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GENERAL RESEARCH

Stability of the Steady Motion of a Liquid Plug in a Capillary Tube
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3000 Santa Fe, Argentina

In this work, we present a methodology to analyze the stability of the steady-state propagation of a liquid
plug in a capillary tube lined with a uniform film of the same liquid. To this end, the steady-state solutions

are computed and the corresponding film thickness is obtained for different plug lengths and fixed capillary
and Reynolds values. The evolution of this variable as a function of the plug length for each capillary and
Reynolds number is the key to plug stability determination.

1. Introduction

The motion of a liquid plug inside a capillary tube is a
problem associated with both biological phenomena and tech-
nological applications. An example of the former is the liquid
plug formed either when a liquid is instilled into the respiratory
airways for therapeutic purposes or during the expiration process
as a consequence of a capillary instability of the liquid film
lining the wall of the smallest airway conduits. Microchannel
reactors illustrate the latter.

A simplified model of these problems is the propagation of
a volume of liquid inside a capillary tube or a two-dimensional
channel whose walls are coated with a thin film of the same
fluid. This thin film might have been deposited during the
displacement of a semi-infinite bubble inside the tube formerly
filled with the liquid. In the more general case, the liquid plug
propagates on a pre-existing film whose thicknedd.i8 (the
precursor film) and leaves behind the deposited or trailing film
with a thickness equal tél.'. If the displacement is steady,
H.P andH." will be equal and their values as well as the length
of the plug (p) will depend on the relative strength of inertia,
viscous, and capillary forces. If the plug length is increased
without changing the relative strength of the aforementioned
forces, the film thickness of the steady states will asymptotically
tend toward a limiting value. At that point we reached a
particular situation: the motion of a train of long bubbles where
the plug is formed by the liquid located between the rear and
front parts of two consecutive bubbles that move without
interacting with each other.

Propagation of a single semi-infinite bubble through a
capillary tube (or through a two-dimensional channel) initially
filled with a Newtonian liquid has been extensively investigated
theoretically!—2 experimentally®® and numerically~1° These
studies show that the height of the liquid film left behind by
the creeping motion of a semi-infinite bubble depends solely
on the capillary numbeiGa = nU/o) and on both the capillary
and Reynolds numbers when inertia forces are not negligible.
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More recent studies of this problem deal with the effects of
soluble and insoluble surfactarfs?!3

On the other hand, analysis of the motion of a liquid plug
has received less attention. Cassidy et*a?.experimentally
studied the flow of a plug in both dried and prewetted tubes.
Unfortunately, their results cannot be used to validate our model
of short plugs because in one work they considered plugs long
enough so that their menisci do not interact and behave as the
rear and leading menisci of semi-infinite bubbles while in the
other work they studied the influence of surfactants on the speed
of a plug propagation.

Recently, Fujioka and Grotbéef¢presented a numerical study
of the steady motion of a liquid plug inside a two-dimensional
channel lined with a uniform, thin liquid film.

The solutions presented by those authors show the influence
of several magnitudes: the inertia forces, the length of the plug
(Lp), and the ratio between inertia and capillary forces that is
measured by a parametet).( They solved the governing
equations and appropriate boundary conditions using a finite
volume numerical scheme. They showed that for a fixed value
of Lp the film thickness increases with the plug propagation
speed and that ifp is larger than the channel widthEg the
film thickness agrees well with previous results for propagation
of a semi-infinite bubble. They also reported that when<
2B and the inertia forces are not negligible, there is a noticeable
interaction between the menisci.

One important issue of the numerical work by Fujioka and
Grotberg is that they could not find steady solutions for values
of the capillary number larger than 0.4 dngl< B. The authors
conjectured the possibility that no steady solutions exist under
these conditions, but they were not able to confirm this
hypothesis because their numerical procedure only solves the
steady state.

The objective of the present work is to establish whether a
steady-state displacement of a liquid plug inside a capillary tube
is stable or not. By stable we mean that if a steady-state solution
is perturbed, the system will recover the initial state after a short
transient. If after the perturbation the distance between the two
menisci either continuously increases or decreases until the
collapse occurred, the steady-state solution will be unstable.

