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In this work, we present a methodology to analyze the stability of the steady-state propagation of a liquid
plug in a capillary tube lined with a uniform film of the same liquid. To this end, the steady-state solutions
are computed and the corresponding film thickness is obtained for different plug lengths and fixed capillary
and Reynolds values. The evolution of this variable as a function of the plug length for each capillary and
Reynolds number is the key to plug stability determination.

1. Introduction

The motion of a liquid plug inside a capillary tube is a
problem associated with both biological phenomena and tech-
nological applications. An example of the former is the liquid
plug formed either when a liquid is instilled into the respiratory
airways for therapeutic purposes or during the expiration process
as a consequence of a capillary instability of the liquid film
lining the wall of the smallest airway conduits. Microchannel
reactors illustrate the latter.

A simplified model of these problems is the propagation of
a volume of liquid inside a capillary tube or a two-dimensional
channel whose walls are coated with a thin film of the same
fluid. This thin film might have been deposited during the
displacement of a semi-infinite bubble inside the tube formerly
filled with the liquid. In the more general case, the liquid plug
propagates on a pre-existing film whose thickness isH∞

D (the
precursor film) and leaves behind the deposited or trailing film
with a thickness equal toH∞

T. If the displacement is steady,
H∞

D andH∞
T will be equal and their values as well as the length

of the plug (LP) will depend on the relative strength of inertia,
viscous, and capillary forces. If the plug length is increased
without changing the relative strength of the aforementioned
forces, the film thickness of the steady states will asymptotically
tend toward a limiting value. At that point we reached a
particular situation: the motion of a train of long bubbles where
the plug is formed by the liquid located between the rear and
front parts of two consecutive bubbles that move without
interacting with each other.

Propagation of a single semi-infinite bubble through a
capillary tube (or through a two-dimensional channel) initially
filled with a Newtonian liquid has been extensively investigated
theoretically,1-3 experimentally,4-6 and numerically.7-10 These
studies show that the height of the liquid film left behind by
the creeping motion of a semi-infinite bubble depends solely
on the capillary number (Ca ) µU/σ) and on both the capillary
and Reynolds numbers when inertia forces are not negligible.

More recent studies of this problem deal with the effects of
soluble and insoluble surfactants.11-13

On the other hand, analysis of the motion of a liquid plug
has received less attention. Cassidy et al.14,15 experimentally
studied the flow of a plug in both dried and prewetted tubes.
Unfortunately, their results cannot be used to validate our model
of short plugs because in one work they considered plugs long
enough so that their menisci do not interact and behave as the
rear and leading menisci of semi-infinite bubbles while in the
other work they studied the influence of surfactants on the speed
of a plug propagation.

Recently, Fujioka and Grotberg16 presented a numerical study
of the steady motion of a liquid plug inside a two-dimensional
channel lined with a uniform, thin liquid film.

The solutions presented by those authors show the influence
of several magnitudes: the inertia forces, the length of the plug
(LP), and the ratio between inertia and capillary forces that is
measured by a parameter (λ). They solved the governing
equations and appropriate boundary conditions using a finite
volume numerical scheme. They showed that for a fixed value
of LP the film thickness increases with the plug propagation
speed and that ifLP is larger than the channel width (2B), the
film thickness agrees well with previous results for propagation
of a semi-infinite bubble. They also reported that whenLP <
2B and the inertia forces are not negligible, there is a noticeable
interaction between the menisci.

One important issue of the numerical work by Fujioka and
Grotberg is that they could not find steady solutions for values
of the capillary number larger than 0.4 andLP e B. The authors
conjectured the possibility that no steady solutions exist under
these conditions, but they were not able to confirm this
hypothesis because their numerical procedure only solves the
steady state.

The objective of the present work is to establish whether a
steady-state displacement of a liquid plug inside a capillary tube
is stable or not. By stable we mean that if a steady-state solution
is perturbed, the system will recover the initial state after a short
transient. If after the perturbation the distance between the two
menisci either continuously increases or decreases until the
collapse occurred, the steady-state solution will be unstable.

