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Abstract: This study investigated the fast pyrolysis of biomass in fluidized-bed reactors using com-
putational fluid dynamics (CFD) with an Eulerian multifluid approach. A detailed analysis was
conducted on the influence of various modeling parameters, including hydrodynamic models, heat
transfer correlations, and chemical kinetics, on the product yield. The simulation framework inte-
grated 2D and 3D geometrical setups, with numerical experiments performed using OpenFOAM v11
and ANSYS Fluent v18.1 for cross-validation. While yield predictions exhibited limited sensitivity to
drag and thermal models (with differences of less than 3% across configurations and computational
codes), the results underline the paramount role of chemical kinetics in determining the distribu-
tion of bio-oil (TAR), biochar (CHAR), and syngas (GAS). Simplified kinetic schemes consistently
underestimated TAR yields by up to 20% and overestimated CHAR and GAS yields compared
to experimental data (which is shown for different biomass compositions and different operating
conditions) and can be significantly improved by redefining the reaction scheme. Refined kinetic
parameters improved TAR yield predictions to within 5% of experimental values while reducing
discrepancies in GAS and CHAR outputs. These findings underscore the necessity of precise kinetic
modeling to enhance the predictive accuracy of pyrolysis simulations.

Keywords: fast pyrolysis; computational fluid dynamics; Eulerian model; biomass; chemical kinetics;
biofuel production

1. Introduction

The global development of the economy has been primarily sustained by energy
derived from petroleum. Currently, conventional extraction is decreasing, and global pro-
duction is maintained thanks to the growth of non-conventional extraction [1], which is
more expensive and has a greater environmental impact. Additionally, in recent decades,
energy consumption has increased, leading to the need to seek alternatives to meet this de-
mand. In this context, lignocellulosic biomass could be considered a renewable, sustainable,
and CO2-neutral energy source of interest for use as biofuel. In general terms, lignocel-
lulosic biomass originates from the photosynthesis process in plants, where solar energy
is converted into biodegradable and renewable organic matter. It is the most abundant
source of organic material on Earth and has the potential to be a sustainable energy source
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that is abundant and available worldwide. This type of biomass can be obtained from
trees, wood waste used in construction, sawmill residues, and forest waste such as fallen
branches and leaves in forests. Other sources include agricultural residues (rice straw, corn
stalks, sugarcane bagasse) and cellulose residues (municipal solid waste such as residues
from paper mills), among others [2].

Among the thermochemical conversion processes available for biomass, fast pyrolysis
has gained considerable attention due to its ability to transform biomass into bio-oil,
syngas, and biochar in a rapid and efficient manner. Fast pyrolysis involves the thermal
decomposition of organic material in the absence of oxygen, yielding liquid bio-oil as a
primary product. This bio-oil, with its high energy density, has potential as a renewable
substitute for petroleum-derived fuels [3,4]. The economic feasibility of bio-oil production
and its use as a fuel have been extensively analyzed, highlighting its promise as a cost-
competitive and environmentally friendly solution [5,6]. In this context, fluidized-bed
reactors are widely recognized as one of the most effective platforms for fast pyrolysis
due to their excellent heat and mass transfer capabilities, uniform product quality, and
suitability for continuous operation. Despite these advantages, a detailed understanding of
the multiphase flow dynamics, heat transfer, and chemical kinetics within these reactors
remains a challenge.