The work is organized as follows. We present the mathemati-
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Figure 1. Schematic representation of the flow domain and coordinate
system adopted.
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cal formulation of the problem in the next section and the main
features of the numerical technique employed in section 3. In
section 4 we show solutions in order to validate the numerical
code and propose a methodology to detect the stability of a

steady-state solution. Finally, section 5 is devoted to conclusions.

2. Mathematical Formulation

We consider the propagation of a liquid plug of lengthin
a capillary tube of radiu®k. The walls of the tube are lined
with a film of the liquid whose thickness is equallth,°. The
effect of gravity forces is assumed to be negligible; therefore,

Spine

base point

Figure 2. Sketch of the mesh with the distribution of the spines and their
base points. The regions of the mesh are also depicted.

The gas-liquid interfaces are material surfaces; therefore,
the kinematics condition applies there
(v—Xg)n=0 4)
n being the unit normal vector to the free surface (see Figure
1) andxg, the free surface velocity.
Assuming that the system is free of surface-active agents,

the tangential component of the traction at the interface is equal
to zero and the normal component is given by the following

the center of the tube is a symmetry line. The gas phases movingeXpression
ahead and behind the plug may be seen as semi-infinite or very

large bubbles; this last situation represents the particular case

of a bubble train. Thus, the gafiquid interfaces delimiting
the rear and front regions of the plug correspond to the leading
and trailing menisci of these bubbles, respectively. The front
meniscus displaces at constant velocify,and the coordinate

—pn + Can[V + (W)'] = (—pg + 2%)n (5)
where %1s the local mean curvature of the interface gads
the pressure of the gas phase (equal to zero ampgt@head
and behind of the plug, respectively).

system adopted is moving at the same speed. The gas phase The system of governing equations (eqs 1 and 2) subjected
exerts only normal stresses on the interface. The pressure ofto an appropriate set of boundary conditions is numerically

the gas moving ahead is taken as the reference pressure of theolved using the algorithm that is briefly described in the next

system, and it is arbitrarily set equal to zero, whereas the section.

pressure of the gas phase that is behind the plug is an unknown

and must be determined as part of the solution. The-tiqsid
surface tensiond is constant as well as liquid properties like
density p) and viscosity 4). Figure 1 shows a schematic
representation of the flow domain and the coordinate system
adopted.

Under the above conditions, the equations governing the
liquid flow in the plug are the NavierStokes and continuity
equations

RE@_\tl + v.vv) - éVp +VIWH W) ()

Vv=20 (2)

Equations 1 and 2 are written in dimensionless form using the
following scales: U for velocities,R for lengths,R/U for time,
ando/R for pressuresCa = uUl/o is the capillary number, and
Re= pUR/u is the Reynolds number.

We assume that the solid wall is impermeable and the liquid

3. Numerical Technique

Even though the steady state can be obtained through a
transient calculation, we built two numerical codes in order to
reduce the computer time: one to solve the steady state and
the other to follow the transient response of the liquid plug.

The numerical technique employed in these codes has already
been used by the authors to solve steady and transient free
surface flow problem&718The technique combines the Galer-
kin/finite element method with the parametrization of the free
surface by means of spines for a convenient spatial discretization
of the governing egs 1 and 2 and their boundary conditions.

The physical domain is tessellated into quadrilateral elements
to build the finite element mesh, which is formed by the different
regions sketched in Figure 2. Mixed interpolation is used to
approximate the velocity and pressure fields, while the coef-
ficients that locate the free surface are interpolated with the one-
dimensional specialization of the biquadratic basis functions

adheres there. Far away from the menisci the interface becomesused for velocities.

parallel to the solid wall, the films are stagnant, and the thickness
of the precursor and trailing films becomes equahi® and

h..T, respectively. Under steady-state conditidn®, = h.,", and

this variable is an unknown to be obtained as part of the solution.
On the other hand, in a transient solution, the valué.8fis
fixed and the thickness of the deposited film is evaluated with
the following equation, once the solution of the problem has
been computed

Q=/, o VAA=all — (1 h, =xh"2-h) (3)

In eq 3,Q is the liquid flow rate at the outflow plane whose
area isAs.

