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Methods  We used a multi-scale approach, called 
‘scalograms’, to assess landscape level effects of pri-
mary productivity, in the form of Dynamic Habitat 
Indices (DHIs) on the occurrences and abundances of 
100 Argentinian forest bird species. We used average 
DHI values within multiple extents (3 × 3 to 101 × 
101 pixels; 30 m resolution), and 11 ‘scalogram’ met-
rics as environmental inputs in occurrence and abun-
dance models.
Results  Average cumulative DHI values in extents 
81 × 81 to 101 × 101 pixels (5.9 – 9.2 km2) and maxi-
mum cumulative DHI across extents were in the top 
three predictors of species occurrences (included in 
models for 41% and 18% of species, respectively). 
Average cumulative DHI values in various extents 
contributed ~ 1.6 times more predictive power to 
occurrence models than expected. For species abun-
dances, average DHI values and scalogram measures 
were in the top three predictors for < 2% of species 
and contributed less model predictive power than 
expected, regardless of DHI type (cumulative, mini-
mum, variation).
Conclusions  Argentinian forest bird occurrences, 
but not abundances, respond to high levels of primary 
productivity at multiple, broad extents rather than a 
single ‘optimal’ extent. Factors other than primary 
productivity appear to be more important for predict-
ing abundance.

Abstract 
Context  Approaches estimating landscape effects 
on biodiversity frequently focus on a single extent, 
finding one ‘optimal’ extent, or use narrow extents. 
However, species perceive the environment in differ-
ent ways, select habitat hierarchically, and respond to 
multiple selection pressures at extents that best pre-
dict each pressure.
Objective  We aimed to assess multi-scale rela-
tionships between primary productivity and species 
occurrences and abundances.
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Introduction

Understanding the scales at which species respond 
to their environment is important for advancing 
knowledge about habitat and resource selection, 
patterns of species occurrence and abundance, 
biodiversity patterns, and informing conservation 
and management strategies. Spatial scale (extent 
and resolution) has varying, often complex effects 
on the relationships between landscape patterns 
and biodiversity metrics such as species richness 
(Bar-Massada et  al. 2012). The spatial scale at 
which environmental variables are summarized can 
greatly influence our ecological inferences about 
biological responses (Pease 2024). Species perceive 
the environment in different ways and select habitat 
in a hierarchical manner (Johnson 1980; Wiens 
and Rotenberry 1981; McGarigal et  al. 2016). 
Geographic ranges are at the broadest scales, while 
home ranges, patches within home ranges, and 
specific resources within patches are increasingly 
narrower (Johnson 1980). Given that species interact 
with their environment in different ways and that 
habitat selection is hierarchical, the spatial scales of 
landscape effects likely differ between species, the 
biological response of interest, and environmental 
variables (Miguet et  al. 2016; Stuber and Fontaine 
2019; Pease 2024).

Theoretically, the spatial extent of landscape effects 
on species’ responses increases in the following 
order: fecundity, abundance, occurrence, richness, 
and genetic diversity (McGarigal et al. 2016; Miguet 
et  al. 2016). Resource availability in a population’s 
breeding habitat influences fecundity, thus the 
landscape should affect fecundity at a small spatial 
extent. Abundance is often influenced by both local 
(births and deaths) and broader-scale (immigration 
and emigration) processes (Miguet et al. 2016), while 
occurrence depends on even broader spatial scales, 
because it is controlled by extinction and colonization 
events (Cushman and Mcgarigal 2004; Jackson and 
Fahrig 2014; Miguet et al. 2016). However, the scale-
effect (sensu Jackson & Fahrig 2012) may not follow 
the theoretical order of increasing scale-effect from 

fecundity to genetic diversity (Martin 2018; Moraga 
et  al. 2019), such as when the scale-effect of the 
landscape variable indirectly depends on the scale 
at which the variable affects another variable, and 
that other variable strongly influences the biological 
response (Miguet et  al. 2016). For example, if a 
species responds to water quality, but water quality 
is affected at the watershed scale, then the expected 
scale-effect of water quality on the species should be 
the size of watershed.

In the past, attempts to model species-environment 
relationships focused on a single extent which may 
oversimplify species-environment relationships 
(Stuber and Fontaine 2019; Pease 2024) or miss 
important spatial scales in species-environment 
relationships (McGarigal et  al. 2016; Moraga et  al. 
2019). More recently, multi-scale models are used 
to identify scale-effects (Gabriel et al. 2010; Moraga 
et  al. 2019; Stuber and Fontaine 2019), and often 
perform better than single-scale models (Hallman and 
Robinson 2020; Bergerot et  al. 2022; Silveira et  al. 
2023). Some multi-scale analyses have focused on a 
few extents identified a priori in pursuit of a single 
optimal extent (Miguet et al. 2016), which can result 
in underestimation or misidentified landscape scale-
effects (Jackson & Fahrig 2015). Additionally, the 
true scale-effect may be outside of the few extents 
analyzed (Jackson and Fahrig 2015).

Assessing species-environment relationships 
across multiple extents resolves the dilemma of 
selecting a single extent a priori, facilitates describing 
the shape of species-environment relationships, 
identifying potential change points, and identifying 
multiple important extents (Stuber and Fontaine 
2019; Pease 2024). For example, the impact of 
organic farming on biodiversity (Gabriel et al. 2010), 
and effects of natural habitat amount on parasitoid 
abundance (Marins et al. 2024) have been described 
at multiple scales.

One challenge of multi-scale analyses, is 
associated with methods using multiple buffers 
(Holland et  al. 2004; Jackson and Fahrig 2015). In 
multiple buffer (or ‘threshold’) methods, landscape 
variables are measured across multiple concentric 
circles of different radii. However, the landscape 
elements within a buffer implicitly have equal impact 
on the biological response regardless of distance from 
the response location (Miguet et al. 2017; Stuber and 
Fontaine 2019; Lowe et al. 2022). This is biologically 
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unrealistic, as distant landscape elements should have 
less impact than closer elements, and the impact of 
a landscape variable should decline continuously 
away from a focal site (Miguet et  al. 2017; Lowe 
et  al. 2022). One approach to avoid the problems 
presented by multiple buffers, is distance-weighting. 
In distance-weighting, a weighting function is used to 
define how a landscape variable’s influence declines 
continuously with distance from a focal site (Miguet 
et al. 2017; Lowe et al. 2022).

A second challenge of multi-scale studies is that 
measuring landscape variables at multiple spatial 
extents results in autocorrelation and collinearity 
between predictors across scales (Silveira et al. 2023). 
In multiple buffer methods, there are few suitable 
methods for dealing with the autocorrelation of 
nested buffers (Lowe et al. 2022). Distance-weighting 
methods can offer ways to deal with multiple buffer 
assumptions, however until recently, distance-
weighted methods relied on a priori decisions about 
extent and range values (Miguet et al. 2017), required 
custom computer coding, or did not allow for models 
that account for possible spatial autocorrelation in 
residual errors (Carpentier & Martin 2021). One 
recent distance-weighted method, ‘scalescape’ 
(Lowe et al. 2022), improves upon existing distance-
weighted methods by offering a use-friendly way to 
perform distance weighting, that can be used with 
multiple types of models, and includes models that 
can account for spatial autocorrelation (Lowe et  al. 
2022). ‘Scalescape’, while useful for assessing 
landscape scale effects on pollinators (Bernhardsson 
et al. 2024; Lowe et al. 2024) and parasitoids (Marins 
et al. 2024) when local variables and categorical land 
cover variables were used in regional contexts, has 
proven to be computationally intensive at national 
scales, with large datasets (1000 – 32,000 locations 
per species; > 100 species), and with continuous 
landscape variables.