Experimental methods provide valuable insights but are often limited in scope due
to the complex interactions between the gas and solid phases and the high-density flow
of particles. As a result, reactor design and optimization have traditionally relied on em-
pirical correlations and pilot-scale studies [7–9]. Recent advancements in computational
fluid dynamics (CFD) offer a powerful tool to overcome these limitations. CFD models
enable the simulation of detailed transport processes and chemical reactions, facilitating
reactor optimization with reduced experimental costs. However, current CFD models for
biomass fast pyrolysis remain constrained in their ability to capture the full complexity of
multiphase flows and chemical interactions. For example, coupling detailed hydrodynamic
and kinetic models is a promising yet underexplored approach that could significantly
enhance the predictive capabilities of reactor simulations [10,11]. Di Blasi [7] laid the
foundation for reactor-scale simulations by coupling detailed thermal and transport phe-
nomena with kinetic models. Papadinakis et al. [8] compared the performance of different
drag models for granular flows for fast pyrolysis fluidized-bed reactors. Xue et al. [12,13]
provided insights into the influence of fluidization behavior considering pure cellulose
and bagasse on product distribution using MFiX(R) [14] for improving reactor designs.
Xiong et al. [15] developed and implemented a CFD algorithm in OpenFOAM(R) [16] to
investigate the performance of pyrolysis processes in fluidized-bed reactors under differ-
ent operating conditions, such as various biomass feed locations in the reactor. Later on,
Xiong et al. [17] reviewed the performance of the main CFD approaches for addressing
fast pyrolysis fluidized-bed reactors, focusing on the computational cost and accuracy of
the models. Zhong et al. [18] developed a reduced-order model using artificial neural
network techniques to enhance the capability of predicting fast pyrolysis product yields,
and the model was trained with CFD simulations. A detailed reaction mechanism for fast
pyrolysis was considered in the work of Houston et al. [19] using discrete element method
(DEM) approaches, obtaining general insights into the optimal reduction schemes for mod-
eling pyrolysis cracking reactions. More recently, Wang et al. [20] studied intraparticle
effects coupled with coarse-grain simulations and compared the results with experimental
observations. A complete multi-scale analysis, from the molecular scale to the reactor
scale, concerning the reported results of CFD modeling of fast pyrolysis in fluidized beds
was recently presented in a review paper by Luo et al. [21]. Sia and Wang [22] carried
out an Euler–Euler CFD scheme to simulate the fast pyrolysis process in a fluidized bed.
In this paper, the authors reported product speciation in the gas phase, including CO,
CO2, H2, and CH4, with a good agreement between experimental and predicted values.
Other authors have also reported different simulation frameworks for the thermochemical
degradation of biomass in fluidized beds [23–26]. All these works lay the groundwork for
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current knowledge on optimizing fast pyrolysis through CFD simulations. But, to the best
of the authors’ knowledge, there are still gaps in understanding regarding the influence
and sensitivity of the hydrodynamic, heat transfer, and chemical kinetic models of this type
of reactor.

This study investigates the fast pyrolysis of biomass in fluidized-bed reactors using
computational fluid dynamics with an Eulerian multifluid approach, driven by the need to
fill critical knowledge gaps in this area. Motivated by the challenges in predicting and opti-
mizing the complex interactions between the hydrodynamics, heat transfer, and chemical
kinetics in these reactors, this research aims to provide a comprehensive framework for
reactor design and performance enhancement. Specifically, the study explores the influence
of various modeling strategies—such as 2D versus 3D simulations, alternative drag and
heat transfer models, widely used computational platforms (e.g., OpenFOAM [16] and
ANSYS Fluent [27]), and refined chemical kinetic schemes—on the prediction of product
yields. By addressing these variables, the work seeks to contribute to more accurate and
efficient reactor models, ultimately advancing the development of biofuel technologies.

2. Materials and Methods

This section describes the mathematical approach to modeling the fast pyrolysis
process in fluidized-bed reactors and its computational implementation. Along with this,
the chemical kinetic models adopted and the setup for each test case are described.

2.1. Multifluid Model

Fast pyrolysis processes involve the presence of multiple phases of different natures
(fluid and particulate phases) and different morphological and chemical properties (sand,
pelletized organic materials, gases, etc.). These phases are composed of different species
that react with each other in thermally active chemical processes. In other words, fast
pyrolysis is a multiphase hydrodynamic process with thermochemical reactions.

Therefore, a multifluid computational model is required, consisting of a gas phase and
one or more solid phases, each containing an arbitrary number of species. In this model,
the phases are treated as interpenetrating continuous media, and their balance equations
undergo an averaging process to derive the local balance equations for the thermally and
chemically reactive coupled multifluid system [28,29].

The following mass and momentum balances are presented for phase i:

∂

∂t
(ρiαi) +∇· (ρiαiui) = Ri (1)

∂

∂t
(ρiαiui) +∇· (ρiαiusui) = −αi∇p −∇pi +∇· (αiτi) + ρiαig +

j ̸=i

∑
j=1..N

Kij(uj − ui) (2)

where

τi = µi

[
∇ui +∇uT

i

]
+

(
λi −

2
3

µi

)
(∇· ui)I (3)

Here, αi is the volume-phase fraction for phase i, ρi is the i-phase density field, ui is
the i-phase velocity field, p is the shared pressure field, pi is the particle pressure field
(non-zero only for granular phases), g is the gravitational acceleration, Kij is the drag
coefficient between phases i and j, µi is the i-phase dynamic viscosity, and λi is the i-phase
bulk viscosity.

