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Abstract: Hydrotalcite materials (HTs) were synthesized by
a facile and swift combined mechanochemistry/coprecipi-
tation approach, and their catalytic activity was evaluated
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and compared with conventionally synthesized hydrotalcites
(co-precipitation method) in the Knoevenagel condensation
between furfural and ethyl cyanoacetate/malononitrile.
Characterization and catalytic activity results clearly
demonstrate that the proposed combined mechanochem-
ical/coprecipitation approach provides an improvement
in crystallinity, morphology, tunable basicity, and textural
properties (higher surface area and enhanced surface prop-
erties) as compared to HTs obtained via conventional copreci-
pitation methods. In addition, mechanochemically synthesized
HTs largely improve catalytic activities, including conversion
and product selectivity to Knoevenagel condensation pro-
ducts under solventless conditions, short reaction times, or
reaction at room temperature as compared to conventional
counterparts (e.g., 30-40 vs > 99% product yields).

1 Introduction

Layered double hydroxides (LDH), known as hydrotalcite
(HT), are basic materials with a layered structure, which
present divalent and trivalent cations and belong to the
family of anionic clays. Generally, the structure of these
materials is described starting from Mg(OH), layers with a
brucite-type structure, where Mg”" cation coordinates six times
with hydroxyl groups, forming octahedrons that share their
edges with neighboring atoms, creating two-dimensional
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sheets. These sheets are stacked on top of the other, forming
layered networks held together by hydrogen bonds. The sub-
stitution of a fraction of the divalent cations in the brucite layer
by trivalent cations generates a layer with a positive charge,
which is compensated by anions in the interlamellar space,
where crystallization water is also found [1,2]. The wide spec-
trum of divalent and trivalent cations, as well as interlamellar
anions, have allowed the design of a wide variety of hydrotal-
cite with specific properties for various catalytic processes,
becoming increasingly important in chemical synthesis [3].

HTs can be synthesized using various methodologies,
such as hydrothermal treatment, coprecipitation, and sol-gel
method, among others, with coprecipitation being the most
widely utilized method in the literature. However, this meth-
odology requires prolonged synthesis times (4 or more days),
which makes the process highly time and energy-consuming
[4,5]. Several investigations have focused on finding viable
routes that allow a reduction in synthesis times for the pre-
paration of these materials, with mechanochemistry proven
to be a promising green alternative for such syntheses due to
its versatility and simplicity [6,7].

Chitrakar et al. [8] described a solvent-free procedure
for the synthesis of Zn Al-LDH, first grinding and then
autoclaving the solid precursors at 150°C for 24 h. Tongamp
et al. synthesized meixnerite, a type of layered hydroxide,
grinding anhydrous magnesium and aluminum hydro-
xides in a planetary ball mill for 1h and later for 2h in
the presence of water [9]; this was milled again with a
certain amount of magnesium nitrate in the second stage
for another 2 h [10]. Salmones et al. used the grinding pro-
cess for 44h on hydrotalcites synthesized by the copreci-
pitation method [11]. Mg-Al-LDHs were synthesized by
manual grinding for 1h in the absence of water; however,
the results showed low crystallinity, so they were peptized to
improve their properties [12]. CaAl-layered double hydroxide
was obtained from two grinding stages: the first consisting of
dry grinding of the precursors for 1h, followed by the addi-
tion of water and grinding for 2h [13]. Li-Al-OH LDH was
synthesized by combining the grinding process and hydro-
thermal treatment. For this, the aluminum precursor Al(OH),
was first ground for 1h, followed by the addition of the
LiOH'H,0 precursor and ground for an additional 1 h; finally,
it was subjected to hydrothermal treatment at 80°C for 1h
[14]. Madhusha et al. synthesized ascorbic acid intercalated
layered double hydroxides (AA-LDHs) by milling NaOH pel-
lets with magnesium and aluminum nitrates (the molar ratio
of Mg and Al was 2:1) using manual milling for 1h. The
resulting solid was washed with distilled water and dried,
mixed with ascorbic acid and NaOH, and manually milled
for 1.5 h [15]. For the synthesis of Cu—Al layered double hydro-
xide and a methyl orange (MO)-intercalated one (MO-LDH),

DE GRUYTER

copper and aluminum precursors were ground for 2h and
then stirred in water or methyl orange solution for 4 h [16].
Chlorine-intercalated Mg—Al layered double hydroxides
(Mg—Al-Cl-LDH) were synthesized using a one-step mechan-
ochemistry method with high purity after 5h of milling.
Fahami et al. studied different grinding times and found
that 1h of grinding is not enough to form the hydrotalcite-
type structure and that grinding times longer than 5h signif-
icantly affect the structure of these materials [17]. In another
investigation, these authors compared the hydrothermal
method with the mechanochemical method for hydrotalcite
synthesis and found that the characteristic layered structure
for these materials can be simple and swiftly obtained using
a ball mill as compared to that synthesized by the hydro-
thermal method. However, better crystallization was still
achieved using the hydrothermal method [18].

Recently, Mg,Al-CO3; LDHs were synthesized by grinding
a mixture of magnesium and aluminum hydroxide in a pla-
netary ball milling for 5 h. Water was added to the resulting
solid and was stirred for 30 h at 95°C [19]. Although these
processes present a reduction in the synthesis time compared
to the conventional coprecipitation method, all require high-
energy consumption and yield materials with low crystalli-
nity, according to literature reports.