While distance-weighted methods may be better 
suited for multi-scales studies than multiple buffer 
methods, there are still some issues that need to be 
addressed. One approach that may bridge the gap 
between multiple buffer and distance-weighted meth-
ods is an adaptation of multiscale contextual spatial 
analysis (MCSPA). MCSPA is a multiscale pixel-
based approach which summarizes the proportion of 
habitat found within increasing window sizes around 
each pixel, captures multiple extents simultaneously, 

and reflects the spatial context of each pixel in a land-
scape (Bar-Massada and Radeloff 2010). In MCSPA 
a scalogram is created (Fig.  1), which is a curve of 
changes in a response variable across nested scales 
(Frazier 2016; Sun et  al. 2023; Zhang & Li 2013). 
The graph can be used to analyze the multiscale 
landscape patterns around pixels (Bar-Massada and 
Radeloff 2010).

Because the scalogram exhibits autocorrelation due 
to nested analysis extents, a third-order polynomial 
is fit, and the polynomial coefficients describe the 
spatial context (Bar-Massada and Radeloff 2010). The 
zero-order coefficient (α0) relates to the landscape 

Fig. 1   The scalogram and the 1st derivative curves, measured 
from NDVI cumulative DHI (cDHI) at multiple spatial scales, 
for one focal pixel. On the scalogram curve five scalogram 
habitat measures are displayed: minimum, maximum and range 
of cumulative DHI values, and the extents at which cumula-
tive DHI is minimum and maximum. Coefficient of varia-
tion, and intercept of cumulative DHI are not displayed. The 
first derivative curve shows the intercept of the 1st derivative, 
the 1.st derivative (maximum slope), and two critical points. 
X-axis = the size of the analysis window (size in pixels is above 
each scalogram point); y-axis = averaged cumulative DHI val-
ues (scalogram curve only)
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variable value in the immediate neighborhood of the 
focal pixel. The first-order coefficient (α1) defines the 
linear trend in increasing window sizes. The second-
order coefficient (α2) introduces a non-linear effect 
and denotes where the landscape variable values 
increase or decrease, allowing for inflection points 
(Bar-Massada & Radeloff 2010). The third-order 
coefficient (α3) adds two more inflection points that 
describe situations where the landscape variable 
changes direction more than once (Bar-Massada 
& Radeloff 2010). While the scalogram averages 
the landscape variable in different extents, and thus 
assumes a constant effect within a given window, the 
fitting of a polynomial curve adds additional context 
beyond the constant effect within a window size.

MCSPA has only worked with categorical 
landscape variables, limiting its usefulness 
for assessing multi-scale species-environment 
relationships. Further, polynomial coefficients are not 
ecologically meaningful or easy to interpret (Silveira 
et al. in review). Recently, MCSPA has been modified 
to allow the use of continuous variables and to provide 
additional, ecological interpretable indices resulting 
from the scalograms (Silveira et  al. in review). The 
ecologically interpretable measures are: the landscape 
value at the focal pixel, the minimum, maximum, 
range and coefficient of variation of landscape values 
among all extents, the extents at which the landscape 
variable is minimum and maximum, the maximum 
slope of the polynomial curve, how steep the slope 
is at the focal pixel, and two potential minimum 
or maximum points which provide information 
about major changes in the landscape variable. The 
modified approach is called ‘scalograms’ (Silveira 
et al. in review; Silveira et al. 2024), and was useful in 
explaining multi-scale relationships between primary 
productivity and abundances of several bird species 
and enhancing the performance of abundance models 
(Silveira et al. in review).

Spatial variation in global biodiversity gradients 
is explained by many forces including climate 
constraints (Santini et al. 2023), topography (McCain 
2009; Perrigo et  al. 2020), land cover (Basile et  al.; 
2021; Gábor et  al. 2024) and land use (Newbold 
et  al. 2015), and habitat structure (Gaston 2000; 
Willmer et  al. 2022), however measures of energy, 
such as primary productivity, can better explain some 
biodiversity gradients (Gaston et  al. 2000; Hawkins 
et al. 2003). Theoretically, areas of high productivity 

support more species and more individuals of species 
because these areas are associated with greater 
available energy in the form of food resources that 
can be partitioned among species than areas of low 
productivity (species-energy theory, or available-
energy theory; Hutchinson and MacArthur 1959; 
Wright 1983). The species energy theory is well 
supported. For example, primary productivity is 
positively associated with species distributions 
(Arenas-Castro et al. 2022), occurrences (Desrochers 
et  al. 2010), abundances (Sarasola et  al. 2008; 
Frixione & De Lamo 2017; Razenkova et  al. 2023), 
densities (Santini et  al. 2018), and species richness 
(Storch et  al 2018; Di Cecco et  al. 2022; Martínez-
Núñez et al. 2023).

Vegetation productivity is easily captured in 
remotely sensed datasets (Pereira et  al. 2013; 
Reddy, 2021), and many remotely sensed vegetation 
productivity indices are readily available for analyses. 
One such set of indices are the Dynamic Habitat 
Indices (DHIs), which summarize three measures 
of vegetation productivity (cumulative, minimum, 
and variation) over the course of a year (Mackey 
et  al. 2004; Berry et  al. 2007); useful indices of the 
energy available to organisms. DHIs are useful for 
understanding the species-primary productivity 
relationship, and support the species energy theory 
(Coops et  al. 2009a, b; Michaud et  al. 2014; Hobi 
et  al. 2017; Radeloff et  al. 2019; Suttidate et  al. 
2019). Species-primary productivity relationships are 
scale dependent, emerging at multiple spatial grains 
(Craven et al. 2022), but may be strongest at broader 
spatial scales (Storch et  al. 2018). They may be 
stronger at broader spatial scales because the range of 
productivity is greater (Field et al. 2009; Cusen et al. 
2012; Storch et al. 2018; Janousek et al. 2020).

Primary productivity has been strongly related 
to bird species occurrences worldwide (Pellissier 
et  al. 2018; Dillon & Conway 2021; Arenas-
Castro et  al. 2022) and in Argentina (Pedrana et  al. 
2011; Apellaniz et  al. 2012; Leveau et  al. 2018; 
Micaela Rosas et  al. 2023), but it’s associations 
with abundances are less clear. Globally, primary 
productivity has inconsistently predicted species 
abundances (Santini et al. 2018, 2023), and in North 
America it has been positively (Mönkkönen et  al. 
2006), equivocally (Evans et.al 2006), and un-related 
to species abundances (Dobson et al. 2015). Similarly, 
in Argentina, primary productivity has been 
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positively associated (Bellocq et  al. 2011; Frixione 
& De Lamo 2017; Weyland et  al. 2019), negatively 
associated (Haedo et al. 2017), and unrelated to bird 
species abundances (Calamari et al. 2018).