The work is organized as follows. We present the mathemati-
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cal formulation of the problem in the next section and the main
features of the numerical technique employed in section 3. In
section 4 we show solutions in order to validate the numerical
code and propose a methodology to detect the stability of a
steady-state solution. Finally, section 5 is devoted to conclusions.

2. Mathematical Formulation

We consider the propagation of a liquid plug of lengthLP in
a capillary tube of radiusR. The walls of the tube are lined
with a film of the liquid whose thickness is equal toH∞

D. The
effect of gravity forces is assumed to be negligible; therefore,
the center of the tube is a symmetry line. The gas phases moving
ahead and behind the plug may be seen as semi-infinite or very
large bubbles; this last situation represents the particular case
of a bubble train. Thus, the gas-liquid interfaces delimiting
the rear and front regions of the plug correspond to the leading
and trailing menisci of these bubbles, respectively. The front
meniscus displaces at constant velocity,U, and the coordinate
system adopted is moving at the same speed. The gas phase
exerts only normal stresses on the interface. The pressure of
the gas moving ahead is taken as the reference pressure of the
system, and it is arbitrarily set equal to zero, whereas the
pressure of the gas phase that is behind the plug is an unknown
and must be determined as part of the solution. The gas-liquid
surface tension (σ) is constant as well as liquid properties like
density (F) and viscosity (µ). Figure 1 shows a schematic
representation of the flow domain and the coordinate system
adopted.

Under the above conditions, the equations governing the
liquid flow in the plug are the Navier-Stokes and continuity
equations

Equations 1 and 2 are written in dimensionless form using the
following scales:U for velocities,R for lengths,R/U for time,
andσ/R for pressures;Ca ) µU/σ is the capillary number, and
Re) FUR/µ is the Reynolds number.

We assume that the solid wall is impermeable and the liquid
adheres there. Far away from the menisci the interface becomes
parallel to the solid wall, the films are stagnant, and the thickness
of the precursor and trailing films becomes equal toh∞

D and
h∞

T, respectively. Under steady-state conditions,h∞
D ) h∞

T, and
this variable is an unknown to be obtained as part of the solution.
On the other hand, in a transient solution, the value ofh∞

D is
fixed and the thickness of the deposited film is evaluated with
the following equation, once the solution of the problem has
been computed

In eq 3,Q is the liquid flow rate at the outflow plane whose
area isAs.

The gas-liquid interfaces are material surfaces; therefore,
the kinematics condition applies there

n being the unit normal vector to the free surface (see Figure
1) andx3 SL the free surface velocity.

Assuming that the system is free of surface-active agents,
the tangential component of the traction at the interface is equal
to zero and the normal component is given by the following
expression

whereH is the local mean curvature of the interface andpB is
the pressure of the gas phase (equal to zero and topBT ahead
and behind of the plug, respectively).

The system of governing equations (eqs 1 and 2) subjected
to an appropriate set of boundary conditions is numerically
solved using the algorithm that is briefly described in the next
section.

3. Numerical Technique

Even though the steady state can be obtained through a
transient calculation, we built two numerical codes in order to
reduce the computer time: one to solve the steady state and
the other to follow the transient response of the liquid plug.

The numerical technique employed in these codes has already
been used by the authors to solve steady and transient free
surface flow problems.9,17,18The technique combines the Galer-
kin/finite element method with the parametrization of the free
surface by means of spines for a convenient spatial discretization
of the governing eqs 1 and 2 and their boundary conditions.

The physical domain is tessellated into quadrilateral elements
to build the finite element mesh, which is formed by the different
regions sketched in Figure 2. Mixed interpolation is used to
approximate the velocity and pressure fields, while the coef-
ficients that locate the free surface are interpolated with the one-
dimensional specialization of the biquadratic basis functions
used for velocities.