This work presents a new methodology that combines
the mechanochemical process (using a ball mill) with copre-
cipitation for the synthesis of advanced hydrotalcite systems,
significantly shortening the synthesis time, improving crystal-
linity, and with the possibility of controlling basicity, all
remarkably beneficial to enhance their catalytic activity.
HTs were synthesized using different grinding times (10, 30,
and 60 min), and their catalytic activity was tested in the
Knoevenagel condensation reaction under solvent-free condi-
tions with respect to conventionally synthesized HTs, offering
significantly improved tunability and catalytic activity.

2 Experimental

2.1 Synthesis of hydrotalcites using the
coprecipitation method

Layered double hydroxides with the general formula M2, M:*
(OH),CO5nH,0 were synthesized using the coprecipitation
method detailed in our previous work [20]. A M*M>" ratio
of 3 with x = 0.25 was employed. Initially, 2.56 g of Mg
(NO3),6H,0 and 1.35g of Al(NO3)39H,0 were dissolved in
10 mL of distilled water in a 250 mL flask, and the solution
was stirred for 20 min. Then, 2.91 g of urea was added to the
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solution, followed by continuous stirring for 12h at 60°C.
Subsequently, the temperature was increased to 100°C, and
stirred for an additional 24 h. Finally, a 2 M alkaline solution
containing NaOH and Na,CO; was gradually added until the
pH reached 10. The resulting mixture was allowed to age for
24h at 140°C. The white precipitate obtained was filtered,
washed with distilled water, and dried overnight at 80°C.
The resulting solid is denoted as HT-C.

The molar ratio [urea]/[NOs] greater than 11eads to the
formation of NH3 and CO,, as the pH during the hydrolysis
process remains close to 9 (HTs were synthesized at a
molar ratio [urea]/[NO3] = 3). Therefore, the carbonate pro-
vided by the decomposition of urea serves as the compen-
sating anion in the HT phase, which follows the following
reaction mechanism [21,22]:

NH,-CO-NH, + 3H,0 —» NH} + CO%"
(NH4),C03 — 2NH; 1 + CO, 1 + H,0
NH; + H,0 < NH4,0H < NHj + OH
CO; + H,0 < H,C0; < H'+HCO; < 2H'+ C0%
OH™ + (1 - x)Mg2* + xAB* + (x/2)C0%™ + yH,0
- [Mg( - x)AIx(OH),](CO3)x/2 - yH,0
180H" + 6Mg2* + 2AP* + 9CO(NHy), + 12H,0
- Mg AL(OH);5CO;3 - 4H,0 + 18NH; + 8CO,

A 2M alkaline solution with a molar ratio of 1:1 (NaOH
and Na,CO3) was prepared by dissolving NaOH in distilled
water. Then, Na,CO3 and distilled water were slowly added
until the desired final volume was reached (creating an

i Mg(NO,), ;
: AI(NOy); !
Urea

PM100
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entirely alkaline solution). The mixture was then continu-
ously stirred until a translucent solution was obtained.

2.2 Synthesis of hydrotalcites by the
combined mechanochemistry/
coprecipitation method

Layered double hydroxides with the general formula M2, M3
(OH),CO3nH,0 were synthesized using a combination of
mechanochemistry and the coprecipitation method. The
mechanochemical step was conducted in a planetary ball mill
(PM 100 from Retsch, 50 mL stainless steel vessel, and stain-
less steel 18 balls of 10 mm diameter). The synthesis was
carried out using a M*’M>* ratio = 3 and consisted of two
stages. Initially, the precursor salts of divalent and trivalent
cations were mixed with urea, employing the same amounts
described above for the coprecipitation method, but this time
utilizing a mechanochemical method, ie, ball milling at
300 rpm for 5min. Subsequently, the resulting mixture was
dissolved in distilled water (50 mL), and the pH was adjusted
to 10 by slowly adding a 2 M alkaline solution of NaOH and
Na,COs. The solid obtained by coprecipitation was returned to
the grinding process for 5min at 300 rpm (second stage).
Finally, the resulting solid was washed several times with
distilled water and dried at 80°C for 12h (Scheme 1). This
process was also conducted using different syntheses times,
aiming to complete 30 and 60 min of the milling process. In
this regard, the first stage comprised mixing the precursor
salts with an M?"M®* ratio of 3 and urea, followed by grinding

Planetary Ball Mill

shed with
illed water

Scheme 1: Synthesis of hydrotalcites by the combined mechanochemistry/coprecipitation method.



4 — Eliana Nope et al.

(15 and 30 min). Once the pH reached 10, adjusted with a 2M
alkaline solution of NaOH and Na,COs, the solid obtained by
coprecipitation was returned to the grinding process for 15
and 30 min, respectively. The resulting solids are henceforth
denoted as MHT10, MHT30, and MHT60.