Species’ traits play a role in their occupancy 
response to landscape elements, with larger-bodied 
and more mobile species responding at broader 
scales. Species’ abundances may be lower in those 
with larger body mass, at higher trophic levels 
(Holland et  al. 2004; Jackson and Fahrig 2015; 
Miguet et al. 2016; Pease 2024). In migratory species, 
precipitation and temperature may be associated with 
higher abundances (Santini et al. 2023), and climate 
may influence abundances of species with larger 
global ranges or smaller body mass as well (Howard 
et al. 2015).

We aimed to assess the multi-scale relationships 
between primary productivity derived from DHIs 
and bird species occurrence and abundance in 
Argentina, using scalograms (Silveira et al. in review; 
Silveira et  al. 2024). Specifically, we wanted to 1) 
explore whether primary productivity is positively 
associated with probability of species occurrence 
and abundance, 2) to identify the spatial extents at 
which occurrence and abundance respond to primary 
productivity, and 3) to test the use of scalograms for 
characterizing multi-scale relationships. We analyzed 
these questions using a large, nation-wide dataset 
containing hundreds of species.

Following species-energy theory, we expected that 
high levels of primary productivity (high cumulative, 
high minimum, and low variation DHI; as well as 
maximum scalogram measures) would be associated 
with high probability of species occurrence 
and species abundances (our two measures of 
species response). Furthermore, if occurrence 
and abundance patterns behave according to the 
theoretical scale-effect of the landscape on species 
biological responses, we expected that DHI values 
at broader spatial extents would be more important 
for predicting species occurrences, while species’ 
abundances would be more strongly predicted by DHI 
values at medium spatial extents (not the smallest nor 
broadest extents). However, for both occurrence and 
abundance, we expected that there would not be one 
single extent that was most important, and that the 
different DHIs (cumulative, variation, and minimum) 
may be influential at different extents. While the 
scalograms approach has been useful for explaining 

the multi-scale relationships between environmental 
variables and abundance of three bird species in 
a small study area, it has not been tested with large 
datasets or across broad regions (Silveira et  al. in 
review).

Methods

Study area

Our study area is the country of Argentina (Fig.  2), 
which covers ~ 2.8 million km2 in southern South 
America, extending from 20° S to 60° S and 50° W 
to 80° W (Fig.  1). Argentina has many diverse cli-
mates and 15 terrestrial ecoregions (Burkart et  al. 
1999; Morello et al. 2012) due to the broad latitudinal 
and altitudinal gradients present in the country and 
the large ocean-to-land area that characterizes South 
America (Derguy et  al. 2019). The northern part of 
the country is characterized by subtropical ecoregions 
while the southern part of the country has cold tem-
perate to boreal systems, and altitudinally Argentina 
hosts sea level to nival regions (Derguy et al. 2019). 
Temperatures decrease from north to south, and there 
is a west-to-east precipitation gradient due to the 
topography of the Andes Mountains in the west and 
the flat lowlands of the east (Barros et al. 2015; Der-
guy et al. 2019).

Data

Bird data

We obtained bird occurrence data from the eBird 
Basic Dataset (eBird Basic Dataset  2023). eBird is 
a citizen science project, in which observers report 
observations of wild bird species from a single 
birding event. The list of observed birds is termed 
a ‘checklist’, and contains information about the 
number of individuals observed, the location, date, 
and time of observations, the type of survey, and 
measures of effort such as duration, number of 
observers, and distance traveled (Strimas-Mackey 
et  al. 2023). eBird is semi-structured (Kelling et  al. 
2018), because it has flexible protocols that collect 
information on the observation process to allow for 
non-detections to be inferred (Strimas-Mackey et  al. 
2023).
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We downloaded data for all bird species occurring 
in Argentina from 2010–2022. We did not use eBird 
data from before 2010 because it did not launch 
globally until 2010 (Sullivan et al. 2014). We selected 
2022 as our bird data endpoint so we would have 
12 months of data for each year, as the full record for 
2023 was not available at the time of our download.

We filtered the dataset to include only species 
which we considered to be forest affiliated. We 
used Birds of the World (Billerman et  al. 2022), 

Avibase (Lepage et  al. 2014; Lepage 2023), and 
AVONET (Tobias et  al. 2022) to identify forest 
affiliated species. We utilized observations that were 
collected between August 1 of one year and March 
31 of the following year, a period which encompasses 
when 94% of species of forest affiliated species 
(n = 217) breed (Billerman et al. 2022). We excluded 
observations collected between April 1 and July 31 of 
the same year because we considered that to be the 
non-breeding period.

Fig. 2   a Location of 
Argentina within South 
America. b Ecoregions of 
Argentina (Burkart et al. 
1999; Morello et al. 2012): 
High Andes (HA), Andean-
Patagonian forests (PAT), 
Mesopotamian grasslands 
(CAM), Humid Chaco 
(HC), Dry Chaco (DC), 
Delta and islands of Paraná 
River (DEL), Espinal 
forests (ESP), Patagonian 
steppe (PAS), Iberá Wet-
lands (IBW), Low Monte 
(LM), High Monte (HM), 
Pampas (PAM), Puna 
(PUN), Atlantic forests 
(AF), Yungas rainforests 
(YUN)
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We filtered our reduced dataset further, retaining 
complete, stationary or traveling checklists that 
were ≤ 6  h long, ≤ 10  km in length, speed ≤ 100 
kmph, and had ≤ 10 observers because these 
thresholds reduce variation in detectability and 
effort in the context of eBird Status and Trends, and 
are recommended in ‘Best Practices for using eBird 
Data’ (Strimas-Mackey et al. 2023). By using these 
criteria, we imposed a more consistent structure 
on the data, and reduced variation in detectability 
and effort among eBird data (Strimas-Mackey et al. 
2023).

Complete checklists are those in which an observer 
reports the counts of all individuals of each species 
they detected during their birding event. Because 
complete checklists include the number of individuals 
of all species observed, we can model a relative 
measure of abundance. We zero-filled checklist-
species matrices (i.e. assigned a count of zero) for 
checklists where a given species was not detected in 
a complete eBird checklist, allowing us to transform 
the data into detection/non-detection data (Strimas-
Mackey et  al. 2023). For each species we split the 
data into training and testing data (80% and 20% 
respectively).

We then subsampled the data to further reduce 
spatial and temporal biases. We spatially and 
temporally subsampled detections and non-detections 
separately within a 3 × 3 km grid, randomly selecting 
one detection and one non-detection checklist from 
each grid cell for each week. We utilized a 3 × 3 km 
grid because it has been sufficient to account for the 
spatial precision in eBird data when travelling counts 
are ≤ 10  km (Strimas-Mackey et  al. 2023). eBird 
checklists provide a single latitude/longitude location, 
however, the location may not match that of a 
particularly observed bird because birds and observers 
may not overlap in space if the bird was detected at a 
distance, the location is considered a ‘hotspot’, or if 
the observer surveys an area while travelling rather 
than remaining stationary. ‘Hotspots’ are public 
locations used to aggregate data in eBird, which 
correspond to an area such as a park. If the hotspot 
coordinates are the park center and an observation is 
made at the park edge then the observation has spatial 
imprecision. Approximately 94% of checklists with a 
maximum distance travelled ≤ 10  km, are contained 
within a 1.5  km circle and 74% have a location 
error ≤ 500 m (Strimas-Mackey et al. 2023).