The weighted residuals are built in the usual form, and either
a set of nonlinear algebraic equations or a set of ordinary
differential equations results, depending on whether the steady
or transient problem is considered. In the latter case, the set of
ordinary differential equations is reduced to a nonlinear one
using a finite-difference predictor-corrector scheme.19

The resulting system of nonlinear algebraic equations is
solved through a Newton loop using the package SuperLU at
each iteration.20 The iterative process is stopped when the norm
of the difference between two successive iterations is equal to
or smaller than 10-6.

In the transient as well as in the steady case, the dimensionless
pressure of the back gas phase is an unknown that is evaluated

Figure 1. Schematic representation of the flow domain and coordinate
system adopted.
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Figure 2. Sketch of the mesh with the distribution of the spines and their
base points. The regions of the mesh are also depicted.
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with the following equation

To solve the steady-state problem, the dimensionless film
thickness (h∞ ) h∞

D ) h∞
T) must be calculated. To this end,

the following equation is implemented in the numerical code

Also, in the steady analysis the velocity profile at the inflow
plane is specified as follows. When the free surface becomes
parallel to the solid wall, this profile should be flat. However,
relaxation of the interface is an asymptotic process, and a small
deviation from a plug flow exists in the computational domain
even when the inflow plane is located well far away from the
meniscus. Thus, at the inflow plane we impose

wherer1 is the radius of the gas bubble at the entrance. The
numerical results show thatG is indeed very small and the
computed velocity profile is almost flat. In fact, the mean
average velocity,Vjz, is equal to 0.99999981 and 0.99999999
for Ca ) 0.5 andRe ) 50 and lP equal to 0.25 and 4.3,
respectively. When the last equation is integrated on the inlet
area, the following expression relating the constantG with both
h∞ and r1 is obtained

The velocity and pressure fields, the locations of both interfaces,
and the dimensionless pressure of the back gas phase are the
unknowns of the transient problem at each time step. In this
case, the precursor film thickness,h∞

D, as well as the velocity
profile at the inlet, which is assumed flat, are imposed as
essential boundary conditions.

The location of the outflow plane is kept constant during the
computations, i.e., the distancelBT is not fixed. The axial length
of the elements in the zone indicated as d in Figure 2 increases
or diminishes as the distancelP becomes longer or shorter,
respectively, and that of the elements in g varies to fit changes
in lBT. The elements located in regions e and f translate as a
whole.

To select a finite element mesh we looked for the invariance
of the solution with the size of the grid. With this purpose we
tested the following two types of meshes: in the coarsest ones
the number of elements varies between 1032 and 2400, while
in the more refined meshes it varies between 3984 and 6720.
In both cases changes are made in the zone labeled d, the total
number of elements depending on the value assigned tolP.
Besides, the total number of nodes along the free surfaces is
equal to 962 in the finest mesh and 482 in the coarsest one.
The solutions computed with these meshes are almost identical;
for instance, the relative differences between the computed
values of the steady-state film thickness are generally smaller
than 0.1% within the whole range of parameters studied in this
work, the most noticeable differences being very small variations
in pressures and velocities near the inlet region. Nevertheless,
the results presented here were computed with meshes of the
finer type.

4. Results

The results presented in this section are organized as follows.
First, we show some of the numerical tests carried out to validate

the numerical codes employed; then, we present solutions for
the steady propagation of a liquid plug with the following
characteristics:Ca ) 0.5, Re e 50, and 0.25e lP e 4.3, lP
being the distance between the menisci measured in units ofR.
The value of the capillary number was selected taking into
account the maximum value of this parameter at which Fujioka
and Grotberg16 were able to obtain a steady-state solution of
the problem for largeRe and small lP. The more relevant
parameter of the problem is the film thickness; therefore, the
computed values ofh∞ ) h∞

D ) h∞
T were depicted as a function

of lP for selectedRe. On the basis of the shape of these curves,
we speculate about the stability of the steady states computed.
Finally, we confirm our conjectures by perturbing a particular
steady-state solution and tracing its evolution.

