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Abstract

The objective of the present work was to compare multivariate statistical methods for the classification of Port Salut Argentino cheese samples
based on ripening time (1, 6, 13, 27, and 56 days), storage conditions (traditionally ripened and ripened after frozen storage) and sampling sites
(internal and external zones) using the contents of caseins, peptides and amino acids measured by chromatographic analysis as well as textural and
physical parameters. In particular, two linear methods, principal component analysis (PCA) and principal component similarity (PCS), and a non-
linear method, the Kohonen self-organizing artificial neural network (Kohonen ANN), were compared. The two linear methods showed the same
grouping of cheese samples according to ripening time, sampling site and storage condition. These methods are closely related in their
mathematical basis and the similar grouping showed by both methods can be explained by the fact that the first three principal components
explained 89.3% of the data set variation. The non-linear Kohonen ANN uses a mathematical procedure completely different from PCA; however,
only slight differences were observed in the grouping of cheese samples. Those differences may be related to the weight that each model gives to
every variable. One interesting feature of Kohonen ANN is that weight maps (contour plots) sometimes are superior to principal component
loadings (vectors) for the understanding of relationships between the groups and the original variables.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction A wide spectrum of multivariate methods is available in

order to extract information from the data set. Pripp et al. [2]

In a recent review, Coker et al. [1] discussed classification of
cheese variety and maturity, based on the contents of caseins,
peptides and amino acids measured by electrophoretic and/or
chromatographic analysis. When a large amount of data must be
considered, an objective assessment is essential.
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considered that multivariate analysis of proteolytic profiles was
a powerful approach to discriminate cheese varieties, cheese
quality and starter strains. Moreover, it also helps to better
understand proteolysis during cheese ripening and how a
change in cheese technology affects ripening and cheese quality.

One of the simplest and most frequently used tasks in hand-
ling complex multivariate data is the mapping of objects and
variables from an m-dimensional into a two-dimensional space
[3]. The main concern is the visual representation of objects
(e.g., cheese samples) and variables (e.g., peak areas or chemi-
cal results). The mapping of objects and variables in a two-
dimensional space allows the grouping of objects and the
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understanding of relationships between the groups and the
original variables.

Several authors have applied principal component analysis
(PCA) for mapping multivariate data of cheese samples in two-
dimensional plots, and in most cases, the first principal com-
ponent (PC) was related to ripening time [4—11]. However,
when more than two PCs account for most of the data variation,
other multivariate methods can be more useful than PCA or at
least complementary.

Principal component similarity (PCS), which derives from
PCA, was introduced by Vodovotz et al. [12]. Furtula et al. [13]
studied proteolytic profiles of Cheddar cheese samples aged by
fast ripening process. When six PCs accounted for most of the
data variability, PCS was very useful for classifying cheese
samples as well as for assessing the effectiveness of the fast
ripening process. The authors also applied PCS to data obtained
from Cheddar cheeses that were accidentally exposed to am-
bient conditions and the abused samples belonged to a distinc-
tive group in the PCS scattergram [14].

Recently, artificial neural networks (ANN) have been used
for the multivariate analysis of cheese samples. European
Emmental cheeses were classified depending on the geographic
origin using 25 analytical parameters for ANN computation
[15]. The authenticity of Ossolano cheese according to the
Protected Designation of Origin labelling was validated using
the composition of fatty acids and proteolytic profiles analysed
by ANN [16].

Port Salut Argentino cheese is one of the most popular soft
cheese varieties in Argentina. Expanding commercialisation of
Port Salut Argentino cheeses has increased interest in pre-
serving its characteristics for a longer storage period [8].
Freezing is one of the most effective treatments to ensure long-
term preservation. The effects of the freezing process on cheese
attributes, namely, flavour, aroma and texture, depend on whe-
ther cheeses are frozen before or after the ripening period.
Particularly, when cheeses are frozen prior to ripening, the
freezing process may influence some of the physicochemical
transformations during cheese maturation [10].