The weighted residuals are built in the usual form, and either
a set of nonlinear algebraic equations or a set of ordinary
differential equations results, depending on whether the steady
or transient problem is considered. In the latter case, the set of
ordinary differential equations is reduced to a nonlinear one
using a finite-difference predictor-corrector schethe.

The resulting system of nonlinear algebraic equations is
solved through a Newton loop using the package SuperLU at
each iteratior¥? The iterative process is stopped when the norm
of the difference between two successive iterations is equal to
or smaller than 1.

In the transient as well as in the steady case, the dimensionless
pressure of the back gas phase is an unknown that is evaluated
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with the following equation

Giavedoni & Saita (1997)
t=—e,r=0,z=lg, (6) A This work (/,=4.3)
_ _ _ 1o"d % This work (1,=0.25)
To solve the steady-state problem, the dimensionless film
thickness o = ho? = h,,") must be calculated. To this end,

the following equation is implemented in the numerical code
t=e,r=0,z=lgy+1p @)

Also, in the steady analysis the velocity profile at the inflow
plane is specified as follows. When the free surface becomes
parallel to the solid wall, this profile should be flat. However,
relaxation of the interface is an asymptotic process, and a small p o - i )

o o ; . 10 10 10 10 10
deviation from a plug flow exists in the computational domain

even when the inflow plane is located well far away from the o s ) e thick Ca  the denosited and i
H H i igure 3. Comparison of the thickness of the deposited and precursor films
meniscus. Thus, at the inflow plane we impose of a steady plug with that of a semi-infinite bubble fee= 0.

v,=Gr*—1-2r2Inr+1,r,<r<1,z=0 (8)

) ) the numerical codes employed; then, we present solutions for
wherery is the radius of the gas bubble at the entrance. The he steady propagation of a liquid plug with the following
numerical results show tha® is indeed very small and the  characteristics:Ca = 0.5, Re < 50, and 0.25< Ip < 4.3, Ip
computed velocity profile is almost flat. In fact, the mean peing the distance between the menisci measured in unis of
average velocityy,, is equal to 0.99999981 and 0.99999999 The value of the capillary number was selected taking into
for Ca = 0.5 andRe = 50 andlp equal to 0.25 and 4.3,  account the maximum value of this parameter at which Fujioka
respectively. When the last equation is integrated on the inlet gnd Grotberéf were able to obtain a steady-state solution of

area, the following expression relating the cons@mtith both the problem for largeRe and smalllp. The more relevant
h., andr, is obtained parameter of the problem is the film thickness; therefore, the
ah(2—h)=Q= j‘Ae v, dA computed values df, = h..> = h,," were depicted as a function

of Ip for selectedRe On the basis of the shape of these curves,
1 3 we speculate about the stability of the steady states computed.
h,(2—h,) = Glzrl2 -5 + rl“(z Inr, — E)] +1-r2 Finally, we confirm our conjectures by perturbing a particular
(9) steady-state solution and tracing its evolution.