Momentum exchange between phases occurs primarily through drag forces, and many
suitable correlations can be found in the literature for this type of system [30–34]. In this
work, the Syamlal–O’Brien drag model is adopted [31], which has been widely used for
simulating the fluidization of Geldart B particles over the years. This is mainly due to its
accuracy in predicting solid distributions [35] and flexibility in its formulation, allowing
the adjustment of coefficients in order to reproduce fluidization patterns under different
experimental conditions. The drag coefficient is written as
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Kij =
3
4

αiαjρj

v2
r,id

CD

(
Rei
vr,i

)
|ui − uj| (4)

where Rei is the Reynolds number, and vr,i is the terminal velocity for the granular phase i
given by the following expression:

vr,i = 0.5
(

A − 0.06Rei +
√
(0.06Rei)2 + 0.12Rei(2B − A) + A2

)
(5)

with
A = α4.14

j and B = b1α1.28
j (if αj < 0.85) or B = αb2

j (if αj > 0.85) (6)

where j represents the continuous phase, b1 and b2 are modeling coefficients, and

CD = 0.63 + 4.8
√

vr,i

Rei
(7)

Rei =
di|ui − uj|

vj
(8)

The rheology of the granular phases is modeled based on the kinetic theory of granular
flow (KTGD) [30,36,37] and frictional theory [38,39].

For a low concentration of particles, KTGF models based on the corresponding gran-
ular temperature are used. This field is computed based on an energy balance equation,
which needs to be solved prior to the modeling of the solid stress tensor. This equation
was developed considering perfectly spherical particles and assuming that only binary
collisions may occur, based on the work of [36,40]:

3
2

[
∂

∂t
(ρiαiθi) +∇· (ρiαiuiθi)

]
= (τi − pi I) : ∇ui +∇· (κi∇θi)− γi + Jv + Js (9)

The parameters involved are defined as [36,41,42]

pi = ρiαiθi + 2ρiα
2
i g0(1 + ei)θi (10)

µi =
4
5

α2
i ρidig0,i(1 + ei)

√
θi
π

+
αidiρi

√
πθi

6(3 − ei)

[
1 +

2
5
(1 + ei)(3ei − 1)αig0,i

]
(11)

g0,i =
1

1 −
(

αi
αi,max

)1/3 (12)

where pi is the solid pressure, which represents normal stress contributions due to particle
collisions; λi is the bulk viscosity of the granular compound; γi represents granular energy
dissipation due to inelastic collisions; Jv and Js are the rates of granular energy transfer
between the continuous phase and the particles (see [30]); and g0,i is the radial distribution,
which represents the dimensionless distance between particles.

For high concentrations, the frictional theory [39,43,44] is adopted following the
additive approach proposed by Johnson and Jackson [39]. For these conditions, the solid
pressure is modeled by introducing frictional pressure, given by

pi = Fr
(αi − αi,min)

η

(αi,max − αi)P (13)

while the solid viscosity is computed following the work of Schaeffer [38]:

µi = 0.5 pi,fric (I2D)
−1/2 sin(ϕ) (14)
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This parameter represents the viscosity of the solid phase for highly packed condi-
tions, and its definition is based on the theories of soil mechanics and plasticity. Usu-
ally, αi,min = 0.5, and for solid concentrations higher than this value, the solid pressure
and solid viscosity are given by the sum of the kinetic and frictional contribution (i.e.,
Equations (10) and (13) and Equations (11) and (14)).

The thermal energy equation for phase i is given by

∂

∂t
(ρiαiCp,iTi) +∇· (ρiαiCp,iuiTi) = ∇· (αiκi∇Ti) + ∑

j
hij(Tj − Ti) + ∆Hi (15)

where Ti, Cp,i, and κi are the i-phase temperature, heat capacity, and thermal conductivity.
Moreover, ∆Hi represents the heat given by chemical reactions involving the i-phase.