The aim of the present work was to compare multivariate
statistical methods for the classification of samples (Port Salut
Argentino cheese) based on ripening time (1, 6, 13, 27, and
56 days), storage conditions (traditionally ripened and ripened
after frozen storage) and sampling sites (internal and external
zones) using the contents of caseins, peptides and amino acids
measured by chromatographic analysis as well as textural and
physical parameters. In particular, two linear methods, PCA and
PCS, and a non-linear method, the Kohonen self-organizing
artificial neural network (Kohonen ANN), were compared.

2. Materials and methods
2.1. Cheese samples

Data from our preceding papers on Port Salut Argentino
cheeses (from the same batch) were used in this study [8—

10,17,18]. Cheeses were manufactured at a local factory, salted
in a brine solution for 3 h at 3 °C, stored for 20 h and packed in

heat-shrinkable plastic bags. Port Salut Argentino cheeses were
3.55+0.11 kg weight, 23.2+0.3 cm diameter, 7.7£0.3 cm
height, 28.7+0.7% w/w fat, 20.4+£0.9% w/w total protein, 48.8+
2.6% w/w moisture, and 5.2+0.1 pH.

Thirty cheeses were transported in insulated boxes with ice
from the factory to our laboratory and randomly separated in
two groups. Fifteen cheeses were frozen in a Tabai Comstar PR
4GM chamber (Tabai Espec Corp., Osaka, Japan) at —30 °C
until the centre reached —22 °C, held in frozen storage at
—22 °C for 30 days, thawed at 5 °C and held for ripening at 5 °C
(cheeses F). Fifteen cheeses were held at 5 °C for ripening and
were used as control (cheeses C). Cheeses were sampled at
different ripening times (1, 6, 13, 27, and 56 days) in triplicate.

Cubic pieces of 2.5 cm each side were cut from two different
cheese zones, internal and external zone. The geometric centre
of the cubic pieces of internal and external zones were separated
approximately 5.5 cm in the radial direction and 2.0 cm in the
axial direction [17].

2.2. Moisture and chloride analysis

Moisture content was measured with a microwave oven
CEM AVC 80 (CEM, Mattheus, NC, USA). Chloride con-
centration was determined with an Automatic Titrator model
DL40RC (Mettler Instrumente AG, Greifensee, Switzerland) as
proposed by Fox [19].

2.3. Extraction and chromatographic analysis of nitrogenous
compounds

Grated cheese (10 g) mixed with three times the sample
weight of water was homogenised using an Ultra-Turrax® T25
(IKA® Werke, Janke & Kunkel GmbH & Co KG, Staufen,
Germany) for 2 min [20]. The fractionation scheme proposed by
Verdini et al. [9] was followed for the separation of three
nitrogenous fractions: the water-insoluble fraction, the water-
soluble fraction (WSF), and the sulfosalicylic acid-soluble
fraction (SSASF). The nitrogenous fractions were stored in a
freezer at —22 °C for further analysis.

The chromatographic analysis of the three nitrogenous frac-
tions was performed as described in Verdini et al. [9]. Two
peaks were analysed in the water-insoluble fraction of Port Salut
Argentino cheese samples: the oy-casein peak was identified
using a standard of as-casein (Sigma-Aldrich, St. Louis, MO,
USA) and the ag-CN (f24-199) fragment, known as og;-I-
casein, was assigned as described by Verdini et al. [9]. Sixteen
peaks of the WSF that characterised Port Salut Argentino cheese
ripening were selected for further analysis [9,10]. Fifteen free
amino acids were detected and quantified in the SSASF of Port
Salut Argentino cheese samples [9—11].