2.3 Characterization of the hydrotalcite
materials

Conventional X-ray diffraction (XRD) analysis of powder
samples was performed using a Bruker D8 Discover dif-
fractometer (Bruker, German) operated at a voltage of
40kV and a current of 40 mA, with Cu ka (k = 1.54056 A)
radiation in the 26 range of 5°-80°, a count time of 1s, and
a step size of 0.05° s™. Further crystallography analyses
were carried out using high-resolution X-ray diffraction
(HR-XDR) with synchrotron light source radiation. These
experiments were performed in the BM25-SpLine beamline
at the European Synchrotron Radiation Facility (ESRF) in
Grenoble (France) [23]. HR-XRD diffractograms were col-
lected employing a step size of 0.02° s* with an incident
wavelength of 0.8 A and an excitation energy of 15.5 keV.

Textural properties were measured by N, isotherms at
77 K using a Micromeritics ASAP 2000 porosimeter. The sam-
ples were previously degassed at 100°C for 12 h. The surface
area was calculated using a Brunauer-Emmett-Teller (BET)
multipoint model. Infrared spectra (IR) were obtained with
a Nicolet iS50 spectrometer by the ATR method, using
sample dilution in KBr at a concentration of approximately
10%. SEM-FEI Quanta200 scanning electron microscope (SEM)
was used to observe the surface structure of the samples and
the shape of particles. IR spectra were obtained at a resolution
of 4cm™ in the middle IR (4,000-400 cm™). CO, adsorption
was measured using a Thermo Scientific model Nicolet iS50
FT-IR spectrometer, and infrared spectra were collected by the
DRIFTS method. The materials were cleaned with a He flow of
30 mL/min at 100°C for 30 min. After the He flow, the adsorp-
tion of CO, was carried out at room temperature. In addition,
volumetric titration with benzoic acid was carried out to mea-
sure the proportion of basic sites. In this method, 0.025 g of
catalyst, a 0.01M benzoic acid solution, and 1mL of phe-
nolphthalein (strong basic sites indicator) and bromothymol
blue (weak basic sites indicator) were used.

2.4 Catalytic studies

The Knoevenagel condensation reaction between furfural
and ethyl cyanoacetate was selected as a model reaction to
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Scheme 2: Knoevenagel condensation of furfural with ethyl cyanoace-
tate/malononitrile.

evaluate the activity of the synthesized materials under
solvent-free conditions (Scheme 2). Furfural (1 mmol), ethyl
cyanoacetate or malononitrile (1 mmol), and 80 mg of cat-
alyst were mixed in a reaction vessel and heated at 25, 40,
and 80°C, respectively, for 10 or 30 min under magnetic
stirring. After the reaction, acetone was added as an extrac-
tion solvent. Finally, the catalyst was separated and washed
with acetone (3 x 2 mL), and dried at 80°C to evaluate its
reusability. Quantitative analysis was conducted by gas
chromatography using a series II Agilent 5890 GC, equipped
with a Supelco Equitytm-1 (60m x 0.25mm x 0.25um)
column and an FID detector (Supelco Analytical, Bellefonte,
PA, USA). The temperature in the injector was 280°C. The
oven temperature program used was as follows: initial tem-
perature of 70°C for 1 min, ramped up to 190°C at a heating
rate of 3°C/min, and remained constant at that temperature
for 6 min. The products were identified using GC-MS.

3 Results and discussion

The crystalline properties of the synthesized materials
were studied using powder X-ray diffraction. Generally,
the coprecipitation method leads to the formation of a
layered structure with high crystallinity; however, after
long synthesis times (ca. 48 h). In this work, the synthesis
of hydrotalcites was carried out by combining mechano-
chemistry using ball milling followed by the coprecipita-
tion method in short synthesis times (typically 10 min).
X-ray diffraction patterns for these materials (10-, 30-
or 60-min milling) are shown in Figure 1. In all cases, the
strongest diffraction appears at 26 11.3°, followed by that at
22.8° and three weaker lines at ca. 34.3° 60.1°, and 61.6°, as
well as two characteristic broad bands with the maximum
centered at 38.4° and 45.5°. These line maxima and their
relative intensities match those from JCPDS ref 22-0700,
being fully consistent with those reported for carbonate-
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Figure 1: XRD patterns of HTs synthesized by the conventional copreci-
pitation method (HT-C sample) vs the novel combined mechanochem-
istry/coprecipitation strategy (MHT10, MHT30, and MHT60 samples).

intercalated Mg-Al layered double hydroxide with Mg:Al
ratio of 3 [24], which is also in good agreement with the
nominal Mg:Al ratio employed in the syntheses. This phase
was described as a disordered structure containing a random
sequence of rhombohedral and hexagonal stacking layers or
3R, and 2H, polytypes [24].

The formation of layered structures is confirmed by
the presence of diffractions at 11.3°, 22.8°, and 34.3°, which
correspond to the (003), (006), and (009) planes, respec-
tively, and indicate multilayer stacking [25]. From the max-
imum of the reflection associated with the (003) plane, the
interplanar distance or basal spacing d of the HT structure
can be calculated (eg, 7.78 A for MHT10). The spacing d
between consecutive layers corresponds to the ¢ parameter
of the unit cell, ie, 23.35A for MHT10 [26]. The reflection
related to the (110) plane is not dependent on the layer stacking
arrangement [24], which is used to calculate the parameter a
(equal to parameter b) as twice dg, i.e., 3.08 A for MHTI0.

