results. In all, an expert-oriented software package
to assist medical doctors in assessing, simulating, and prescrib-
ing therapeutic strategies to HIV-infected patients appears as a
feasible valuable tool. Variable drug dosage seems to be optimal
under certain circumstances, when a multiple-objectives cost
evaluation of the HIV patient’s evolution is considered.
Circumstances include:

(i) that a discretization of the main variables has been adopted,
due to the impossibility of continuous variable measurement
and medical inspection, the availability of drugs only in fixed
doses, and so on.

(ii) there exists an upper restriction in the amount of drug than
can be administered during a fixed period of time.

(iii) the initial values of the three main state variables can be
precisely estimated, and so can every ‘sampling time’
(typically a period in the order of 15 days).

The combination of a discretized objective functional and a
continuous-time dynamics at the interior of each stage has shown
to be practical in implementing an accurate dynamic programming
scheme. The results provide optimal strategies starting at each
node in the discretized state space, and starting from any
intermediate stage through the end. This allows to put into action
the closed-loop point of view when applying to a real patient,
hence returning the control of the situation to the doctor. A little
training of medical personnel on the basics of dynamical
optimization (the optimal control way of reasoning) will endorse
the generation and use of software tools based on these principles.
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