To test the numerical codes described in the previous section,
we consider the analysis published by Giavedoni and Saita9

about the steady displacement of a semi-infinite bubble in a
capillary tube initially filled with liquid. As already mentioned,
whenlP is sufficiently long, the liquid plug in steady motion is
delimited by two gas phases that might be regarded as semi-
infinite bubbles; therefore, the thickness of the precursor and
deposited films must be independent of the distance between
the menisci and should be equal to the thickness of the film
deposited by the semi-infinite bubble. Our numerical solutions
show that this is the case whenlP > 4 for all computations
carried out in this work.

From Figure 3 the following conclusions can be drawn: (i)
the agreement between the present results and those previously
reported is very good, and (ii) the length of the liquid plug has
a negligible influence onh∞ when the inertia forces are
meaningless. This last result is similar to that reported by Fujioka
and Grotberg16 in their analysis of the steady displacement of
a liquid plug in a 2-D channel, although values reported by these
authors forCa > 0.05 show a weak dependence ofh∞ with the
length of the plug.

4.1. Steady-State Analysis.In order to analyze the steady
state and detect situations in which this type of solution cannot
be obtained, we performed numerical calculations for 2× 10-4

e Ca e 0.5, 0e Ree 250, and 0.25e lP e 4.3; however, just
the results forCa ) 0.5 will be used here since the focus of
this work is to show the procedure employed to determine the
plug stability. It is worth noting that we were able to compute
the corresponding steady states in the whole range of dimen-
sionless parameters selected; this is an important difference with
the work by Fujioka and Grotberg,16 and it is probably due to
the more robust algorithm used here.

As already mentioned, the main goal of this analysis is to
develop a methodology in order to detect the stability of a

t ) -er, r ) 0, z ) lBD (6)

t ) er, r ) 0, z ) lBD + lP (7)

Vz ) G(r2 - 1 - 2r1
2 ln r) + 1, r1 e r e 1, z ) 0 (8)

πh∞(2 - h∞) ) Q ) ∫Ae
Vz dA

h∞(2 - h∞) ) G[2r1
2 - 1

2
+ r1

4(2 ln r1 - 3
2)] + 1 - r1

2

(9)

Figure 3. Comparison of the thickness of the deposited and precursor films
of a steady plug with that of a semi-infinite bubble forRe) 0.
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steady-state solution. If the steady propagation of a liquid plug
is not stable, a perturbation will cause the gas phases to either
approach or recede from one another. If this is the case, the
thickness of both the deposited and the precursor films must
be different because the net flow rate into the plug is different
from zero. Although it is clear that a transient analysis is required
to trace the evolution of the perturbation, we next show that
the stability of the solution can be inferred from the steady-
state results.

To this end and based on the above discussion, the trend of
h∞ as a function ofRe and lP for Ca ) 0.5 was studied. In
Figure 4 the film thickness vs the length of the liquid plug is
depicted for different values of the Reynolds number. It is easy
to note the two different behaviors exhibited byh∞. In fact,
depending on the value of the Reynolds number, this variable
increases or decreases withlP. In the present case, the switch
takes place forRebetween 20 and 40. It is also worth observing
thath∞ asymptotically approaches a constant value aslP becomes
longer. This value depends only onRe for a fixed Ca and is
equal to the film thickness left behind by a semi-infinite bubble.

The two tendencies displayed byh∞ are the basis of the
following conjectures concerning the stability of the system.
Consider, for instance, the steady plug with length) 0.36 and
Re ) 20. The corresponding film thickness ish∞

D ) h∞
T )

0.241568. Now, imagine that somehow a very small amount of
liquid is extracted from the plug to perturb the distance between
the gas phases. This situation should not affect the precursor
film whose thickness (h∞

D) must be kept constant and equal to
0.241568 buth∞

T should vary since the plug length has been
reduced. Results illustrated in Figure 4 show that the trailing
film thickness (h∞

T) corresponding to a point to the left of the
initial condition (i.e., for lP smaller than 0.36) is somewhat
smaller than 0.241568. This difference betweenh∞

T and h∞
D

implies that the inflow rate of liquid into the plug is larger than
the outflow rate; consequently, the gas phases will move apart
andh∞

T will get thicker until the initial state of the system is
recovered.