Most importantly, powder XRD patterns of the solid
obtained using the conventional coprecipitation method
(employing ca. 48 h of synthesis) exhibit a higher number
of narrow diffractions, with the absence of the broad bands
displayed for HTs obtained by the combined mechanochem-
ical/coprecipitation approach. In general, the pattern shows
a significantly more complex X-ray diffractogram with a
larger number of overlapped lines, which point to a mixture
of phases.

Aiming to identify different crystalline phases, high-reso-
lution X-ray diffraction (HR-GIXRD) experiments using syn-
chrotron light source radiation were subsequently performed
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for both conventionally synthesized (HT-C) vs combined
mechanochemical/coprecipitation method (MHT10), as
depicted in Figure 2. The high-resolution diffractogram con-
firmed the complete absence of impurities in MHT10 pre-
pared by the novel combined method as compared to several
mixed phases clearly observed for HT-C, even after 48 h
coprecipitation synthesis. The 26 maximum positions and
relative intensities, characteristic of a hydrotalcite with rhom-
bohedral R3m structure and chemical formula MggAl,(CO3)
(OH),5-4H,0, reported as JCPDS ref. 00-041-1428 [27], was
found in the HR-XRD pattern of HT-C. The reflections of this
hydrotalcite phase are displayed together with those charac-
teristic of a mixed carbonate phase, denoted as Eitelite (JCPDS
ref. 00-025-0847), described as a rhombohedral R3 structure
with chemical formula Na,Mg(COs), [28]. Additionally, MgO
(JCPDS ref. 00-043-1022) and Na,0O (JCPDS ref. 00-003-1074)
appeared as minor crystalline phases.

The formation of the observed phases in HT-C obtained
by the coprecipitation method may arise from several mechan-
isms, including partial hydroxylation occurring during the
initial synthesis stage, where MgO transforms to Mg(OH),, or
the formation of highly stable intermediates, such as MgCOs
and Al(OH);, which potentially engage in reactions with the
alkaline solution composed of NaOH and Na,COj3 [29,30]. While
the hydrolysis of urea generates carbonate ions (CO%"), the
combined approach of coprecipitation and urea hydrolysis

22,8

Intensity (a.u.)

20 30 40 50 60 70 80

Figure 2: High-resolution powder XRD patterns of the solid prepared by
the conventional co-precipitation method (HT-C), and the most repre-
sentative solid obtained by combining the mechanochemistry method
and coprecipitation using 10 min of synthesis time (MHT10). Symbols:
MggAl,(CO3)(OH);4:4H,0 phase with JCPDS ref. 22-0700 (numbers above
the dotted lines), MgeAly(COs3)(OH):6-4H,0 phase with JCPDS ref. 00-041-
1428 (+), Na,Mg(CO3); Eitelite phase with JCPDS ref. 00-025-0847 ({),
MgO phase with JCPDS ref. 00-043-1022 (*), and Na,O phase with JCPDS
ref. 00-003-1074 (!).
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may serve to finely modulate the nucleation and crystallization
processes, thereby fostering the development of hydrotalcite
structures characterized by their fine and homogeneous mor-
phology [22,31]. Nevertheless, the emergence of alternative
phases via the coprecipitation method could also be contingent
upon factors such as the concentration of metal precursors, the
quantity of urea utilized, the alkaline solution concentrations,
temperature, the pH value needed for the precipitation, and
aging time [30,32]. Consequently, the synergistic employment of
mechanochemical and coprecipitation methodologies repre-
sents a compelling strategy for achieving hydrotalcites with
high purity in a short time.

The unit cell parameters calculated for the hydrotal-
cite phase contained in HT-C were a =3.05 A and ¢ = 22.84 A.
These parameters are significantly lower than those found for
MHTI0 (a = 3.08 A and ¢ = 23.35 A). Remarkably, MHT10 exhi-
bits a more expanded structure than HT-C, either within
layers or between them. Considering that parameter a corre-
sponds to the closest average cation—cation distance within a
layer [33,34], and a higher a indicates an increase in Mg con-
tent with respect to Al as the ionic radius of Mg** (0.065 nm)
is comparatively larger than that of AI** (0.050 nm) [35,36].
These facts are in good agreement with the accompanying
increase obtained in the interlayer distance, related to the
observed increase in parameter c. The enhancement of inter-
layer distance is generally related to the lower number of
carbonate anions, which are partially substituted with bicar-
bonates (HCO3) due to a decrease in the cationic charge from
the brucite layer to be compensated [37,38]. In essence, these
results clearly pointed out that the proposed combined mechan-
ochemical/coprecipitation approach offers access to highly pure
and crystalline LDHs in short times (10 min), with no significant
differences observed among powder XRD patterns for MHT
materials regardless of the synthesis time (10-60 min milling).