The heat transfer coefficient between phases i and j can be written based on different
correlations. Among the most popular for multiphase flow, the Ranz–Marshall correla-
tion [45] is given by

hij =
6αiκi

di
(2 + 0.6Re0.5

i Pr0.33) (16)

For gas-particle heat transfer, the Gunn correlation [46] has been extensively adopted:

hij =
6αiκi

di

[
(7 − 10αj + 5α2

j )(1 + 0.7Re0.2
i Pr0.33) + (1.33 − 2.4αj + 1.2α2

j )Re0.7
i Pr0.33

]
(17)

where j represents the continuous phase.
Finally, the species conservation is considered, which can be written for species m of

phase i as
∂

∂t
(ρiαiYi,m) +∇· (ρiαiYi,mui) = Ri,m (18)

where Yi,m is the mass fraction of species m in phase i, and Ri,m is the source of species m in
phase i given by chemical reactions.

2.2. Fast Pyrolysis Kinetics

The kinetics of the process depend on the composition of the biomass material
to be pyrolyzed. There are several ways of establishing the sequence of chemical re-
actions and the main components to be considered in a way that is computationally
affordable [7,47–49]. In this work, bagasse and red oak are considered as the pyrolyzing
material, and the kinetics previously reported by Bradbury et al. [50], and subsequently
adapted by Di Blasi [7], Miller and Bellan [47], are adopted as a first approach. In this con-
text, the virgin biomass, composed of cellulose (C), hemicellulose (H), and lignine (L),
reacts until it becomes active biomass. Then, the active biomass is converted to bio-oil
(TAR) and biochar (CHAR). At the same time, the TAR (considered a gas phase) can react,
forming bio-gas (GAS). This whole process takes place within the reactor, where the TAR
and GAS phases can leave the reactor before completing the reaction process, while CHAR,
in the solid state, accumulates at the bottom. The chemical reaction sequence is described
in Figure 1.

All the reactions are assumed to be irreversible first-order, while the dependence of
the specific reaction rate on temperature is expressed by the Arrhenius equation:

km = Am exp
−Em

RT
(19)

where Am represents the rate constant of reaction m, Em is the activation energy of reaction
m, and R is the gas constant. These coefficients for each reaction are detailed in Table 1. The
link between the reaction rate Ri,m of Equation (18) and the reaction coefficients km follows
the structure presented by Xue et al. [12,13].
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Figure 1. Chemical kinetic scheme for fast pyrolysis of biomass [7,47].

Table 1. Reactions and kinetic parameters [51].

Reaction Coefficient A [1/s] E [J/mol]

C → Ca k1c 2.8 × 1019 2.42 × 105

H → Ha k1h 3.3 × 1014 1.97 × 105

L → La k1l 1.3 × 1010 1.51 × 105

Ca → TAR k2c 2.1 × 1016 1.87 × 105

Ha → TAR k2h 8.8 × 1015 2.02 × 105

La → TAR k2l 2.6 × 1011 1.46 × 105

Ca → CHAR + GAS k3c 9.6 × 108 1.08 × 105

Ha → CHAR + GAS k3h 1.5 × 109 1.44 × 105

La → CHAR + GAS k3l 7.7 × 106 1.11 × 105

TAR → GAS k4 4.28 × 106 1.08 × 105

The ratios of CHAR in relation to the products CHAR+GAS (x) for reaction 3 for Ca,
Ha, and La are 0.35, 0.6 and 0.75, respectively.

It is worth mentioning that the product yield depends on several factors, such as
the geometry, the operating conditions, the material proportions, the physical and nu-
merical modeling approaches, and, very importantly, the kinetic model adopted. This
work seeks to contrast the relative importance of these variables, including the simplified
kinetics adopted.

2.3. Numerical Approach

The previous set of equations forming the multifluid model for thermal reactive and
particulate flow is addressed in the framework of the Finite Volume Method (FVM). The
chemical kinetics and thermal fluid dynamics equations are solved in a segregated manner
by a time-splitting procedure. To solve the fluid dynamics, SIMPLE-based algorithms are
adopted for pressure–velocity coupling [52,53], and the partial elimination algorithm is
used for multiphase momentum coupling [54].