Spatial subsampling as outlined above, reduces 
spatial bias that occurs due to participants surveying 
near their homes (Luck et  al. 2004), in easily 
accessible locations (Kadmon et al. 2004), or in areas 
known to have species of interest (Prendergast et al. 
1993). Temporal subsampling reduces biases such 
as participants preferentially sampling when they are 
available (Courter et al. 2013), or at times when more 
birds may be observed (Sullivan et  al. 2014). The 
spatial and temporal subsampling also increases the 
prevalence of occurrences in our data, which reduced 
class imbalances (Robinson et  al. 2018). When 
classes are imbalanced (many non-detections and few 
detections), models which predict that a species is 
absent everywhere will have high accuracy but will 
be ecologically uninformative (Strimas-Mackey et al. 
2023). While we reduced biases in the data prior to 
modelling, we further accounted for the observation 
process by including effort variables in our models, 
described in the ‘Analysis’ section below.

We conducted all eBird data preparations outlined 
above using the ‘auk’ (Strimas-Mackey et  al. 2018) 
and ‘ebirdst’ packages (Strimas-Mackey et  al. 2022) 
in R (R Core Team 2023). After the preparation 
above, we retained species with a minimum of 1000 
occurrence records in the final dataset (n = 124 
species; Online Resource 1). While the spatial 
and temporal subsampling of the data reduced 
class imbalances (Robinson et  al. 2018), we used 
1000 occurrences as our cut-off because species 
distribution model accuracy tends to increase with 
the number of presences in the training set and 
we felt 1000 occurrences provided a good balance 
between species’ sample sizes, data prevalence, and 
a sufficiently large list of species for analyses (Wisz 
et  al. 2008; Fukuda and De Baets 2016; Liu et  al. 
2019).

Environmental data

We used three composite dynamic habitat indices 
(DHIs; Berry et  al. 2007; Coops et  al. 2009a, b) 
representing median conditions from 2010 to 
2022; cumulative, variation, and minimum, that we 
calculated from Normalized Difference Vegetation 
Index (NDVI; 30 m resolution) as landscape variables 
in our analyses. We used NDVI-based DHIs because 
NDVI is solely derived from reflectance measures 
(as is the case for gross primary productivity-based 
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DHIs, which risks error propagation), it provides 
values in low productivity environments where 
other vegetation measures are not estimated and 
set to 0, and there is a larger range of variability in 
minimum values (Radeloff et  al. 2019). We chose 
the DHIs over other primary productivity measures 
because they provide integrated measures of primary 
productivity that directly relate to different aspects 
of the species-energy relationships (Radeloff et  al. 
2019). Of the three DHIs, cumulative DHI reflects 
the productive capacity of a landscape across a year, 
and higher levels of cumulative primary productivity 
should support more species or more individuals 
(Coops et  al. 2009a, b). Variation DHI reflects 
primary productivity seasonality within a year. 
Areas with less seasonality in primary productivity 
should support more species or individuals than 
areas which are more seasonal (Hurlbert and Haskell 
2003; Rahbek et al. 2007). Minimum DHI reflects the 
lowest primary productivity levels in a year, capturing 
periods of low resources or environmental stress. 
High minimum productivity should support more 
species or individuals because energy availability 
remains high (Schwartz et al. 2006).

The three DHIs were calculated for the entire 
country of Argentina plus a buffer of 200 km around 
the country’s border (Online Resource 2). We 
included this buffer to capture broad-scale landscape 
scale effects around bird occurrence points near the 
border of Argentina. To create the three DHIs we first 
selected the highest NDVI Landsat value (available 
in Google Earth Engine-GEE: Gorelick et  al. 2017) 
in each month of each year from 2010 to 2022. 
Because Landsat has a return interval of 16 days, and 
cloud cover can affect image quality, monthly image 
acquisitions for a given pixel are often sparse. Thus, 
we selected the highest NDVI value because that 
represented the maximum level of productivity, and 
thus energy available to organisms in that month. We 
aggregated the monthly values over all years, and 
then selected the median monthly values to generate a 
composite monthly time series. To generate the final 
cumulative DHI we summed the monthly time series 
values. To generate the minimum DHI we selected 
the minimum monthly time series value. To generate 
the variation DHI we calculated the coefficient of 
variation of the monthly time series values. We set 
pixels classified as snow (zero productivity) to zero. 
We scaled the three DHIs from 0 to 100%.

Scalogram habitat measures

We used scalogram habitat measures as environmental 
inputs in our occurrence and abundance models. We 
calculated scalogram habitat measures centered on 
the focal pixel, i.e. the pixel containing each eBird 
checklist in our testing and training datasets (after 
cleaning, filtering, and subsampling the eBird data) 
using the following procedure. We first computed 
minimum, cumulative, and variation DHIs at multiple 
spatial extents. To do so, we used moving windows 
centered on a focal pixel ranging from 3 × 3 to 101 × 
101 pixels (3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 21 × 21, 
31 × 31, 41 × 41, 51 × 51, 61 × 61, 71 × 71, 81 × 81, 
91 × 91, 101 × 101 pixels) corresponding to windows 
ranging from 0.0081 km2 to 9.18 km2, to calculate 
the average minimum, cumulative, and variation 
DHIs within each extent, across the entire study 
area. The corresponding window lengths were: 90 m, 
150 m, 210 m, 270 m, 330 m, 630 m, 930 m, 1230 m, 
1530 m, 1830 m, 2130 m, 2430 m, 2730 m, 3030 m. 
Pearson’s correlations between average DHI values 
within extents can be found in Figure  1 of Online 
Resource 3. After calculating the DHI values within 
each window, we generated scalograms for each DHI 
by plotting the average DHI values against the size of 
the analysis window around each focal pixel (Fig. 1; 
Online Resource 4).

After scalograms were plotted, we fitted 
polynomial curves and calculated seven measures 
based on the fitted curve (Fig. 1). Measures derived 
from the fitted polynomial curve are: the intercept 
(the value at the focal pixel), minimum, maximum, 
range, and coefficient of variation of landscape 
variable among all extents, and the extents at 
which the landscape variable has minimum and 
maximum values. The measures derived from 
the fitted polynomial curve describe two general 
aspects about the landscape variable. The intercept, 
minimum,maximum, range, and coefficient of 
variation provide information on how the variable 
changes in relation to focal pixel changes across the 
full range of extents. The minimum and maximum 
extent describe at which extents the variable is at its 
minimum or maximum values.

In addition to the seven measures calculated from 
the fitted curves, we calculated the 1st derivative of 
the polynomial curve to obtain four more measures, 
which characterize how rapidly the landscape variable 
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changes as extent changes (Fig. 1). Measures derived 
from the 1st derivative of the polynomial curve are: 
the first derivative (maximum slope of the polynomial 
curve), the intercept of the first derivative (how steep 
the slope is at the focal pixel), and the first and second 
critical points of the first derivative (the extents at 
which the first derivative is 0, potential minimum 
or maximum, information about major changes in 
the landscape variable). The measures derived from 
the 1st derivative capture how rapidly the landscape 
variable changes as analysis extent size changes. 
Throughout the manuscript we call this collection 
of 11 measures ‘scalogram habitat measures’ 
(descriptions can be found in Online Resource 5; 
Silveira et  al. 2024). Pearson’s correlations between 
the scalogram habitat measures for each DHI can 
be found in Figure  2 of Online Resource 3, and 
correlations between scalogram habitat measures and 
average DHI values within extents can be found in 
Figures. 3–5 in Online Resource 3.