The average crystallite size values, determined by the
Scherrer equation, are listed in Table 1. It is evident that
the milling time influences the crystallite size, with longer
milling times (1 h) resulting in larger crystallite sizes, while

Table 1: Textural properties of hydrotalcites synthesized and crystallite
sizes

Catalyst  Sger Pore volume Pore Crystallite
(m*g™  (em?g™) size size* (nm)
(nm)
HT-C 17 0.11 8 4.1
MHT10 88 0.29 13 27
MHT30 78 0.39 20 27
MHT60 63 0.31 18 3.5

*Dioo3y Was calculated using the Scherrer equation.
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shorter times result in smaller sizes. In the case of HT-C, a
larger crystallite size is obtained compared to the rest of
the synthesized materials. These outcomes can be linked
to the nucleation and crystallization processes occurring
during the synthesis. Nucleation initiates upon adding an
alkaline solution at constant pH to a solution containing
precursor metal salts of M2* and M3* cations, and simulta-
neously, crystal growth begins with the addition. Several
authors have reported that these processes affect crystal-
linity and crystallite size, being highly influenced by tem-
perature and time in the synthesis. Coral et al. studied
different microwave irradiation times in the synthesis of
HT and observed that with 300 min of irradiation at 110°C,
crystalline properties significantly improved compared to
10 min of microwave irradiation at the same temperature
[39]. In treatments involving hydrothermal conditions at
increasing temperatures and longer aging times, crystal-
linity and crystallite size tend to increase [40,41].

The results obtained from the combination of mechan-
ochemistry/coprecipitation suggest that the change in the
crystallite size depends on the second milling stage after
coprecipitation, where nucleation and crystal growth pro-
cesses occur simultaneously and are influenced by milling
time; longer milling time in this stage generates larger
crystallite sizes. In the first stage, milling of the metal pre-
cursors with urea allows them to be reduced to an amor-
phous phase, creating active sites for water molecules and
compensation anions to be incorporated into the structure
[10]. However, for HT-C, these processes occur during
coprecipitation and aging, which require more synthesis
time, resulting in a larger crystallite size.

The slight change in the crystallite size (approximately
1.5 nm) in the synthesis methods for HTC and MHT suggests
that these results could primarily be related to the presence
of urea, which finely modulates nucleation and crystalliza-
tion processes, as described above. The small crystallite sizes
observed for MHT materials may indicate high particle
agglomeration. Since the crystallite size in Dyg3 is related
to the stacking distance of layers like brucite [42], it is plau-
sible that the structure widens due to the agglomeration of
extremely small particles, as evidenced by the “c” parameter
value for MHT10. The presence of small crystallites suggests
a higher amount of grain boundaries and surface defects,
which could increase the surface reactivity of the materials
aswell as lead to a greater number of pores or the formation
of small pores.

Textural properties of the synthesized HTs are sum-
marized in Table 1. All pure solids (carbonate-intercalated
Mg-Al layers double hydroxide) synthesized by the novel
combined mechanochemical method also exhibited
remarkably improved surface areas (ca. 70-80 m?g?)
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Figure 3: N, adsorption-desorption isotherms of hydrotalcites synthesized by the combined mechanochemical/coprecipitation method (MHT10,
MHT30, MHT60) as compared to conventional coprecipitation method (HT-C, shown in the inset due to the difference in adsorbed volumes).

compared to conventionally synthesized HTs, which are
typically poorly porous-defined (usually <20 m*g™).
Volume and, importantly, pore size (potentially rele-
vant for catalysis and adsorption applications) also
significantly improved for materials synthesized via the
combined mechanochemically/coprecipitated method, likely
due to the alteration in microscopic morphology related to
the presence of different cations within the layered struc-
ture (isomorphic substitution of divalent cations [43]), which
are highly favored under mechanochemical conditions.
The intimate mixing (and enhanced interaction) between
the precursor salts of the divalent and trivalent cations
during ball milling leads to the formation of bicarbonate
species, significantly enhancing the textural properties of
the combined mechanochemical/coprecipitation mate-
rials, as described in the XRD analysis. Therefore, this
synthesis method enables achieving results comparable
to those obtained with hydrotalcites synthesized by
other methods [44-47]; however, this work highlights
short synthesis times.

The grinding time significantly influences the textural
properties of the materials, as observed in the comparison
in Table 1, where the surface area decreases with grinding
time, indicating that a grinding time of 10 min could repre-
sent an optimal time. However, the volume and pore size
values do not follow this trend. The change in the textural
properties of MHT is linked to particle growth. Previous
research, such as that by Benito et al, explored the synth-
esis of hydrotalcites using different microwave irradiation
times and found that an increase in irradiation time leads
to a decrease in surface area, associating these results with
hydrotalcite particle growth [48]. In our synthesis process,
changes in textural properties could also be attributed to
particle agglomeration and modification over the grinding
time. This suggests that, despite presenting similar surface
areas, pore size and distribution vary within these mate-
rials, as described later. This phenomenon arises because
the porosity of layered double hydroxides emerges due to
the imperfect fitting of particles in a hexagonal sheet form,
which can result in slit-shaped pore formation [49].
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Adsorption—desorption isotherms of the synthesized
materials are shown in Figure 3, with all solids exhibiting
type IV isotherms, characteristic of mesoporous materials
with hysteresis loop H3 [50]. This type of loop indicates the
formation of materials in the form of plates, where particle
pores have slit shapes, characteristic of hydrotalcite-type
materials [51]. Although the shape of the isotherms is the
same in all cases, the adsorption capacity (approximately
taken from the amount of nitrogen adsorbed at a relative
pressure of 0.95) in HT-C is very low (almost non-porous)
with respect to MHT materials. These results could be
related to the aging time (24 h) required in HT-C synthesis,
during complete dissolution and reprecipitation of small
particles probably take place, contributing mostly to the
specific surface area and leading to the formation of larger
crystals potentially blocking the pores, significantly influencing
the textural properties of these materials [3,52]. The proposed
combined mechanochemical/coprecipitation approach avoids
the aging step, notably enhancing HT textural properties.