The velocity and pressure fields, the locations of both interfaces, 10 test the numerical codes described in the previous section,
and the dimensionless pressure of the back gas phase are th&e consider the analysis published by Giavedoni and Saita
unknowns of the transient problem at each time step. In this @b0ut the steady displacement of a semi-infinite bubble in a
case, the precursor film thickness., as well as the velocity caplllary tube _|n_|t|aIIy filled with _I|qu_|d. As a_llready menthneq,
profile at the inlet, which is assumed flat, are imposed as Whenleis sufficiently long, the liquid plug in steady motionis
essential boundary conditions. Qe]lmlted by two gas phases thap might be regarded as semi-
The location of the outflow plane is kept constant during the |nf|n|te_ bubples; therefore_, the thickness of thg precursor and
computations, i.e., the distankg is not fixed. The axial length ~ deposited films must be independent of the distance between
of the elements in the zone indicated as d in Figure 2 increasesiN® menisci and should be equal to the thickness of the film
or diminishes as the distande becomes longer or shorter, deposited by_th_e semi-infinite bubble. Our numerical sqluﬂons
respectively, and that of the elements in g varies to fit changes SNOW that this is the case when > 4 for all computations
in Ig7. The elements located in regions e and f translate as aCarfied outin this work.
whole. From Figure 3 the following conclusions can be drawn: (i)
To select a finite element mesh we looked for the invariance the agreement between the present results and those previously
of the solution with the size of the grid. With this purpose we ePorted is very good, and (ii) the length of the liquid plug has
tested the following two types of meshes: in the coarsest ones2 negligible influence orh., when the inertia forces are
the number of elements varies between 1032 and 2400, whilemeaningless. This last result is similar to that reported by Fujioka
in the more refined meshes it varies between 3984 and 6720.2nd Grotber& in their analysis of the steady displacement of
In both cases changes are made in the zone labeled d, the tota liquid plug in a 2-D channel, although values reported by these
number of elements depending on the value assigneg.to —authors forCa > 0.05 show a weak dependencehafwith the
Besides, the total number of nodes along the free surfaces islength of the plug.
equal to 962 in the finest mesh and 482 in the coarsest one. 4.1. Steady-State Analysisin order to analyze the steady
The solutions computed with these meshes are almost identical;state and detect situations in which this type of solution cannot
for instance, the relative differences between the computed be obtained, we performed numerical calculations fer 20~
values of the steady-state film thickness are generally smaller< Ca= 0.5, 0= Re= 250, and 0.25 lp < 4.3; however, just
than 0.1% within the whole range of parameters studied in this the results forCa = 0.5 will be used here since the focus of
work, the most noticeable differences being very small variations this work is to show the procedure employed to determine the
in pressures and velocities near the inlet region. Nevertheless plug stability. It is worth noting that we were able to compute
the results presented here were computed with meshes of théhe corresponding steady states in the whole range of dimen-

finer type. sionless parameters selected; this is an important difference with
the work by Fujioka and Grotbef§,and it is probably due to
4. Results the more robust algorithm used here.

The results presented in this section are organized as follows. As already mentioned, the main goal of this analysis is to
First, we show some of the numerical tests carried out to validate develop a methodology in order to detect the stability of a
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Figure 4. Computed values of the deposited and precursor film thickness
of a steady plug as a function of the distance between the menisCiafor
= 0.5 and severdRe

steady-state solution. If the steady propagation of a liquid plug
is not stable, a perturbation will cause the gas phases to eithe

approach or recede from one another. If this is the case, the
thickness of both the deposited and the precursor films must

be different because the net flow rate into the plug is different
from zero. Although it is clear that a transient analysis is required
to trace the evolution of the perturbation, we next show that
the stability of the solution can be inferred from the steady-
state results.

To this end and based on the above discussion, the trend o
h. as a function ofRe andlp for Ca = 0.5 was studied. In
Figure 4 the film thickness vs the length of the liquid plug is
depicted for different values of the Reynolds number. It is easy
to note the two different behaviors exhibited hy. In fact,
depending on the value of the Reynolds number, this variable
increases or decreases with In the present case, the switch
takes place foRebetween 20 and 40. It is also worth observing
thath., asymptotically approaches a constant valuke hecomes
longer. This value depends only &efor a fixed Ca and is
equal to the film thickness left behind by a semi-infinite bubble.

The two tendencies displayed by, are the basis of the
following conjectures concerning the stability of the system.
Consider, for instance, the steady plug with lengt9.36 and
Re = 20. The corresponding film thickness lisP? = h," =
0.241568. Now, imagine that somehow a very small amount of
liquid is extracted from the plug to perturb the distance between

r

thickness and the initial distance between the merlisei 0.36)
is recovered.

From the above discussion we argue that any steady-state
solution lying on one of the curves illustrated in Figure 4 with
a positive slope (d./dlp > 0) represents a stable plug.

When a similar reasoning is applied to a point lying on a
concave curve, we conclude that this solution is unstable.
Finally, the points at which li/dlp = O are neutrally stable.