Analysis

To model relative species abundance, we used a two-
step hurdle model, following Strimas-Mackey et  al. 
(2023) and Keyser et al. (2023), in which we estimated 
encounter rates (hereafter called ‘occurrence’) in 
the first step, and then estimated the expected count 
of individuals on eBird checklists where the species 
was detected in the second step (hereafter called 
‘abundance models’). With eBird data we cannot 
estimate absolute detectability, but by accounting 
for variation in detectability by including effort 
variables in our models, unaccounted detectability 
is more consistent across sites (Guiller-Arroita et al. 
2015). Therefore, our estimated encounter rates 
are proportional to occupancy, but at a consistently 
lower value (Strimas-Mackey et al. 2023). Similarly, 
abundance models produce estimates of relative 
abundance, i.e. an index of the counts of individuals 
present in the search area, because the models 
account for variation in detection rates but do not 
directly estimate the absolute detection probability 
(Strimas-Mackey et  al. 2023). In both steps of this 
hurdle model, we used a random forest algorithm, 
implemented with the ‘ranger’ package in R (Wright 
and Ziegler 2017). We describe the first step of the 
hurdle model in the ‘occurrence models’ section, and 
the second step of the hurdle model in the ‘abundance 

models’ section, below. Detailed instructions on 
eBird occurrence and abundance model fitting in R 
can be found in Strimas-Mackey et al. (2023).

Occurrence models

In our occurrence models, we used a balanced random 
forest approach to relate species detections and non-
detections to average DHI values within each extent 
(3 × 3 to 101 × 101 pixels), 11 scalogram habitat 
measures, and effort covariates. Our seven effort 
variables (checklist duration, distance traveled, speed 
during observation period, number of observers, day 
of year, hour of day, year; Online Resource 5) were 
included to account for variation in detectability and 
observer effort. The response variable was binary 
(species observed; 1 or 0). We used a balanced 
random forest approach because while we partially 
addressed class imbalances in our data with the 
spatial and temporal subsampling described in the 
‘Bird data’ section of our Methods, there were still 
many more non-detections than detections. With the 
balanced random forest approach the model grows 
each tree based on a random sample of the data that 
has an equal number of detections and non-detections, 
using a bootstrap sample, and predicts probabilities 
instead of the most probable class. To do this we 
specified that the model sample all detections (the 
rarer class), and an equally sized, randomly-selected 
subset of the non-detections (the common class).

Because the predicted probabilities from the 
initial balanced random forest models do not always 
align well with the observed detection frequencies 
(Strimas-Mackey et  al. 2023), we trained calibration 
models as a diagnostic tool to better understand the 
predictions from our models. To conduct a calibration 
of the continuous predictions from our random forest 
models, we fitted a binomial generalized additive 
model that was constrained to increase monotonically, 
with the observed occurrence as the response and the 
continuous occurrence probability as the predictor. 
We visually verified that the relative ranking of 
predictions was generally good by plotting observed 
encounter rates against estimated encounter rates 
and seeing where points fell relative to an x = y line 
(calibration plots can be found in Online Resource 
6), such that sites with estimated higher encounter 
rates generally have higher observed encounter 
rates (Strimas-Mackey et  al. 2023). We assessed 
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calibration model performance, which produced 
continuous occurrence probabilities, with mean 
square error (MSE) as a measure of the differences 
between estimated and true values, root mean 
square error (RMSE). In the context of continuous 
probability of species occurrences, which range from 
zero to one, we expected good MSE and RMSE 
scores to be numbers close to zero. Calibration model 
performance metrics can be found in Table  1 of 
Online Resource 7.

After checking that our initial estimated 
probabilities of occurrences align with observed 
occurrences using the calibration process, we used 
thresholding to reclassify the continuous probabilities 
to binary presence/absence before further assessing 
model performance. We reclassified the continuous 
probability of occurrence into binary presence/
absence because our abundance models (described 
in the next section) are conditioned on the species 
being present at a location. Because eBird data 
is class-imbalanced, we used the MCC-F1 curve 
to set the threshold for each species (Strimas-
Mackey et al. 2023) because traditional thresholding 
methods (ex: Kappa statistic, area under the receiver-
operator curve) can over-weight the common class 
(Cao et  al. 2020). This method plots the Matthews 
correlation coefficient against the F1 score for a 
range of thresholds, and the threshold where the 
curve is closest to the point of perfect performance 
is selected (Strimas-Mackey et  al. 2023). We 
assessed binary occurrence model quality using our 
testing data and the following performance metrics: 
area under the precision-recall curve (prAUC), 
Matthew’s correlation coefficient (MCC; also known 
as phi or mean square contingency coefficient), and 
F1 score (Strimas-Mackey et  al. 2023). We used 
prAUC instead of area under the receiver operating 
characteristic curve (AUC-ROC) because class-
imbalanced data impacts the interpretation of 
measures like AUC-ROC that incorporate the true 
negative rate. Precision-recall AUC varies on a 
scale from zero to one, with scores greater than the 
prevalence of presences in the dataset indicating 
better than random performance (Boyd et  al. 2012; 
Sofaer et  al. 2019). We considered models with 
prAUC values that were 0.1 greater than prevalence 
to be better than random, however higher values 
are better as they represent the trade-off between 
false negative and false positive classifications in 

imbalanced datasets. MCC is a balanced measure 
that can be used with class imbalanced data and 
is a correlation coefficient between the observed 
and predicted binary classifications, measured on 
a -1 to 1 scale (1 = perfect prediction, 0 = random, 
-1 = total disagreement). We considered models 
with MCC ≥ 0.3 to have suitable performance. F1 
is the harmonic mean of precision and recall, with 
1 indicating perfect precision and recall, and 0 
indicating a complete lack of precision and recall. 
We prioritized evaluating model performance with 
prAUC and MCC over F1 because prAUC can be 
adjusted for class imbalances while F1 cannot (Boyd 
et  al. 2012; Sofaer et  al. 2019), and MCC is more 
reliable than F1 (Chicco & Jurman 2020, 2023). 
Occurrence model performance metrics can be found 
in Table 2 of Online Resource 7.

