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Abstract 
Ice grain boundary energies γgb relative to the free surface energy γs were determined by studying the topographic 
details revealed by plastic replicas of the ice grain boundary groove-free surface with a Laser Confocal 3D 
Microscope. The samples analyzed were high purity ice bicrystals, with ‹101

–

0›/Ψ tilt grain boundaries, annealed 
at –18 oC. Values obtained of γgb/γs

 
were analyzed using coincidence site lattice (CSL) theory. Significant 

correspondence was found between the γgb/γs values and the planar density  of coincident sites on the interface 
plane. The results show that γgb/γs depends on the GB inclination and may be up to one order of magnitude 
different. 

Keywords: ice, grain boundary energy, grain boundary groove, coincident site lattice (CSL), laser confocal 3D 
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1. Introduction 
Ice cores provide the most detailed records of climate over the past several hundred thousand years (Petit et al., 
1999). For example, water-soluble impurities have been used as proxies for atmospheric chemistry (Alley, 2000; 
Thompson et al., 2013). However, numerical models warn that distributions of the trace constituents are 
significantly altered by rapid diffusion through grain boundaries (GB) and liquid veins along triple junctions 
during ice sheet flow (Thompson, 2013; Rempel & Wettlaufer, 2003; Johnsen et al., 2000; Nye, 1998; Rempel, 
Waddington, Wettlaufer, & Worster, 2001).  

Studies on deep ice cores have revealed the development of highly lattice-preferred orientations with most of the 
c-axis of the grain perpendicular to the slip direction, ie with a preponderancy of low-angle GBs (Gow & 
Williamson, 1976; Herron & Langway, 1985; Lipenkov, Barkov, Duval, & Pimienta, 1989; Gundestmp & 
Hansen, 1984; Pimienta, Duval, & Lipenkov, 1987; Budd & Jacka, 1989; Paterson, 1991). It is known that 
low-angle GBs have low GB energies (Paterson, 1991), so, as the lattice-preferred orientation develops through 
the ice sheet depth, the proportion of low-energy GBs is increased. GBs with low energies may have a low 
segregation factor (Smith, 1992) and in consequence low impurity concentration, which in turn would reduce 
impurity diffusion along the GB. Grain boundaries with low energies are not only low-angle GBs but also 
high-angle GBs with special properties (Sutton & Balluffi, 1987), and this kind of grain boundaries in ice have 
not been studied extensively. 

The coincidence site lattice (CSL) and Σ, the reciprocal density of coincidence sites, have been widely used to 
study GB structures. Crystalline samples with high Σ values were first used to characterize GBs with special 
properties. However, it was then found (Paterson, 1991) that not all low energy GBs have high Σ values, and it 
was shown that the orientation of the boundary planes within the CSL, and the boundary coincidence density  
are a more physically useful tool to recognize grain boundaries with low energies.  

It is known that there are some questions about CLS theory validity, but, as Davies and Randle (2001) said, “the 
CSL approach retained its position as a cornerstone of grain boundary research”. 

The CSL theory was satisfactorily used in ice by Kobashashi and Furukawa (1975, 1976, 1978), Hondho and 
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4. Summary 
In this paper, ice GB energies γgb relative to that of the free surface energy γs were determined by studying the 
topographic details of the groove formed at the GB intersection with the free surface.  

Values of γgb/γs corresponding to tilt ‹101
–

0›/Ψ boundaries annealed at –18 ºC were obtained using the simplified 
Herring’s theory, supposing that, when surface crystallographic planes at the GB groove root are not near the 
prismatic and basal planes, they have similar surface energy γs. 

It was found that: 

- symmetrical GBs, in general, have a lower value of γgb/γs compared to asymmetric ones; 

- given an orientation β+, γgb/γs depends on GB inclination and increases as the asymmetry increases;  

- γgb/γs values may vary by up to one order of magnitude as a function of β+. Thus, in general, the GB energy 
of high-angle ice GBs cannot be taken as a constant;  

- the values of angle θ at the GB groove root obtained in the present work show a higher dispersion than 
those presented by KH and HS, indicating that at –18 ºC the GB may not be quasi-liquid as it seemed to be at the 
temperatures studied by these authors ie 0 oC and –5 oC;  

- a significant correspondence between the values γgb/γs and the planar density  of the interface plane was 
observed, therefore,  can help to identified identify GBs in ice with low energies.  
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