From results depicted in Figure 4, the stability of a train of
long bubbles moving steadily in a capillary tube can also be
inferred. In this case, the thickness of the film, which is equal
to the film thickness left behind by a semi-infinite bubble, can
be obtained from the curves drawn in that figure wherr
3.5. For instance, foRe = 40, h, = 0.235447. Suppose that
some liquid is withdrawn from the plug so that the distance
between the bubbles, which is initially larger than 3, becomes
equal to 0.36. After the perturbation the thickness of the
precursor film remains constant and smaller thah(see Figure
4); then, there will be a net flow of liquid out of the pluig,”
will get thicker, the bubbles will come closer, and eventually
might collapse.

We can reason in a similar way for a train of bubbles
characterized by a smallBe(e.g.,Re< 20). After perturbation,
h..” is smaller tharh.P; then, the outflow rate will be smaller
than the inflow rate and, consequently, the volume of the plug
will increase. If one takes into account the asymptotic behavior
of the solution, this process will not end, and strictly speaking,

fthese trains will not be stable. However, in a real situation the

relative motion of the bubbles will be negligible wheh.«dlp
~ 0, and these bubble trains could be regarded as stable from
a practical point of view.

It is clear that the above speculations must be verified. To
this end, we perturbed a steady-state solution and numerically
followed its evolution to establish its stability.

4.2. Transient Analysis. The numerical experiments pre-
sented here were designed taking into account the previous
argument. Starting from a steady-state solution, the distince
is 10% either increased or decreased and the back gas phase is
allowed to move toward or away from the front gas phase. In
the computer code this is fulfilled by imposirg.” as an
essential boundary condition while,T is free to move and is
calculated as part of the solution at each time step.

The first experiment corresponds to the hypothetically
unstable situation discussed in the above section for a liquid

the gas phases. This situation should not affect the precursorplug characterized bire= 40,Ca= 0.5, andp = 0.36. Figure

film whose thicknessh.P?) must be kept constant and equal to
0.241568 buh,," should vary since the plug length has been
reduced. Results illustrated in Figure 4 show that the trailing
film thickness b.") corresponding to a point to the left of the
initial condition (i.e., forlp smaller than 0.36) is somewhat
smaller than 0.241568. This difference betwdegh and h.,°
implies that the inflow rate of liquid into the plug is larger than

5a and b illustrates the evolution of the distance between the
menisci and the thickness of both films when the perturbed
distance]¢, is set to 1.1 and 0.9 timds, respectively.

Results depicted in Figure 5a show that if the volume of the
plug is slightly increased, the gas phases move apart and the
distance between them increases until the end of the computa-
tion. Due to the abrupt change imposedgahe dimensionless

the outflow rate; consequently, the gas phases will move apartfilm thickness at the outflow plane presents small variations

andh," will get thicker until the initial state of the system is
recovered.

neart = 0. This variable then diminishes as the volume of the
plug increases until it becomes constant and approximately equal

Consider now the same initial state of the system but insteadto 0.23430. This occurs @t~ 80 and forlp ~ 2.0. From the

of pulling out a small amount of liquid from the plug we
introduce some liquid into it, forcing a larger separation of the
gas phases. The curve fBe = 20 (see Figure 4) shows that
h.," will become slightly larger than the precursor film thickness;

curve forRe= 40 drawn in Figure 4, it is easy to check that

is almost independent &f when this variable is greater than 2.
Once the thickness of the deposited film becomes constant, the
motion of both bubbles turns steady amg depends only on

therefore, the volume of the plug will decrease because thethe particular values of the capillary and Reynolds numbers
inflow rate of liquid is smaller than the outflow rate; thus, the calculated with the displacement velocity of the back gas phase.
gas phases will approach each other gl will get thinner. From the numerical results illustrated in Figure 5a, the relative
This process will continue until both films have the same velocity between the bubbles when they are moving steadily is
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Figure 5. Time evolution oflp and h.,” after a 10% perturbation of the !

steady-state distance between the menisci. Other parameters of the systerfiigure 6. Time evolution oflp andh.." after a perturbation of the steady-

areRe= 40 andCa = 0.5. The volume of the plug continuously increases ~State distance between the menisci. Other parameters of the syst&ma are