Abundance models

Our relative abundance models are an extension of 
our occurrence models. We first trained regression 
random forests models to estimate the expected count 
of individuals on eBird checklists where a species was 
detected or predicted to be detected by our occurrence 
models. Observation count was the response variable 
in our abundance models, and the predictors were 
effort variables, average DHI values in each extent, 
scalogram metrics, and predicted occurrence (Online 
Resource 5). We included predicted occurrence 
because it improves the predictive performance of 
abundance models (Johnson et  al. 2015; Fink et  al. 
2020; Strimas-Mackey et  al. 2023; Keyser et  al. 
2023). Conditioning the prediction of expected counts 
on occurrence helps account for the high number of 
zero counts when modelling abundance over broad 
extents (Johnston et  al. 2015). High numbers of 
zero counts can be generated from observations in 
unsuitable habitat, when individuals were present but 
not detected, or when individuals were not present 
and not detected (Johnson et  al. 2015). Thus, in the 
first step of the two-step hurdle model (described 
in the ‘occurrence model’ section above), the 
occurrence model distinguishes between suitable and 
unsuitable habitat. In the second step, the abundance 
models estimate the expected count on checklists 
within suitable habitat locations identified in the first 
step, thereby reducing the number of zero counts in 
unsuitable habitats (Johnson et al. 2015).
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After estimating the expected count, we produced 
an estimate of relative abundance by multiplying the 
predicted occurrence probability by the expected 
count. We consider this to be an estimate of relative 
abundance (an index of the count of individuals 
present in the search area of an observer) because 
we cannot directly estimate absolute detection 
probabilities from eBird data. We assessed count 
and abundance predictions using our testing data and 
mean squared error (MSE), root mean square error 
(RMSE), Spearman’s rank correlation coefficient 
and Pearson correlation coefficient (Strimas-Mackey 
et  al. 2023). We considered correlations < 0.2 to 
be very weak, 0.2 to 0.39 to be weak, 0.4 – 0.59 to 
be moderate, and ≥ 0.6 to be strong. Spearman’s 
correlations assess the ability of the model to estimate 
the rank order of counts or abundances. Pearson 
correlations assess the ability to estimate counts or 
abundances on the log scale, which is beneficial when 
dealing with data spanning a large range of values, 
such as flocking species with high counts. Correlation 
on counts measure within-range performance, such 
that observed and estimated counts are compared 
for locations in which the species was predicted to 
occur. Correlations on relative abundance assesses 
predictive performance based on all locations and 
not just where a species was predicted to occur. We 
interpreted MSE and RMSE in the context of species 
count, such that smaller numbers that are closer to 
zero are better. Most observations consist of counts of 
zero or very few individuals therefore we expected a 
good prediction would have MSE and RMSE values 
close to zero. Abundance model performance metrics 
can be found in Table 3 of Online Resource 7.

Variable importance

For both occurrence and abundance models, we 
used predictor importance (average Gini index), 
and partial dependence to identify associations 
between predictors and our dependent variables 
(either occurrence or species abundance). We 
standardized predictor importance scores to compare 
among species by calculating the proportion of the 
total scores contributed by each predictor (Keyser 
et  al. 2023). We used partial dependence plots to 
estimate the marginal effect of a single predictor on 
the dependent variable when all others were held 
constant, to identify the direction and magnitude 

of effect that each predictor had on the dependent 
variable (either occurrence or species abundance). 
To estimate the directionality (positive or negative) 
of each predictor’s effect on the dependent variable, 
we fit simple linear models to the partial dependence 
plots and extracted the beta coefficient (Keyser et al. 
2023).

Results

Model validation

We considered 100 species to have suitable 
occurrence models; these had an average prAUC of 
0.26 (sd = 0.1), a difference between prAUC and 
prevalence of 0.21 (sd = 0.08), MCC of 0.44 (sd 
0.07), and an F1 value of 0.46 (sd = 0.09) (Online 
resource 7). Calibrated occurrence models, which we 
used to validate our original random forest models 
before thresholding, had an average MSE of 0.03 
(sd = 0.03), and an RMSE of 0.16 (sd = 0.07; Online 
resource 7).

On average, resulting abundance models had 
Spearman correlations of 0.37 (sd = 0.08) for counts, 
and 0.39 (sd = 0.07) for relative abundance (Online 
resource 7). Pearson’s correlations for counts were on 
average 0.41 (sd = 0.08), and for relative abundance 
0.43 (sd = 0.08). Average MSE for counts was 24.73 
(sd = 83.48) and for abundances was 2.98 (sd = 9.65), 
while count RMSE was 3.3 (sd = 3.84) and abundance 
RMSE was 1 (sd = 1.41; Online resource 7).

Effort variables

In occurrence models, four of our seven effort vari-
ables (day of year, checklist distance, checklist dura-
tion, and hour of day) were important for predicting 
occurrences of some species (Fig.  3). In particular, 
checklist duration was within the top three predic-
tors for 45% of species and was positively associated 
with predicted occurrences. Hour of day was also 
important for 22% of species and was mainly nega-
tively associated with predicted occurrences. Day 
of year and checklist distance were in the top three 
predictors for 9% and 10% of species respectively. 
Checklist speed was important for 7% of species. In 
occurrence models, effort variables explained ~ 1.3 
times more predictive power than expected if all 
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variables contributed to model predictive power 
equally (Fig. 4).

In models of relative abundance, four of our seven 
effort variables were important for predicting relative 
abundance for many species, however predicted 
occurrence was by far the most important (Fig. 3), and 
was in the top three predictors of relative abundance 
for 98% of species. Day of year was important for 
predicting relative abundance of 30% species, and had 
more negative associations than positive associations 
with relative abundance. Checklist distance was 
important for 14% of species and was positively 
associated with relative abundance. Checklist 
duration was important for 71% of species and was 
positively associated with relative abundance. Year 
was only important for five species (5%) and was 
negatively associated with relative abundance. Hour 
of day was important for 64% of species and was 
mainly negatively associated with relative abundance. 
Effort variables and predicted occurrence explained 
2.9 times and 10.4 times more predictive power in 
models than expected if all variables contributed to 
model predictive power equally (Fig. 4).

Scalogram habitat measures

Of the 33 possible scalogram habitat measures 
(11 measures for each of three DHIs) included in 
occurrence models, only four were important for 
predicting many species occurrences: variation DHI 
minimum value, variation DHI range, minimum DHI 
maximum value, and cumulative DHI maximum 
value (Fig. 3). Cumulative DHI maximum value was 

in the top three predictors for 18% of species and 
had a positive relationship with predicted occurrence 
for > 70% of species. Variation DHI minimum value 
was in the top three predictors for six species (6%), 
and had a negative relationship with occurrences 
of three species, and a positive relationship with 
occurrences of three species. Variation DHI range 
was in the top three predictors for eight species, 
having a negative relationship with occurrences 
of two species, and a positive relationship with 
occurrence of six species. Minimum DHI maximum 
value was important for seven species, being 
negatively associated with occurrences of one species 
and positively associated with occurrences of six 
species. In occurrence models, scalogram habitat 
measures contributed less than expected to model 
predictive power (Fig. 4).

Scalogram habitat measures were not important 
in our abundance models (Fig.  3) and were only 
in the top three predictors for < 2% of species each. 
Scalogram measures also explained less variation in 
abundance models than expected (Fig. 4).

Spatial extents

We found that cumulative primary productivity 
(cumulative DHI) was generally important in species 
occurrence models and was positively related to the 
predicted occurrence of species. Average cumulative 
DHI values within any extent were in the top three 
predictors for 51% of species and had positive 
relationships with predicted occurrence for > 70% 
of species (Fig.  3). We found that cumulative DHI 
values at broad spatial extents were particularly 
important and that cumulative DHI values within 
extents 81 × 81 pixels (5.90 km2), 91 × 91 pixels (7.45 
km2), and 101 × 101 pixels (9.18 km2) were in the top 
three predictors in occurrence models for 18%, 23%, 
and 37% of species respectively, and were positively 
related to occurrences of 93% of species (Fig.  3). 
Cumulative DHI within our smallest analysis extent 
(3 × 3 pixels; 0.01 km2) and the 7 × 7 pixel extent 
(0.04 km2) were never in the top three predictors 
for any species, while cumulative DHI within the 5 
× 5 pixel extent (0.02 km2) was important for one 
species. As a group, cumulative DHI values within 
extents explained ~ 1.6 times more variation within 
occurrence models than expected (Fig. 4).