2.4. Compression and stress relaxation tests

Samples were put into plastic bags to prevent dehydration
and left in the test room for 3 h to reach test temperature.
Experiments were carried out at 21+1 °C. Samples were
compressed by a Universal Testing Machine (Schimadzu DSS
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10 T-S, Tokyo, Japan) with a 5-kg load cell. Relaxation curves
were recorded for 8 min as suggested by Peleg [21]. Compression
ratio of 40% and cross-head speed of 1 cmmin~ ' were used. Data
were collected with a personal computer throughout an analogical
output of the Universal Testing Machine. Stress relaxation data
were normalised using Peleg’s model with an empirical linear
equation and the asymptotic equilibrium modulus (EA) of the
normalised stress relaxation curve was obtained [21,22].

2.5. Data set

Three factors were considered for this study: storage con-
dition, ripening time and sampling site. The nomenclature used
for identifying the studied factors was storage condition
(control: C, frozen: F), sampling site (internal: I, external: E),
and ripening time (1, 6, 13, 27, and 56). Consequently, a cheese
sample named FI1 belongs to a frozen cheese, sampled in the
internal zone, and ripened for 1 day.

Thirty-six variables were considered for this study: EA (Pa),
moisture (%ow/w), NaCl (%ow/w), agi-casein and og;-I-casein
(peak areas per 100 g cheese), sixteen peaks of the WSF (peak
areas per 100 g cheese) and 15 free amino acids in the SSASF
(mg amino acid per 100 g cheese).

As a result, the data set consisted of 60 cheese samples and
36 input variables. However, data from nitrogenous compounds
in the WSF and free amino acids in the SSASF were large and
highly correlated. Consequently, to reduce dimensionality, data
subsets from nitrogenous compounds in the WSF and free
amino acids in the SSASF were analysed for data reduction.

2.6. Data reduction

The term data reduction in the context of data mining is
usually applied when the goal is to aggregate or amalgamate

the information contained in large data sets into manageable
(smaller) information nuggets (Statistica 7 electronic user man-
ual, StatSoft Inc., Tulsa, OK, USA). PCA was used to reduce
dimensionality of the data from nitrogenous compounds in the
WSF and free amino acids in the SSASF. The fundamentals of
PCA are outlined in Section 2.7.

2.7. Data analysis

The reduced data set was analysed using PCA, PCS, and
Kohonen ANN. Principal component analysis was performed
with Minitab 13.20 using the correlation matrix (Minitab Inc.,
State College, PA, USA); PCS was conducted using the algorithm
proposed by Vodovotz et al. [12] and the Kohonen ANN was
implemented using Statistica 7.0 (StatSoft Inc., Tulsa, OK, USA).

2.7.1. Principal component analysis

Principal component analysis is based on the linear combi-
nation of the measured variables to produce derived variables,
principal components (PCs), which are mutually orthogonal in the
principal component space [23]. The PCs are numbered in order
of the amount of variation in the original data set that they explain,
so that the PC1 accounts for the most variation, and each subse-
quent principal component accounts for as much of the remaining
variation as possible. An adequate condensation of the informa-
tion is achieved when no more than two or three PCs can explain
at least 80—90% of the total variability [23—25]. It is often possible
to view the structure in the data by plotting two or three of the most
important PCs. The analysis of the PC scores gives evidence of
sample grouping in the PC space according to similarities in their
characteristics while the examination of the PC loading considers
the influence of the original variables in the sample arrangement
[23]. Principal component analysis was applied to the mean
centred data matrix as suggested by Verdini and Rubiolo [7].