Consider now the same initial state of the system but instead
of pulling out a small amount of liquid from the plug we
introduce some liquid into it, forcing a larger separation of the
gas phases. The curve forRe) 20 (see Figure 4) shows that
h∞

T will become slightly larger than the precursor film thickness;
therefore, the volume of the plug will decrease because the
inflow rate of liquid is smaller than the outflow rate; thus, the
gas phases will approach each other andh∞

T will get thinner.
This process will continue until both films have the same

thickness and the initial distance between the menisci (lP ) 0.36)
is recovered.

From the above discussion we argue that any steady-state
solution lying on one of the curves illustrated in Figure 4 with
a positive slope (dh∞/dlP > 0) represents a stable plug.

When a similar reasoning is applied to a point lying on a
concave curve, we conclude that this solution is unstable.
Finally, the points at which dh∞/dlP ) 0 are neutrally stable.

From results depicted in Figure 4, the stability of a train of
long bubbles moving steadily in a capillary tube can also be
inferred. In this case, the thickness of the film, which is equal
to the film thickness left behind by a semi-infinite bubble, can
be obtained from the curves drawn in that figure whenlP >
3.5. For instance, forRe ) 40, h∞ ) 0.235447. Suppose that
some liquid is withdrawn from the plug so that the distance
between the bubbles, which is initially larger than 3, becomes
equal to 0.36. After the perturbation the thickness of the
precursor film remains constant and smaller thanh∞

T (see Figure
4); then, there will be a net flow of liquid out of the plug,h∞

T

will get thicker, the bubbles will come closer, and eventually
might collapse.

We can reason in a similar way for a train of bubbles
characterized by a smallerRe(e.g.,Ree 20). After perturbation,
h∞

T is smaller thanh∞
D; then, the outflow rate will be smaller

than the inflow rate and, consequently, the volume of the plug
will increase. If one takes into account the asymptotic behavior
of the solution, this process will not end, and strictly speaking,
these trains will not be stable. However, in a real situation the
relative motion of the bubbles will be negligible when dh∞/dlP
≈ 0, and these bubble trains could be regarded as stable from
a practical point of view.

It is clear that the above speculations must be verified. To
this end, we perturbed a steady-state solution and numerically
followed its evolution to establish its stability.

4.2. Transient Analysis.The numerical experiments pre-
sented here were designed taking into account the previous
argument. Starting from a steady-state solution, the distancelP
is 10% either increased or decreased and the back gas phase is
allowed to move toward or away from the front gas phase. In
the computer code this is fulfilled by imposingh∞

D as an
essential boundary condition whileh∞

T is free to move and is
calculated as part of the solution at each time step.

The first experiment corresponds to the hypothetically
unstable situation discussed in the above section for a liquid
plug characterized byRe) 40,Ca ) 0.5, andlP ) 0.36. Figure
5a and b illustrates the evolution of the distance between the
menisci and the thickness of both films when the perturbed
distance,lPt, is set to 1.1 and 0.9 timeslP, respectively.