(a) or decreases until the collapse (b). = 20 andCa = 0.5. The steady-state distance between the bubbles is 10%
increased (a) and 10% reduced (b).

dip/dt ~ 0.032; this signifies that the speed of the trailing bubble
has been reduced by approximately 3.2%. Consequemtly,
should be equal to the height of the liquid layer left behind by decided to impose such a large change taking into account the
a semi-infinite bubble characterized a = 0.484 andRe= asymptotic behavior exhibited by, as a function ofip (see
38.72. To check this point, we solved the problem of the semi- Figure 4). Indeed, we performed computations in whitvas
infinite bubble for that set of dimensionless parameters and set closer to 4.3 with identical results to those shown here
found that the difference betwedn, = 0.23414 anch.,” = regarding the stability of the train; however, in those situations
0.23430 is 0.072%. the relative velocity of the bubbles is so small that a large
When the volume of the plug is suddenly reduced (see Figure amount of computer time is required to follow the evolution of
5b), the distance between the menisci decreases after a verghe system. In these examples, as previously reported for the
brief interval of time neat = O, during which the bubbles move  plug, h.P (the film thickness left behind by the bubble that is
apart. From the evolution d# it is easy to notice that the relative  traveling ahead) is imposed as an essential boundary condition
velocity of the gas phases is larger as the bubbles approachwhile h," is calculated as part of the solution at each time step
each other. An interesting feature of the curves illustrated in using eq 3.
this figure is thah.," remains nearly constant up te= 9 even Figure 7a and b depicts the time evolution of the distance
thoughlp is continuously changing. This fact indicates that the between the bubbles and the thickness of the leading and trailing
disturbance imposed tlp is not detected immediately at the meniscus foRe= 40 and 20, respectively. The curves illustrated
outflow plane. in the first place show that the steady state is unstable, in
In this and similar events the computation stopped when the agreement with our previous speculation. In fact, the bubbles
distance between the bubbles is too small to be worked out with continuously move toward each other after an initial period of
the mesh adopted. time during whichlp oscillates due to the sudden change
The second experiment represents the hypothetically stableimposed. The film thickness of the trailing bubble remains
case previously posed for a liquid plug definedRy= 20, Ca practically constant during the simulation due to the time
= 0.5, andp = 0.36. Also in this situation the transient analysis required by the perturbation to reach the outflow plane;
confirms our conjectures. In fact, if the steady state is perturbed consequently, the values b£P andh.," appear superimposed
by adding (Figure 6a) or subtracting (Figure 6b)Ipib the in Figure 7a. In order to show the changes undergone by that
length of the plug, the initial state is recovered. bubble as it moves forward, the distance between the interface
An analogous analysis can be applied to study the stability and the tube wallh, at a distance equal to 2 and 3 from the
of a bubble train. In this case, the computation is started from bubble tip is also depicted. We observe thdtecomes thicker
one of the steady-state solutions previously obtained in which aslp diminishes, indicating that after a certain time this trend
the distancép is large enough to neglect any interaction between will reach the outflow plane changirg,”. Moreover, although
the bubblestp = 4.3 in the examples discussed in this work. It changes irh are very similar at both locations, it is clear that