In this work, 3 distinct phases are addressed (gas, sand, and biomass), which interact
with each other by exchanging mass, momentum, and energy, each one consisting of
multiple species, allowing chemical reactions between them. For the simulations, the suites
OpenFOAM(R) v11 [16] and ANSYS Fluent(R) v18.1 [27] were used. General conclusions
from the use of both are drawn later on in the Results Section, and, in general, both codes
preserve the following structure:

1. Establish the initial conditions for each phase variable.
2. Compute the phase fractions based on phase-continuity equations but for the continu-

ous phase (gas). Then, calculate the gas-phase fraction by subtracting the solid-phase
fraction from unity.

3. Obtain the drag and heat transfer coefficients between phases based on the stored
values of the variables.

4. Compute the granular viscosity of each phase and granular pressure.
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5. Compute the temperature field of each phase based on each phase’s energy balance.
6. Compute the species fraction based on each species’ transport equation considering

the reaction rates obtained from the new temperature fields.
7. Compute the velocity field prediction of each phase based on the momentum equation.
8. Construct and compute the shared pressure field based on the mass and momentum

equations.
9. Update the velocity field of each phase based on the new pressure field and flux recon-

struction. This step can be iterated with the previous one in OpenFOAM following
the PISO method.

10. Iterate from 2 to favor the coupling between equations until a convergence criterion is
reached and proceed with the next time step.

In the following tests, the results shown will be those given by OpenFOAM by default
unless otherwise specified.

2.4. Test Cases

The described model was used to simulate lab-scale and pilot plant bubbling fluidized-
bed reactors for the fast pyrolysis of biomass. Two experimental setups were considered
for the simulations: Setup 1 [13], a lab-scale experiment, and Setup 2 [55], a pilot plant
experiment. The scheme of the arrangement is shown in Figure 2, and the dimensions
are detailed in Table 2. For both cases, three phases are considered: sand (solid), biomass
(solid), and gas. The biomass (with a density of ρb = 400 kg/m3 and a mean particle
diameter of db = 500 µm) is fed at 300 K into the reactor from the side at a fixed mass
flow rate (qb), with differences in the initial composition (using red oak for Setup 1 and
bagasse for Setup 2). At the same time, a bed of silica sand particles (with a density of
ρs = 2650 kg/m3 and a mean particle diameter of ds = 500 µm) at an initial packing of
0.58 is fluidized by nitrogen injection at 773 K from the bottom of the bed at Uin superficial
velocity. The heated walls of the reactor (with a height Hw from the bottom) are kept at
a fixed temperature of 773 K to allow the fast pyrolysis reaction. The rest of the material
properties are detailed in Table 3.

Regarding the numerical setup, the outlet conditions are specified at the top of the
reactor; Johnson–Jackson partial slip boundary conditions for the solids [39] are adopted at
the walls with a null gradient for the temperature, except for part of the heated wall (up
to Hw). The inlet conditions for the gas (pure nitrogen) are imposed at the bottom, and
the inlet conditions for biomass and nitrogen are dense packing conditions through the
lateral feed. Most simulations were run until 100 s to allow statistical stationary conditions
for averaging, and quasi-hexahedral cells were adopted. A mesh sensitivity analysis was
performed to define the grid refinement in the following section.

Table 2. Experimental setup and operating conditions (from [13,55]).

Parameters Setup 1 [13] Setup 2 [55]

D 3.81 cm 10 cm
H 34.29 cm 150 cm

Hw 8 cm 50 cm
Hb 5.5 cm 20 cm
qb 100 g/h 5300 g/h

Uin 0.36 m/s 0.285 m/s
Y0

C 0.41 0.4355
Y0

H 0.32 0.3299
Y0

L 0.27 0.2176
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Figure 2. Fluidized-bed reactor scheme.

Table 3. Species properties.