Results depicted in Figure 5a show that if the volume of the
plug is slightly increased, the gas phases move apart and the
distance between them increases until the end of the computa-
tion. Due to the abrupt change imposed tolP, the dimensionless
film thickness at the outflow plane presents small variations
neart ) 0. This variable then diminishes as the volume of the
plug increases until it becomes constant and approximately equal
to 0.23430. This occurs att ≈ 80 and forlP ≈ 2.0. From the
curve forRe) 40 drawn in Figure 4, it is easy to check thath∞
is almost independent oflP when this variable is greater than 2.
Once the thickness of the deposited film becomes constant, the
motion of both bubbles turns steady andh∞

T depends only on
the particular values of the capillary and Reynolds numbers
calculated with the displacement velocity of the back gas phase.
From the numerical results illustrated in Figure 5a, the relative
velocity between the bubbles when they are moving steadily is

Figure 4. Computed values of the deposited and precursor film thickness
of a steady plug as a function of the distance between the menisci forCa
) 0.5 and severalRe.
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dlP/dt ≈ 0.032; this signifies that the speed of the trailing bubble
has been reduced by approximately 3.2%. Consequently,h∞

T

should be equal to the height of the liquid layer left behind by
a semi-infinite bubble characterized byCa ) 0.484 andRe)
38.72. To check this point, we solved the problem of the semi-
infinite bubble for that set of dimensionless parameters and
found that the difference betweenh∞ ) 0.23414 andh∞

T )
0.23430 is 0.072%.

When the volume of the plug is suddenly reduced (see Figure
5b), the distance between the menisci decreases after a very
brief interval of time neart ) 0, during which the bubbles move
apart. From the evolution oflP it is easy to notice that the relative
velocity of the gas phases is larger as the bubbles approach
each other. An interesting feature of the curves illustrated in
this figure is thath∞

T remains nearly constant up tot ≈ 9 even
thoughlP is continuously changing. This fact indicates that the
disturbance imposed tolP is not detected immediately at the
outflow plane.

In this and similar events the computation stopped when the
distance between the bubbles is too small to be worked out with
the mesh adopted.

The second experiment represents the hypothetically stable
case previously posed for a liquid plug defined byRe) 20,Ca
) 0.5, andlP ) 0.36. Also in this situation the transient analysis
confirms our conjectures. In fact, if the steady state is perturbed
by adding (Figure 6a) or subtracting (Figure 6b) 0.1lP to the
length of the plug, the initial state is recovered.

An analogous analysis can be applied to study the stability
of a bubble train. In this case, the computation is started from
one of the steady-state solutions previously obtained in which
the distancelP is large enough to neglect any interaction between
the bubbles;lP ) 4.3 in the examples discussed in this work. It

is worth noticing that the initial distance is largely perturbed
setting lPt ) 0.36, a significantly smaller value thanlP. We
decided to impose such a large change taking into account the
asymptotic behavior exhibited byh∞ as a function oflP (see
Figure 4). Indeed, we performed computations in whichlPt was
set closer to 4.3 with identical results to those shown here
regarding the stability of the train; however, in those situations
the relative velocity of the bubbles is so small that a large
amount of computer time is required to follow the evolution of
the system. In these examples, as previously reported for the
plug, h∞

D (the film thickness left behind by the bubble that is
traveling ahead) is imposed as an essential boundary condition
while h∞

T is calculated as part of the solution at each time step
using eq 3.

Figure 7a and b depicts the time evolution of the distance
between the bubbles and the thickness of the leading and trailing
meniscus forRe) 40 and 20, respectively. The curves illustrated
in the first place show that the steady state is unstable, in
agreement with our previous speculation. In fact, the bubbles
continuously move toward each other after an initial period of
time during which lP oscillates due to the sudden change
imposed. The film thickness of the trailing bubble remains
practically constant during the simulation due to the time
required by the perturbation to reach the outflow plane;
consequently, the values ofh∞

D andh∞
T appear superimposed

in Figure 7a. In order to show the changes undergone by that
bubble as it moves forward, the distance between the interface
and the tube wall,h, at a distance equal to 2 and 3 from the
bubble tip is also depicted. We observe thath becomes thicker
as lP diminishes, indicating that after a certain time this trend
will reach the outflow plane changingh∞

T. Moreover, although
changes inh are very similar at both locations, it is clear that

Figure 5. Time evolution oflP and h∞T after a 10% perturbation of the
steady-state distance between the menisci. Other parameters of the system
areRe) 40 andCa ) 0.5. The volume of the plug continuously increases
(a) or decreases until the collapse (b).