is worth noticing that the initial distance is largely perturbed
settingls" = 0.36, a significantly smaller value thda. We
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038 T T T T @ 0.3000 We argued how these different trends might be connected
RPN o Re=a0 o mes with the stability of the plug and confirmed our hypotheses
0.36] Disturbance: [, =036 .~ 102900 perturbing a given steady-state solution and following its
0.34+ At —em b 02800 evolution numerically.
032 4= — ' ' Thus, we conclude that it suffices to solve the steady problem
-— o 1
030 oo e M, 2) 0 2700 to determine whether a steady liquid plug is stable or not. The
1, 0281 AN M=ty 1, +3) trend followed by the film thickness as a function of the length
0.26.] Sl 702600 / of the plug for fixedReandCa contains the required informa-
02ad AN Lo2500 tion. In fact, a point on a curve for whicthd/dlp > O represents
0'22 AN ’ a stable steady plug, while a point on a curve for whith/d
] ~~ 02400 dip < O is a liquid plug which is unstable to perturbations. We
0.20+ show that the analysis also applies to the particular case of a
0.18 T T T T . 0.2300 bubble train.
0 ! 2 3 4 > 6 uture work on this topic will consider the stability of liquid
! plugs within a conveniently established range of the dimension-
20 : : . . less parameters of the system.
(b4 0.2455
18— -
------------ 40.2450 Nomenclature
T
14 H PP 102445 Dimensionless groups
¥ /”' Re=20 402440 Ca = capillary numberuU/o
I 121 ‘ ", Disturbance: /, =0.36 —0.2435 h Re= Reynolds numbeerR/’u
Lo+ 7 ’ . .
’ ; ’ H0.2430 Latin symbols
084, Tooas As = dimensionless area of the outflow plane
0.6-%' I B = one-half of the channel width, m
0.4 — 102420 = dimensionless mean surface curvaturelm
o H0.2415 H. = film thickness, m
“0 500 1000 1500 2000 2500 HP = precursor film thickness, m

t

H..T = trailing film thickness, m

h., = dimensionless film thickness

h.? = dimensionless thickness of the precursor film
h." = dimensionless thickness of the trailing film
Isp = dimensionless length of the front gas phase
they are more remarkable nearer the tip, where the influence of|g; = dimensionless length of the back gas phase
the perturbation is first noticed. The computation ends when |, = |ength of the plug, m

the distance between the bubbles cannot be resolved with the, = dimensionless plug length

numerical grid employedg = 0.20). Q = dimensionless flow rate at the outflow plane
Results illustrated in Figure 7b confirm our previous hypoth- = gutward unit vector normal to the free surface

esis regarding the stability of the bubble train. In fact, when ,, — gimensionless pressure

the initial distance between the bubblés+ 4.3) is abruptly ps = dimensionless pressure of the gas phase

reduced tdp! = 0.36, the bubbles move apart with a relative per = dimensionless pressure at the back gas phase

velocity that diminishes as the flow rates of the trailing and + _ gess tensor, N M

Iea_ding bubbles become equal. The numerical simulation Was; _ gimensionless time

deliberately stopped due to the large amount of computer time,, _ Gimensionless velocity vector

required to fully recover the initial state. s = r-component of the velocity vector

v, = z-component of the velocity vector
xs.= dimensionless free surface velocity

Figure 7. Time evolution oflp andh.." after a perturbation of a bubble
train. The parameters of the system areRa)= 40 andCa = 0.5 and (b)
Re= 20 andCa = 0.5.

5. Conclusion

In this paper we presented a numerical solution of the Greek Symbols
displacement of a liquid plug inside a capillary tube initially 3 = ratio between inertia and capillary forcédgCa
lined by a uniform thin I.|qU|d film. The numepcal tgchnlque « = liquid viscosity, kg nr s
employed a||OWS computing steady-state solutions within a large p = liquid density, kg m3
range of the dimensionless parameters of the system. In fact
we could solve the problem f&@a = 0.5, largeRe and small
Ip. A set of conditions at which the technique employed by
Fujioka and Grotber§ to study the steady propagation of a
plug in a two-dimensional channel fails. The authors greatly acknowledge financial aid from CONICET,
Depending on the value of the Reynolds number, two types ANPCyT, and the Universidad Nacional del Litoral.
of curves result when the steady-state values of the film
thickness are depicted versiggor a fixedCa. From O up to a
Certa!n Re h.” = h' INcreases withlp u.ntll It .becomes (1) Bretherton, F. P. The motion of long bubbles in tulles:luid Mech.
practically constant, while for largeRe this variable first 1961 10, 166.
diminishes and then levels off as the distance between the gas (2) park, C. W.; Homsy, G. M. Two phase displacement in Hele-Shaw
phases becomes longer. cells: Theory.J. Fluid Mech.1983 139, 291.

'o = surface tension, N n#
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