Fig. 3   Magnitude and direction of responses of predicted bird 
species occurrence and relative abundance to the top three 
most important variables in the predictive models. Magni-
tude, on the x-axis, is represented by proportional variable 
importance values (scale − 1 to + 1), and direction of response 
is based on the beta coefficient for a given variable in a uni-
variate model of the probability of occurrence as a function of 
the explanatory variable. Positive relationships are shown in 
orange and negative relationships are shown in blue, and the 
center of the plot is 0. The number of species that respond to 
a variable is captured by the number of bars (y-axis). Each bar 
represents the response of one species to a variable. More bars 
indicate that a variable was in the top three most important 
variables for many species. Cumulative, minimum, and varia-
tion DHIs are abbreviated to cDHI, mDHI, and vDHI respec-
tively. a predicted occurrence responses (from occurrence 
models), and b predicted species’ abundance response (from 
abundance models)

◂
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High minimum levels of primary productivity 
(minimum DHI) was important in fewer occurrence 
models than cumulative primary productivity. 
Average minimum DHI at various extents were 
among the top three predictors of probability of 
occurrence for 16% of species, and mainly had 
a positive relationship with species occurrences 
(Fig.  3). Minimum DHI values at various extents 
contributed approximately the expected amount 
of predictive power in occurrence models (Fig.  4). 
As with cumulative DHI, minimum DHI values at 
broad extents—81 × 81 pixels (5.90 km2), 91 × 91 
pixels (7.45 km2), and 101 × 101 pixels (9.18 km2)—
were important for more species (7%, 7%, and 6% 
respectively) than minimum DHI within smaller 
extents.

Low variation in primary productivity (variation 
DHI) was important for predicting occurrences of 
fewer species than cumulative and minimum primary 
productivity, with average variation DHI values 
in various extents being included in the top three 
predictors of occurrence for 8% of species. Variation 
DHI values in 71 × 71 (4.54 km2), 81 × 81 pixels 
(5.90 km2), 91 × 91 pixels (7.45 km2), and 101 × 101 
pixels (9.18 km2) extents were in the top three 
predictors for the occurrence ≤ 6% of species for each 
extent. For species in which variation DHI values in 
extents ≥ 71 × 71 pixels were important in occurrence 
models, occurrence was mainly negatively associated 
with variation DHI (Fig.  3). Variation DHI values 
contributed approximately the expected amount of 
predictive power in occurrence models (Fig. 4).

Species abundances were not explained well by 
any DHI values within the analysis extents; DHI 
within various extents and scalogram measures were 
in the top three predictors for < 2% of species each 
(Fig.  3). When we considered which extents were 

important for predicting these species abundances, 
cumulative DHI values in 101 × 101 pixel extent 
(9.18 km2), and variation DHI within 5 × 5 pixels 
(0.02 km2), and 91 × 91 (7.45 km2) pixel extents were 
important for only one species each (1% of modelled 
species). DHI values within extents explained less 
variation in abundance models than expected (Fig. 4).

Discussion

In this study we examined the usefulness of 
scalogram-based metrics describing primary 
productivity in a nested set of spatial extents for 
predicting two aspects of forest bird populations, 
occurrence and abundance. These metrics identify 
the spatial extents at which primary productivity 
influences bird spatial patterns, while avoiding 
conflation with spatial autocorrelation. We found 
that high levels of primary productivity supported 
greater probability of species occurrence but not 
abundance, and that species occurrences responded to 
primary productivity at multiple broad spatial extents. 
We found limited support for the idea that species 
respond at different scales to different environmental 
variables, and that occurrence responds at broader 
scales than abundance, however we only explored 
different facets of primary productivity, and our 
abundance models did not predict relative abundance 
well.

We expected that high levels of primary 
productivity would support many species and many 
individuals, however we found that only higher 
probability of occurrence (i.e., many species) 
was associated with high primary productivity. 
Most species responded to cumulative primary 
productivity, rather than to minimum levels or 
variation in primary productivity. When species 
occurrences were influenced by minimum primary 
productivity or variation in primary productivity 
they were associated with high levels of minimum 
productivity and low levels of variation. This finding 
is in line with expectations that as productivity 
increases in an area (e.g. annual and minimum 
productivity), that area should support more species, 
and that one is more likely to encounter a species 
in areas with high productivity (Currie et  al. 2004; 
Radeloff et  al. 2019). Occupancy of most forest 
birds in Argentina was not strongly tied to variation 

Fig. 4   Violin plots and boxplots showing the relative variable 
importance scores for grouped effort variables, DHI scalogram 
metrics, and DHI values at various extents for the 100 bird 
species, in (a) occurrence models, and (b) abundance models. 
Outliers are represented by black dots. Dashed horizontal lines 
indicate the expected variable importance value of the vari-
able group (ex: all seven effort variables) if all variables (seven 
effort + 33 scalograms + 42 extents) in the model contributed 
an equal amount of variable importance (i.e. 100%). Model 
predictive power is represented by relative variable importance 
scores, which is the quotient of the importance value of an 
individual variable divided by the sum of all importance values 
for all variables in the model

◂
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in primary productivity, but when it was, they were 
responding positively to low variation in productivity 
(i.e. more stable environments), which is in line with 
findings that areas with stable primary productivity 
across the annual cycle can support more species 
(Rahbek et  al. 2007; Williams and Middleton 2008; 
Radeloff et al. 2019).

When we considered at which spatial extents 
species occurrences responded to primary 
productivity, we found it responded at broad spatial 
extents, but that there was not a single characteristic 
extent at which occurrences responded to primary 
productivity. Cumulative DHI values at broad 
extents (≥ 81 × 81 pixels; 5.90 km2) were important 
predictors in 40% of species occurrence models, 
and minimum and variation DHIs values within 
extents ≥ 81 × 81 (5.90 km2) and ≥ 71 × 71 (4.54 km2) 
were important for fewer species. This suggests that 
after accounting for observer effort, high cumulative 
and minimum primary productivity (i.e. available 
energy), and low variation in primary productivity, 
at broader spatial extents is important for predicting 
forest bird species occupancy across Argentina. 
The finding that primary productivity at multiple 
broad extents was important in predicting species 
occurrences supports the idea that species respond 
to environmental variables at multiple scales because 
species select habitat in a hierarchical manner (Wiens 
and Rotenberry 1981; McGarigal et al. 2016).