Figure 6. Time evolution oflP andh∞T after a perturbation of the steady-
state distance between the menisci. Other parameters of the system areRe
) 20 andCa ) 0.5. The steady-state distance between the bubbles is 10%
increased (a) and 10% reduced (b).
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they are more remarkable nearer the tip, where the influence of
the perturbation is first noticed. The computation ends when
the distance between the bubbles cannot be resolved with the
numerical grid employed (lP ) 0.20).

Results illustrated in Figure 7b confirm our previous hypoth-
esis regarding the stability of the bubble train. In fact, when
the initial distance between the bubbles (lP ) 4.3) is abruptly
reduced tolPt ) 0.36, the bubbles move apart with a relative
velocity that diminishes as the flow rates of the trailing and
leading bubbles become equal. The numerical simulation was
deliberately stopped due to the large amount of computer time
required to fully recover the initial state.

5. Conclusion

In this paper we presented a numerical solution of the
displacement of a liquid plug inside a capillary tube initially
lined by a uniform thin liquid film. The numerical technique
employed allows computing steady-state solutions within a large
range of the dimensionless parameters of the system. In fact,
we could solve the problem forCa ) 0.5, largeRe, and small
lP. A set of conditions at which the technique employed by
Fujioka and Grotberg16 to study the steady propagation of a
plug in a two-dimensional channel fails.

Depending on the value of the Reynolds number, two types
of curves result when the steady-state values of the film
thickness are depicted versuslP for a fixedCa. From 0 up to a
certain Re, h∞

D ) h∞
T increases withlP until it becomes

practically constant, while for largerRe, this variable first
diminishes and then levels off as the distance between the gas
phases becomes longer.

We argued how these different trends might be connected
with the stability of the plug and confirmed our hypotheses
perturbing a given steady-state solution and following its
evolution numerically.

Thus, we conclude that it suffices to solve the steady problem
to determine whether a steady liquid plug is stable or not. The
trend followed by the film thickness as a function of the length
of the plug for fixedReandCa contains the required informa-
tion. In fact, a point on a curve for which dh∞/dlP > 0 represents
a stable steady plug, while a point on a curve for which dh∞/
dlP < 0 is a liquid plug which is unstable to perturbations. We
show that the analysis also applies to the particular case of a
bubble train.

Future work on this topic will consider the stability of liquid
plugs within a conveniently established range of the dimension-
less parameters of the system.

Nomenclature

Dimensionless groups
Ca ) capillary number,µU/σ
Re) Reynolds number,FUR/µ

Latin symbols
AS ) dimensionless area of the outflow plane
B ) one-half of the channel width, m
H ) dimensionless mean surface curvature, m-1

H∞ ) film thickness, m
H∞

D ) precursor film thickness, m
H∞

T ) trailing film thickness, m
h∞ ) dimensionless film thickness
h∞

D ) dimensionless thickness of the precursor film
h∞

T ) dimensionless thickness of the trailing film
lBD ) dimensionless length of the front gas phase
lBT ) dimensionless length of the back gas phase
LP ) length of the plug, m
lP ) dimensionless plug length
Q ) dimensionless flow rate at the outflow plane
n ) outward unit vector normal to the free surface
p ) dimensionless pressure
pB ) dimensionless pressure of the gas phase
pBT ) dimensionless pressure at the back gas phase
T ) stress tensor, N m-2

t ) dimensionless time
v ) dimensionless velocity vector
Vr ) r-component of the velocity vector
Vz ) z-component of the velocity vector
x̆SL) dimensionless free surface velocity

Greek Symbols
λ ) ratio between inertia and capillary forces,Re/Ca
µ ) liquid viscosity, kg m-1 s-1

F ) liquid density, kg m-3

σ ) surface tension, N m-1
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