Pore size distribution for these materials, calculated
according to the Barrett, Joyner, and Halenda (BJH) method
(Figure 4), reveals significative modifications in the pore
diameter values between HT synthesized by the conven-
tional method and the hydrotalcites obtained by the com-
bination of mechanochemistry/coprecipitation. The HT-C
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material presents a pore diameter range between 8 and
10 nm, indicating the presence of mesopores with a uni-
form structure. The materials synthesized by mechano-
chemistry/coprecipitation present pore size enlargement
with a range of 5-45 nm for MHT-30 and MTH-60 materials
and 3-40 nm for MHT-10, suggesting the presence of meso-
pores in the structure of these materials [53,54]. However,
for the synthesized materials with longer grinding times
(30 and 60 min), non-uniform mesopores are present due
to the contribution of pores in the range between 1.5 and
4 nm, which can be attributed to mesopores with a very
small structure (smaller mesopores and some micropores),
possibly related to crystallite size [55]. In general, these
results indicate that the combination of the mechanochem-
ical/coprecipitation process promotes an increase in pore
density due to the aggregation of the laminar-shaped layers
with slit-shaped pores characteristic of hydrotalcites.

The SEM micrographs of the synthesized materials are
shown in Figure 5. The materials prepared by the mechan-
ochemical/coprecipitation combination method exhibit a
notable propensity for agglomeration, displaying a spongy
structure attributable to the overlapping of the typical
sheets found in these materials. This agglomeration arises
from a high surface/volume ratio, where the agglomerates
are composed of numerous round particles possessing a
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Figure 4: Pore size distribution of the hydrotalcites synthesized by the combined mechanochemical/coprecipitation method (MHT10, MHT30, MHT60)

as compared to the conventional coprecipitation method HT-C.
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Figure 5: SEM images of hydrotalcites synthesized by the combined mechanochemical/coprecipitation method (MHT10, MHT30, MHT60) and the

conventional coprecipitation method (HT-C).

very fine laminar structure characteristic of hydrotalcite
materials [18]. In the mechanochemical process, when two
adjacent particles collide, they share a common crystallo-
graphic orientation, leading to the amalgamation of two
particles into a secondary one, thus promoting the spread
of agglomeration and the formation of diminutive sheets
[17]. In contrast, materials synthesized via the coprecipita-
tion method (HT-C) show well-defined sheets with a larger
laminar morphology. These results suggest that the combi-
nation of the coprecipitation/mechanochemistry method
enhances the formation of smaller overlapping sheets,
thereby generating compact agglomerates, corroborating
the crystallite size and textural properties results. The mor-
phology achieved by this method closely resembles that
reported by other researchers utilizing coprecipitation,
hydrothermal, and mechanochemical methods that neces-
sitate extended synthesis durations (>5h) [56-58].

The infrared spectrum for the synthesized materials
shows characteristic bands typical of HT-type materials
(Figure S1). Signals between 2,700 and 3,700 cm™ corre-
spond to stretching vibrations of the hydrogen bond in

—-OH groups and water molecules within the interlamellar
region [36] (e.g., band at 1,647 cm™ is associated with defor-
mation vibrations of water molecules present between
layers) [26,59]. Interestingly, these bands display slight var-
iations in the mechanochemical/coprecipitation materials,
indicating a higher abundance of hydroxyl groups between
the layers [60]. The band at 1,368 em™ is attributed to the
antisymmetric stretching mode of the carbonate anion of
the interlayer, while those at 667 and 871 cm™ are related
to vibrational modes of CO%’ species [61,62]. These bands
suggest that carbonate ions are present as free anions,
compensating for the positive charge of the laminar layers
[63]. Notably, vibrational modes of the bicarbonate species
are observed and designated to the region between 428 and
760 cm ™%, with small shoulders at 555 and 863 cm™ [60]. The
band around 452 cm ™ is attributed to the O-M bonds (M =
metal) of the brucite layer, associated with the vibrational
modes §HO-M-OH and §0-MO [64]. The characteristic sig-
nals of the vibrational modes of carbonate anions consid-
erably decrease in mechanochemical/coprecipitated mate-
rials due to the observed increase in the parameter ¢ in
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these materials, linked to the formation of bicarbonate
species in the interlaminar space, as described in XRD
analysis.