Table 1
Average of three values of the scaled variables used for data analysis
Storage Sampling Ripening time Variables
site (days) o -Casein o -I-Casein PC1-WSF PC1-SSASF EA Moisture NaCl
Control Internal 1 87.82 18.37 5.44 2.93 70.63 31.32 3.23
6 84.41 11.43 1.95 3.73 60.10 20.23 12.76
13 82.38 21.30 9.82 8.71 51.70 38.64 31.39
27 55.73 30.90 37.86 33.67 23.17 20.36 31.22
56 29.96 60.86 78.22 76.03 9.49 54.41 62.41
External 1 63.77 21.29 2.17 0.96 55.58 74.40 51.60
6 67.54 13.32 5.17 4.87 36.34 73.09 53.34
13 66.54 20.18 15.07 6.76 20.57 79.71 75.57
27 46.68 42.53 43.23 38.37 5.28 74.57 51.86
56 22.95 66.37 73.23 50.39 0.45 92.86 67.72
Frozen Internal 1 69.18 5.45 4.36 2.82 82.13 16.21 3.11
6 80.66 5.99 10.42 8.91 48.06 43.30 13.86
13 25.84 60.77 32.75 20.90 24.02 25.15 29.16
27 30.49 47.45 37.50 65.41 39.02 27.98 43.92
56 8.71 26.37 42.90 98.21 9.50 54.44 48.74
External 1 87.39 291 2.47 2.05 40.27 72.57 59.11
6 91.78 14.08 11.72 7.66 20.64 82.51 56.88
13 24.22 77.56 30.61 23.31 7.47 75.12 58.98
27 18.35 43.74 32.29 50.85 10.80 70.94 58.15
56 0.64 25.29 37.44 74.86 0.00 92.86 52.76
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2.7.2. Principal component similarity

Principal component similarity is an algorithm that derives
from PCA and can also be categorised as unsupervised learning.
After application of PCA to the original data, linear regression
analysis is carried out using the PC scores with eigenvalues
higher than 1. The algorithm for PCS computation was pro-
posed by Vodovotz et al. [12]. The independent variables for the
linear regression are the accumulated proportion of variability
computed from the eigenvalues. A reference sample is selected
and the dependent variables for the linear regression are the
deviations from the corresponding reference PC scores. The
result of PCS analysis is a plot of slope vs. coefficient of
determination derived from the linear regression analysis. PCS
plots do not allow the differentiation of the contribution of each
PC to the grouping of the samples. Subsequently, additional
information can be obtained from PCS analysis throughout
adjusted factor score deviation plots that show the deviations of
PC scores from a reference line [12]. Then, PCs with higher
deviations from the reference line can explain the relationships
between the groups and the original variables.

2.7.3. Kohonen self-organising artificial neural networks

The Kohonen self-organising artificial neural network
creates a two-dimensional map from a series of high-dimen-
sional feature vectors. Kohonen mapping is mathematically
even simpler than the PCA [26]. A Kohonen ANN has only two
layers: the input layer and an output layer of radial units known
as the topological map (top-map). The most characteristic
feature of the Kohonen ANN is its implementation of correc-
tions [27,28]. The number and the extension of the corrections
change during the learning. A time-decaying learning rate,
which is used to perform the weighted sum, ensures that the
alterations become subtler as the epochs pass. The neighbour-
hood, a set of neurons surrounding the winning neuron, also
decreases over time. Once the network has been trained to
recognise structure in the data, it can be used as a visualisation
tool to examine the data [27]. The top map of an n xn Kohonen
ANN has nxn entries, each of which corresponds exactly to
one neuron and the number of weights in each neuron is equal to
the dimension of the input vector. One interesting feature of the
Kohonen ANN is that each neuron has the same number of
weights and in each level of weights only data of one specific
variable are handled [27,28]. Before training starts, data are
randomized in the interval [0, 1], being the initial weight, and at
the end of learning in each level a map showing the distribution
of values of the particular variable is formed.

3. Results and discussion
3.1. Data reduction

It is well known that classification improves when more
discriminative variables are used. In general, the network sacri-
fices classification performance in an attempt to reconstructing all
data, and consequently, data for modelling purposes can be
inefficiently used. In other words, redundant data make the net-
work inefficient for classification or sample grouping. Therefore,

it is very important to recode data into fewer meaningful cate-
gories, which are more likely to yield meaningful results. So data
mining consists not only of reducing the number of variables in a
black-box approach, but also of reducing the number of variables
applying domain-specific knowledge.