Our findings that species occurrences responded 
to primary productivity also align with findings from 
other areas, where species-primary productivity 
relationships are scale-dependent, and are stronger at 
broader spatial extents than at smaller spatial extents 
(Desrochers et al. 2010; Storch et al 2018; Di Cecco 
et  al. 2022). We expected that our analysis extents 
encompassed areas orders of magnitude larger than 
territory sizes of the vast majority of birds we studied, 
which would be sufficient to assess broad-scale habitat 
selection. While we did not identify territory sizes of 
each species we studied, territory size estimates from 
birds in the same genera, similar habitats, or with 
similar traits as those we studied are generally < 0.2 
km2 (Stouffer 2007; Kikuchi 2009; Ribon & Marini 
2016; Guppy et  al. 2023; Zammarelli et  al. 2024). 
However, we realize that our largest analyzed extent 
(9.2 km2) However, we realize that our largest 
analyzed extent (9.2 km2) may not have fully 
encompassed areas used by some species, particularly 

for those that are area sensitive. For example, in other 
regions species responded to areas as small as 0.03 
km2 or as large as 1809 km2 (Dardanelli et al. 2006; 
Desrochers et  al. 2010; Shake et  al. 2012; Anderle 
et al. 2022). However, area sensitivity often responds 
to patch or habitat size and not necessarily to primary 
productivity variation within the patch, and further, 
not all species are area sensitive. In North America, 
bird species richness and primary productivity were 
more strongly related at broad extents (~ 25 km2) 
than small extents (< 1 km2; Di Cecco et  al. 2022). 
Even at the very broad extent of 12,364 km2, primary 
productivity influenced species richness (Hurlbert 
and Jetz 2010). Thus, evidence from the literature 
suggests that we could greatly increase analysis 
window sizes and still find relationships with primary 
productivity. However, species richness and species 
occurrence, while related (a species must be present 
at a site to contribute to richness), may have different 
relationships with primary productivity. Species 
richness overlooks species-specific responses, and 
areas with similar species richness may have different 
species compositions.

We found little support for the idea that species 
respond to different environmental variables at 
different scales. Species occurrences were explained 
by all three DHIs (variation, minimum, cumulative) 
at extents ≥ 71 × 71 pixels (4.54 km2), but were most 
strongly influenced by cumulative DHI. The three 
DHIs characterize different aspects of the same 
phenomena – primary productivity, and thus likely 
exert similar selective pressures on species. We may 
have found different responses at a variety of scales if 
we had included variables capturing other important 
habitat characteristics such as temperature, habitat 
heterogeneity, or topography.

While we found that occurrence responded to 
primary productivity at broad extents, following 
our expectations, we did not find that abundance 
responded to primary productivity at any extent, 
which was counter to our expectations. We expected 
that primary productivity would be a good predictor 
of bird species abundances in Argentina because 
climate predictors such as rainfall, while important, 
are often indirect influences on birds in Argentina 
through effects on resources such as vegetation 
productivity, fruit abundance (Mendoza et al. 2017), 
or arthropod abundance (Pinheiro et  al. 2002; Jahn 
et al. 2010; Mendoza and Araujo 2022). Additionally, 
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while climate explained ~ 97% of variance in primary 
productivity globally, primary productivity was more 
important in explaining global community trophic 
structures of birds when combined with climate 
(Mendoza and Araujo 2022). It is likely that we 
didn’t find strong support because our abundance 
model performance was low. Our abundance models 
were weakly to moderately able to rank the order of 
relative abundance at all locations and had moderate 
to weak ability to rank estimated counts in line with 
observed counts at locations where species were 
predicted to occur. Abundance models further had a 
moderate ability to estimate relative abundance on a 
log scale, indicating they did not model abundances 
of flocking species well.

Globally (Santini et  al. 2018, 2023), and 
regionally (Mönkkönen et  al. 2006; Evans et  al. 
2006; Dobson et  al. 2015) primary productivity 
has been an inconsistent predictor of bird species 
abundances while precipitation (Williams et al. 2008; 
Niedziałlkowska et  al. 2010; McCain et  al. 2018; 
Yapu-Alcazar and Naoki 2022) and temperature 
(Ralph 1985; Githaiga-Mwicigi et  al. 2002; de la 
Fuente et  al. 2023) have been positively related to 
abundances. In Argentina, primary productivity 
has been associated with increases (Frixione & De 
Lamo 2017; Haedo et al. 2017; Weyland et al. 2019) 
and decreases (Haedo et  al. 2017) in abundance for 
bird species, but sometimes climate or land use were 
more important (Sarasola et  al. 2008; Bellocq et  al. 
2011; Calamari et  al. 2018). Approximately 60% 
of the species we analyzed were insectivores, 32% 
of which were in Tyrannidae, a family which may 
have stronger correlations with precipitation and 
temperature than to primary productivity in South 
America (MacPherson et  al. 2018). Other factors 
such as resource limitation or patchiness, population 
density, competition, reproduction, dispersal, and 
behavioral or social constraints may affect abundance 
as well (Nielsen et al. 2005). Some of the species we 
modelled rely on habitat features not directly related 
to primary productivity. For example, woodpeckers, 
parrots, and a handful of other species included in our 
study rely on cavities in large mature, or dead trees 
for nesting (Politi et al. 2009; Rivera et al. 2022).

The lack of landscape scale effect of DHIs on 
abundance may also have occurred if the location 
imprecision of eBird data masked the effects. More 
than 95% of eBird checklists with a 10 km distance 

cutoff (as used in this study) are contained within a 
1.5 km radius circle, and ~ 75% are contained within 
a 0.5 km radius circle (Strimas-Mackey et al. 2023). 
A 1.5 km radius circle (7.1 km2) is smaller than our 
two largest extents (91 × 91 and 101 × 101 pixels; 
7.45 km2 and 9.18 km2), while a 0.5  km radius 
circle (0.79 km2) is smaller than all extents ≥ 31 
× 31 pixels (0.86 km2). Thus, any extent ≥ 31 × 31 
pixels should encompass the area surveyed by ~ 75% 
of checklists. We expected DHI landscape level 
effects on abundance to have been revealed at 
these intermediate extents, in line with the theory 
that landscape level effects on abundance should 
appear at intermediate spatial extents (broader than 
effects on fecundity but less broad than effects on 
occurrence; Miguet et al. 2016).

There are numerous ways to assess landscape 
scale effects of environmental variables on 
species biological responses, and landscape scale 
effects may operate differently across different 
extents, biological responses, and environmental 
variables. We used a recently developed multi-scale 
approach, scalograms, to model landscape scale 
effects of primary productivity on two different 
biological responses, bird species occurrence and 
abundance. Scalograms can be utilized with a 
variety of environmental variables and in a variety 
of modelling frameworks, but variable correlations 
should be considered, particularly in modelling 
frameworks which are sensitive to highly correlated 
variables. Primary productivity values calculated 
within various extents, and several scalogram 
habitat metrics were useful for predicting bird 
species occurrences but not abundances. The 
scalogram approach (Silveira et  al. in review), 
which has been applied to small sets of point count 
data previously (Silveira et al. in review), was easily 
applied to a large, nation-wide, semi-structured 
dataset. Scalograms are a promising new approach 
in the toolbox of techniques for understanding 
landscape level effects of a variety of environmental 
and habitat conditions on biodiversity, across 
multiple scales simultaneously, while accounting 
for spatial autocorrelation. The identification 
of the most relevant environmental or habitat 
characteristics that predict species occurrences 
or abundances, and the scales at which they act, 
are important for developing and implementing 
conservation actions that best protect biodiversity.
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