To determine basic properties of the materials, CO,
adsorption was conducted and analyzed using diffuse reflec-
tance infrared Fourier transform spectroscopy (DRIFTS).
CO, adsorption occurs by the formation of bidentate, mono-
dentate, and bridged species arising from different types
of basic surface sites [65]. Specifically, CO, adsorption on
oxygen ions with the lowest coordination number leads to
strong basic sites (monodentate species), whereas adsorp-
tion of bidentate carbonate species, bridged carbonates,
and bicarbonate species leads to moderate and weak basic
sites [23]. The signals at 1,680, 1,666, 1,640, 1,600, and 1,350 em™
correspond to v; vibrational modes of the bidentate species,
bridged carbonates, or bicarbonates (weak basic species),
while signals between 1,308 and 1,248 cm™? correspond to vs
vibrational modes of the monodentate species, associated to
strong basic sites [65,66]. MHT materials exhibited a higher
prevalence of basic sites (both strong and weak) compared to
HT-C (Figure 6). Surprisingly, strong basic sites were observed
to increase with longer grinding times, while weak basic sites
decreased. This increase in strong and weak basic species in
materials synthesized via the mechanochemical/coprecipita-
tion approach could be attributed to the partial substitution
of carbonate anions with the bicarbonate species due to a
lower cationic charge in the layered structure, which is com-
pensated for these species (consistent with the XDR results).
Importantly, the proposed mechanochemical/coprecipitation
approach allows for fine-tuning of the basic properties in HTs

1666 1640
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Figure 6: DRIFT-CO, analysis of hydrotalcites synthesized by combined
mechanochemical and coprecipitation methods (MHT10, MHT30, and
MHT60) or conventional coprecipitation method (HT-C). Monodentate
species (blue) and bidentate species or bicarbonate (red).
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based on the milling time, which is critical for designing
advanced catalytic (basic) materials in chemical reactions.

The synthesized materials underwent testing in the
Knoevenagel condensation reaction between furfural and
ethyl cyanoacetate/malononitrile under solvent-free condi-
tions. Initially, the reaction was conducted at 80°C for
30 min, with the results from Table S1 indicating high
yields of the condensation product and high catalytic
activity for all materials (>95% yields). Blank runs yielded
low conversion (<10%) in the systems, confirming the
necessity of a catalyst for the reaction. No significant dif-
ferences were observed between HT-C and MHT materials
under these preliminary investigated reaction conditions.

Subsequently, the reaction temperature was lowered
to 40°C and room temperature (RT), revealing notable dif-
ferences in terms of catalytic activity between HT-C and
MHT materials (Figure 7). Compared to quantitative pro-
duct yields (for ethyl cyanoacetate and malononitrile)
obtained for MHT materials, HT-C exhibited a lower pro-
duct yield of 35-50% under otherwise identical reaction
conditions. These results clearly illustrate the observed
enhancements in textural, morphological, and surface prop-
erties, as well as tunable basicity, exerting a critical influ-
ence on the catalytic activity of HT materials.

To gain a deeper understanding of the behavior of
these materials, the reaction was studied using smaller
amounts of the catalyst (Figure 8). As expected, a reduction
in catalyst mass resulted in lower yields of the desired pro-
duct. However, no significant differences were observed
between the materials when the catalyst mass was decreased,
maintaining an almost constant trend in yields toward the
desired product. For instance, yields close to 30% were
obtained with 10 mg of catalyst, while yields between 30
and 35% were achieved with 40 mg.

These findings suggest that the catalytic activity in the
Knoevenagel condensation of furfural with ethyl cyanoa-
cetate is not determined by the proportion of basic sites in
the materials but rather by their basic character. CO,-
DRIFT analysis revealed the presence of both strong and
weak basic species in all materials, with different propor-
tions. For example, in the case of HT-C, weak basic sites
(1.3 mmol/g titration with benzoic acid/bromothymol blue)
predominated over strong basic sites (0.4 mmol/g titration
with phenolphthalein). This suggests that the high pre-
sence of weak basic species in HT-C leads to lower yields,
as Knoevenagel condensations are favored by strong basic
sites. It is well known that extracting a proton from a
methylene compound with a high pK, value necessitates
the presence of a catalyst with strong basic properties.
Therefore, malononitrile and ethyl cyanoacetate, with pK,
values of 11.4 and 9, respectively, require strong basic sites
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Figure 8: Mass of the catalyst in the Knoevenagel condensation. Reaction
conditions: furfural (1 mmol), ethyl cyanoacetate (1 mmol), 10 min, sol-
vent-free, and room temperature.

for their deprotonation and the formation of the corre-
sponding carbanion [67]. The grinding process facilitates
the generation of strong basic sites, which exhibit an esca-
lating trend with extended grinding time (MHT10 = 0.723,
MHT30 = 0.781, and MHT60 = 0.985 mmol/g), while concur-
rently reducing the presence of weak basic sites (MHT10 =
0.345, MHT30 = 0.140, and MHT60 = 0.187 mmol/g). However,
there were variations in the abundance of strong basic sites
between the different modified hydrotalcite (MHT), catalytic
activity was affected by this parameter.

This behavior may be attributed to the crystallite size
(2.7-3.5nm), as no significant difference is observed among
them. Moreover, the presence of small crystallites could
promote higher surface activity in these materials due to
increased pore density. However, a yield close to 45% is
achieved for HT-C, which also has a small crystallite size
(4.1nm) under mild reaction conditions (room tempera-
ture and 10 min of reaction). These results indicate that
the catalytic activity of these materials is not only influ-
enced by their basic properties and crystallite size but may
also be related to their morphological properties. It is note-
worthy that HT-C exhibits a plate-like morphology, while
MHT displays a granular morphology. This morphological
variation significantly impacts the textural properties of
the materials, as evidenced by an increase in the surface
area for MHT. This increase facilitates greater availability of
basic sites on the surface, thereby promoting the Knoevenagel
condensation between furfural and malononitrile under mild
reaction conditions. Consequently, the induced change in the
morphology of these materials by the combination of mechan-
ochemical/coprecipitation processes leads to a significant
improvement in the catalytic activity of hydrotalcites in
the Knoevenagel condensation reaction, in good agreement
with previous investigations [68,69].