In this case, principal component analysis applied to 60
cheese samplesx 16 variables (WSF) and to 60 cheese sam-
ples x 15 variables (free amino acids in the SSASF), yielded one
PC that explained 86.5% and 93.7% of the data set variation,
respectively (Verdini et al. [10]). In both cases, the first PC
accounted for more than 85% of the variability so one input
variable PC1-WSF replaced the 16 original variables (peak
areas of WSF), and one input variable, PC1-SSASF, replaced
the 15 original variables (free amino acids in the SSASF).

The new input variables were EA, moisture, NaCl, oyg-
casein, ag;-I-casein, PC1-WSF, and PC1-SSASF. Because the
input variables differed in magnitude, all values of a given
variable were scaled from 0 to 100 with respect to the range
between the smallest and the largest variable value [3]. Values
of the scaled variables are shown in Table 1.

3.2. Principal component analysis
Principal component analysis applied to the 60 samples and

7 variables yielded three PCs that explained 89.3% of the data
set variation (PC1 60.8%, PC2 20.6%, and PC3 7.9%).
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Fig. 1. Plots of the first two principal components (PC1 vs. PC2): (a) PC scores plot.
(@) Cheeses C—zone I, (O) cheeses C—zone E, (W) cheeses F—zone I, (L) cheeses
F—zone E. Numbers indicate the ripening time of the samples; (b) PC loadings plot.
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Fig. 2. Principal component similarity plot when cheese samples were analysed
against FE56 (frozen cheese, external zone, 56 days of ripening) as a reference.
(®) Cheeses C—zone I, (O) cheeses C—zone E, (M) cheeses F—zone 1, ([])
cheeses F—zone E. Numbers indicate the ripening time of the samples.

The PC scores and the PC loadings plots mapping cheese
samples and variables in the two-dimensional space are shown
in Fig. 1a and b, respectively.
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Fig. 3. Adjusted factor score deviations for cheeses of 1 and 13 days of ripening
when cheese samples were analysed against FES6 (frozen cheese, external zone,
56 days of ripening) as a reference. Deviations from the reference lines are plotted as
differences from the reference line; the data points are first, second, third and fourth
adjusted factor scores from right to left: (a) 1 day of ripening, (b) 13 days of ripening.
(@) Cheeses C—zone I, (O) cheeses C—zone E, (W) cheeses F—zone I, (LJ) cheeses
F—zone E. Expanded area corresponds to third and fourth adjusted factor scores.

Cheese samples were grouped according to ripening time,
sampling site and storage condition. Unripened control cheeses
(from 1 to 13 days) and frozen cheeses (from 1 to 6 days) were
grouped towards the right-hand side of Fig. 1a, while all ripened
cheeses (27 and 56 days) and frozen cheeses of 13 days of
ripening were grouped towards the left-hand side of Fig. la,
showing an “early ripening” for frozen cheeses. In addition,
cheeses sampled in the internal zone were grouped towards the
bottom region of Fig. 1a, while cheeses sampled in the external
zone were grouped towards the upper region of Fig. la.

Variables were separated into four groups: group 1 (o -I-
casein, PC1-WSF and PC1-SSASF), group 2 (as;-casein), group
3 (EA), and group 4 (moisture and NaCl) as shown in Fig. 1b.

To achieve a better understanding of the relationships be-
tween the groups and the original variables, the two-dimen-
sional PC plots (Fig. 1a and b) and raw data (Table 1) were
discussed. The variables PC1-WSF and PC1-SSASF (group 1)
represented compounds that, with the exception of a few cases,
increased during ripening, but with a higher rate in the cases of
frozen cheeses [9,10]. However, oy -I-casein increased between
13 and 56 days during the ripening of control cheeses, but
increased between 6 and 13 days and then dramatically
decreased between 13 and 56 days during the ripening of
frozen cheeses [10,18]. On the other hand, ag;-casein (group 2)
and EA (group 3) decreased during cheese ripening but EA also
showed differences between sampling sites [9,17,18]. The
freezing process significantly increased oy;-casein hydrolysis,
but not the decay rates of EA [10,18]. In particular, there was an
earlier decrease in the ag;-casein content during the ripening of
frozen cheeses. That decrease was observed between 13 and
27 days in control cheeses, while it was detected between 6 and
13 days in frozen cheeses [10,18].