Species Phase
Molar

Weight/
Density

Heat Capacity
[J/kg K]

Thermal
Conductivity

[J/m s K]

Biomass (C, H, L) Solid 400 kg/m3 2300 0.3
Sand Solid 2650 kg/m3 800 0.27

CHAR Solid 2333 kg/m3 1100 0.1
TAR Gas 100 kg/Kmol 2500 0.025
GAS Gas 30 kg/Kmol 2300 0.025
N2 Gas 28 Kg/Kmol 1121 0.0563

3. Results and Discussion

This section focuses on the use of the computational model to address the test cases
described in the previous section and draw conclusions about the adoption of the mass,
momentum, thermal exchange, and kinetic models. The influence of each one of these
models will be described in terms of the product yield and the field distribution inside the
reactor and will be compared to the experimental data available. In order to do so, first, an
adjustment of the numerical and geometrical setup (grid refinement, 2D vs. 3D approach,
numerical schemes, and time steps) was performed, seeking an optimal balance between
the computational cost and accuracy of the solution.

3.1. Numerical and Geometrical Setup

Initially, a grid refinement analysis was performed to define the mesh adopted for
each case. For this purpose, Setup 2 was considered, and simulations were performed with
grids of 20 × 300 (1x), 40 × 600 (2x), and 80 × 1200 (4x). Figure 3 shows the time-averaged
solid velocity and volume fraction in a horizontal plane at y = 15 cm from the bottom. On
the other hand, Figure 4 shows the time-averaged solid volume fraction along the y-axis
and time-averaged pressure along the y-axis. For all the simulations, second-order schemes
and linear interpolation were used for the time and convective term discretization. For the
adopted grid size, a time step of 5 × 10−4 s was used to obtain numerically stable solutions.

Here, small differences in the hydrodynamic profiles can be observed, especially near
the left wall where the biomass enters the reactor. However, in terms of bed expansion, no
significant differences are observed between the different grid refinements.
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Figure 3. Time-averaged solids fraction (a) and solid velocity (b) at y = 15 cm from the bottom for
Setup 2 and for different grid refinements.

Figure 4. Time-averaged pressure (a) and solid fraction (b) in a vertical center line for Setup 2 and for
different grid refinements.

Despite these slight differences, the chemical conversion given by reaction products,
as shown in Figure 5, reveals that the grid refinements have no significant impact on the
product yields (see Equation (20)):

ηi,m =

∫
out ρiαiYi,mui · dA

qb
(for gas products) ηi,m =

∫
reactor ρiαiYi,mdV

Mb
(for solid products) (20)

It is worth noting that the 2x and 4x refinements produce very similar results. For
this reason, the 2x refinement, corresponding to hexahedral cells of approximately 2.5 mm,
was adopted for subsequent simulations. The same grid size was used for Setup 1. For
a medium-sized grid (2x), a comparison with a 3D simulation was performed, giving
differences of <2% in the yield values between 2D and 3D simulations. This was also
observed by Xue et al. [13] for Setup 1.

Figure 5. Yields of the products of the process for different grid refinements.
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3.2. Thermal and Momentum Coupling Models

An important aspect to take into account for setting up the simulation is that the start of
the fluidization process is affected by the temperature [56,57]. Therefore, the drag law needs
to be adjusted for these conditions. Figure 6 shows the fluidization curves of the pressure
drop for different gas inlet velocities and for standard values of the Syamlal–O’Brien drag
coefficients and modified coefficients (b1 = 12.1, b2 = 0.215).

For this approach, an adjustment of the drag model is performed following the method-
ology given by [58]. Along with these curves, in Table 4, the values of Um f predicted by
different correlations of the Wen–Yu family [33] that are apt for gas-particle flows under
the current operating conditions [59] are shown. The adjusted drag law predicts a Um f in
accordance with the correlations and was adopted for the following simulations.

Um f =
µ

ρd

[
(K2

1 + K2 Ar)0.5 − K1

]
(21)

Here, Ar =
gρ(ρp − ρ)d3

µ2 , where all the parameters without subscripts refer to continuous

phase properties.

Figure 6. Fluidization curves with CFD based on a Syamlal–O’Brien drag model with and without
the adjustment of the coefficients and curves predicted by correlations [33,60–62].

Table 4. Minimum fluidization velocity Um f correlations for gas-particle flows.