The presence of strong basic sites in modified hydro-
talcite materials (MHT) and granular morphology provides a
highly promising approach to obtaining high-value-added
chemicals through the Knoevenagel condensation reaction
of furfural. Various investigations have explored different
reaction conditions, such as the use of solvents, acidic or
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Table 2: Conditions and yield in the Knoevenagel condensation between furfural and malononitrile using other catalysts

Entry Catalyst Temperature (°C) Time (min) Yield (%) Ref

1 S03%/2r0, Heated reflux 30 87 [74]

2 Co-MOF 40°C 30 100 [75]
60°C 20 100

3 Prol-MSN (mesoporous silica nanoparticles) RT 30 76 [67]

4 SBA-15-Alanine 150°C 15 91 [76]

5 16Alanine-MCM-41 100°C 30 88 [77]

6 ILS ionic (liquid-functionalized SBA-15) 120°C 3 95 [78]
Microwave

7 HT commercial/dimethylformamide 100°C 15 99 [79]

8 Calcined hydrotalcite/dimethylformamide RT 30 98 [80]

9 MHT RT 10 99 This work

RT: room temperature.

basic materials as catalysts, and different reaction times and
temperatures. In this context, catalysts such as Darco (com-
mercial carbonaceous materials) for 6 h [70], sulfated poly-
borate for 60 min at 70°C in water: ethanol (1:1) [71], ZrPO,
for 8 h at 100°C [72], BCN (dicyanamide/boric acid) for 15 min
in methylbenzene at 80°C [73], and recently organocatalysts
in ethanol for 30 min at room temperature [67], have been
evaluated, showing promising results but with considerable
reaction times and energy consumption.

Table 2 shows the results of solvent-free reaction con-
ditions for the Knoevenagel condensation of furfural with
malononitrile, a significant reduction in reaction times with
high yields towards the Knoevenagel product. These results
underscore the versatility of the Knoevenagel condensation
reaction mediated by acidic or basic sites, wherein the
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Figure 9: Reusability studies of MHT materials in four reaction cycles.
Reaction conditions: furfural (1 mmol), ethyl cyanoacetate (1 mmol),
80 mg catalyst, 10 min, solvent-free (Reaction = starting reaction).

presence of strong basic species in MHT materials facilitates
obtaining high yields of the condensation product in
reduced reaction times at room temperature.

The results obtained in this work indicate a significant
reduction in reaction times and high yields of the Knoevenagel
product when utilizing MHT materials as catalysts in the
absence of solvent within 10 min of reaction, representing a
substantial improvement in terms of efficiency and energy
consumption. Previous studies have demonstrated the effi-
ciency of hydrotalcite-type materials (Table 2, entries 7 and 8).
However, this work highlights the advantages of using hydro-
talcite synthesized by a combination of mechanochem-
ical process and coprecipitation method. This innovative
approach opens new possibilities for designing more effi-
cient and sustainable processes (less energy and time-con-
suming, solventless protocols) in the synthesis of materials
and fine chemicals, thereby contributing to a more sustain-
able (nano)materials design.

In addition to the superior catalytic activities regis-
tered for MHT materials, reusability studies also confirmed
the high stability and relevant unchanged activities pre-
served after 4 reaction cycles (Figure 9, Table S2) for all
MHT materials.

4 Conclusions

The synthesis of hydrotalcite-type materials was revisited
using a simple and efficient combined mechanochemical/
coprecipitation approach that allowed the preparation of
better crystalline, porous, and basicity-tuned HTs in short
synthesis times (typically 10-30 min), avoiding aging steps
and long synthesis times (ca. 48 h, conventional coprecipi-
tation synthesis) that were proved to lead to the formation
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of impurities. Textural, morphology, crystalline, and basic
properties could be remarkably improved by the partial
replacement of carbonate anions with bicarbonate species
in the mechanochemical step. Importantly, layered struc-
ture formation was not influenced by the grinding time,
with 10 min being sufficient to obtain well-defined and
highly active HT materials. Importantly, basic properties
(and species) in the layered structure could also be fine-
tuned and controlled on the basis of grinding time in the
mechanochemical step, developing weak and strong basic
species at short milling times and strong basic sites at
longer grinding times. The catalytic activity is highly influ-
enced by the change in the morphology of the hydrotalcites,
and novel MHT materials provided quantitative yields to
Knoevenagel products under solventless conditions at room
temperature (10 min reaction), without any loss of catalytic
activity after four reaction cycles, as compared to moderate to
low product yields (35-50%) obtained for HT-C counterparts.
The proposed innovative combined approach has the poten-
tial to pave the way to the design of advanced LDH-related
materials in large quantities (typically over 10 g material per
batch, highly reproducible) for additional catalytic/adsorp-
tion-related applications that will be reported in due course.
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