Moisture (group 4) showed differences between sampling
sites but not according to ripening. On the other hand, NaCl
(group 4), showed differences between both ripening time and

Adjusted factor
score deviation (%)

20 40 60 80 100 120
Variability accounted by PC (%)

Fig. 4. Adjusted factor score deviations for internal zone of frozen cheeses were
analysed against FE56 (frozen cheese, external zone, 56 days of ripening) as a
reference. Deviations from the reference lines are plotted as differences from the
reference line; the data points are first, second, third and fourth adjusted factor
scores from right to left. (+) 1 day of ripening, (Q) 6 days of ripening, ()
13 days of ripening, ([]) 27 days of ripening, and () 56 days of ripening.
Expanded area corresponds to second, third and fourth adjusted factor scores.
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Fig. 5. Distribution of the cheese samples into the 4 x4 Kohonen map. (@)
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F—zone E. Numbers indicate the ripening time of the samples.

sampling site. However, the freezing process had affected nei-
ther moisture nor salt contents at the beginning of the ripening
nor moisture and salt redistribution during the studied ripening
period [10].

As a result, the grouping of the variables could be related to
the predominant source of variability, namely, ripening time,
sampling site or storage condition.
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3.3. Principal component similarity

Four PCs were used for PCS computation and sample FE56
was used as reference. The result of PCS analysis is a plot of
slope against coefficient of determination derived from the
linear regression, PCS plot (Fig. 2).

The grouping of cheese samples in the PCS plot was similar
to the PC1 vs. PC2 score plot, which is in agreement with the
fact that two PCs accounted for more than 80% of the data
variation. Adjusted factor score deviations from the reference
line of some selected samples are shown in Figs. 3 and 4.
Adjusted factor score deviations from the reference line for
cheeses of 1 day of ripening showed that although the PC1 and
PC2 contributed to the separation according to sampling site,
PC2 is much more relevant (Fig. 3a). Adjusted factor score
deviations from reference line for cheeses of 13 days of ripening
demonstrated that PC2 contributed to the separation according
to sampling site, while PC1, PC3 and PC4 contributed to the
separation according to storage condition that indicates the early
ripening of frozen cheeses (Fig. 3b). Adjusted factor score
deviations from reference line for the internal zone of frozen
cheeses showed that PC1 was the leading factor in the overall
mapping of frozen cheeses according to ripening time (Fig. 4).

3.4. Kohonen self-organizing artificial neural network

In this work, the training was conducted in two phases: a
relatively short phase with 100 epochs, a high learning rate
(from 0.1 to 0.01), and a large neighbourhood (from 3 to 1);
along with a second phase, with 1000 epochs, a low learning
rate (throughout 0.01), and a zero neighbourhood.
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Fig. 6. Weight maps corresponding to the original variables related to proteolysis: (a) c;-casein, (b) o -I-casein, (c) PC1-WSF, and (d) PC1-SSASF. Weight maps were
presented as contour plots of the weights (in the interval [0, 1]) at the end of learning process.
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Fig. 7. Weight maps corresponding to the original variables: (a) EA, (b) moisture, and (c) NaCl. Weight maps were presented as contour plots of the weights (in the

interval [0, 1]) at the end of the learning process.

Several architectures of Kohonen ANN were tested: 3% 3,
4x4, 5x5, and 6x6. The sample grouping in the top map,
except only in a few cases, was similar for all tested architectures
(data not shown). The distribution of the cheese samples into the
4 x4 Kohonen map is shown in Fig. 5. Unripened cheeses,
control cheeses (from 1 to 13 days) and frozen cheeses (from 1
to 6 days), were grouped together on the left of Fig. 5, while
ripened cheeses (27 and 56 days) and frozen cheeses of 13 days
of ripening were grouped together on the right of Fig. 5, showing
the “early ripening” pattern of frozen cheeses in agreement with
PCA and PCS. Cheeses, except only in a few cases, were also
separated in two subgroups corresponding to internal and ex-
ternal zones (upper and lower region, respectively).

The weight maps of the original variables are shown in
Figs. 6 and 7. Weight maps were presented as contour plots of
the weights (in the interval [0, 1]) at the end of the learning
process and each weight map showed the contribution of one
original variable to the distribution of cheese samples in the top
map of Fig. 5.

Variables related to proteolysis, ogj-casein, oy -I-casein,
PC1-WSF and PC1-SSASF, are shown in Fig. 6. Variables that
increased during cheese ripening like og;-I-casein, PC1-WSF,
and PC1-SSASF; and the variable that decreases during rip-
ening, o -casein, showed left—right (increasing or decreasing,
respectively) patterns related to the top map (Figs. 5 and 6). The
weight map of og;-I-casein showed that higher weights are near
the areas where frozen cheeses of 13 days of ripening are
located, underlining that this variable was strongly related to the
“early ripening” pattern of frozen cheeses (Figs. 5 and 6b). The
weight maps of o -I-casein and PC1-WSF showed that weights
at the end of the studied ripening period (56 days) were higher

in control cheeses than in frozen ones (Figs. 5 and 6b, c). No
differences according to sampling sites are shown in the weight
maps of ay;-I-casein, PC1-WSF and PC1-SSASF.

Equilibrium modulus (Fig. 7a) showed differences according
to ripening time (a left-right decreasing pattern) and sampling
site (upper-bottom decreasing pattern). Moisture content shows
a pattern related to differences between sampling sites, with
higher weights in the lower region (Fig. 7b) that is the region in
which cheese samples from the internal zone are grouped in
Fig. 5. Consequently, moisture showed a close relation to the
distribution of cheese samples in the top map according to
sampling site.

Salt content (Fig. 7c) shows an almost homogeneous pattern
on the right side, where ripened cheeses that have reached
equilibrium in their NaCl content are located in Fig. 5, while on
the left side, there is a gradient related to high NaCl values in the
external zone and low NaCl values in the internal zone at the
beginning of the ripening.

4. Conclusion

The implementation of data mining previous to cheese clas-
sification mapping was very useful because the input variables
initially considered in this study were reduced from 36 to 7.

The two linear methods, PCA and PCS, showed the same
grouping of cheese samples according to ripening time, sam-
pling site and storage condition. These methods are closely
related in their mathematical basis and the similar grouping
showed by both methods can be related to the fact that the first
three PCs explained 89.3% of the data set variation. However,
adjusted factor score deviations plots obtained from PCS
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analysis helped to explain the relationships between the groups
and the original variables more easily than PCA.

The non-linear Kohonen ANN uses a mathematical pro-
cedure completely different from PCA; however, only slight
differences were observed in the grouping of cheese samples.
Those differences may be related to the weight that each model
gives to every variable.

In addition, Kohonen ANN always maps objects and vari-
ables in a two-dimensional space, while in the case of PCA,
dimensionality cannot always be reduced to two dimensions.
Another interesting feature of Kohonen ANN is that weight
maps (contour plots) sometimes are superior to PC loadings
(vectors) for the understanding of relationships between the
groups and the original variables. However, as the number of
factor increases, weight patterns become more difficult to
examine.

For successful classification or differentiation, analytical and
statistical methods should be carefully selected and the quality
of the data set must be high. In addition, Kohonen ANN has the
potential to operate as a class-modelling device, provided an
adequate number of samples is used for the training procedure
and certain modifications are introduced into the algorithm [28].
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