Authors K1 K2

Wen and Yu [33] 33.7 0.0408
Bourgeois and Grenier [60] 25.5 0.0382

Bin [61] 27.3 0.0386
Paudel and Feng [62] 30.3 0.0463

Another aspect to take into account is the heat transfer between phases. There are
several correlations to account for this, with the Ranz–Marshall and Gunn model being
among the most adopted correlations. Figure 7 shows the time-averaged sand temperature
field (over 50 s after the first 5 s when the fluidization process begins). The temperature
distribution for both cases shows hot spots close to the heated wall and a cold region in
the upper part of the reactor where the gas phase is mostly present and close to the wall
where the cold biomass is injected. The temperature of the sand has a direct influence on
the reaction rates and, therefore, the product yields of the pyrolysis. However, as shown
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in Table 5, using both setups, the product yields do not change significantly between heat
transfer models, which indicates a lack of sensitivity to this aspect for the overall products
of the pyrolysis process.

Figure 7. Time-averaged solid temperature using the Ranz–Marshall (left) and Gunn (right) heat
transfer models for Setup 2.

Table 5. Yields of products for Gunn and Ranz–Marshall heat transfer models.

Model ηTAR ηGAS ηCH AR

Ranz–Marshall Setup 1 60.7 24.1 14.6
Gunn Setup 1 61.2 23.9 15.0

Ranz–Marshall Setup 2 61.7 9.6 26.0
Gunn Setup 2 62.0 9.4 26.1

Another aspect to consider for CFD users is the computational program adopted for
simulating these types of processes. ANSYS Fluent(R) and OpenFOAM(R) are two of the
most well-known computational codes used for chemical reactor simulations. The first
one is a proprietary code, but most parts of the general algorithm can be retrieved from
the user’s manual [27]. There are many differences between codes in terms of the general
algorithm and its implementation. Therefore, it is worth comparing the performance
between codes to address the computational simulation of the process. Figure 8 shows the
start of the fluidization using both codes, where it can be observed that, despite using the
same interphase models, the solid distribution and the general hydrodynamic behavior
differ from each other. ANSYS Fluent shows well-defined bubbles with a symmetrical
evolution until the first bubbles erupt. On the other hand, OpenFOAM shows more
diffusive interphases between pure gas and pure solids. Nonetheless, the yields of the
products predicted with both codes, as shown in Table 6, have no significant differences.
Moreover, the comparison is extended for both setups, resulting in differences of less
than 3%.
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Figure 8. The start of the fluidization process of sand and biomass using OpenFOAM (a) and ANSYS
Fluent (b).

Figure 9 shows the transient evolution of GAS and TAR distributions for Setup 2,
where it can be appreciated that after the first 5 s, a statistically steady rate of GAS and TAR
production is reached.

The results shown up to this point demonstrate the lack of sensitivity of the yield
of the products of pyrolysis to the thermal and hydrodynamic models, as well as the
computational codes and numerical setups. However, the yield predictions still differ from
the experimental results, for example, in the TAR production (as shown in Table 6), which
suggests that other modeling aspects, such as the kinetic model and coefficients, should
be considered.
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Figure 9. Transient evolution of yields of TAR and GAS for Setup 2.
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Table 6. Yield values of the products using different computational codes and experiments.

Setup Work Model ηTAR ηGAS ηCH AR

Xue et al. [13] Experimental 71.7 ± 1.4 20.5 ± 1.3 13.0 ± 1.5
Setup 1 Xiong et al. [15] OpenFOAM 60.7 22.3 14.6

This work OpenFOAM 61.2 23.9 15.0
This work ANSYS Fluent 61.3 17.9 20.8

Montoya et al. [55] Experimental 73.1 ± 0.6 4.2 ± 0.9 23.7 ± 0.4
Setup 2 This work OpenFOAM 62.0 25.1 13.4

This work ANSYS Fluent 58.2 26.4 15.5

3.3. Model for Chemical Kinetics

In Figure 10, the yields obtained for Setup 2 through simulation are presented, consid-
ering different values of kinetic parameters for secondary TAR–GAS degradation [51,63–68].
Each kinetic model was implemented and tested in both codes (OpenFOAM and ANSYS
Fluent), and the results did not significantly change, so the same conclusions can be drawn
for both software programs.

It can be observed that the original kinetic model given by the coefficients of
Liden et al. [51], as listed in Table 1, generally underestimates the formation of TAR, the
predominant product in the studied case of fast pyrolysis. Consequently, the predicted
CHAR and GAS yields are generally higher than the experimental values (as shown in
Table 6).

Fagbemi et al. [63] provided a set of kinetic parameters for reaction 4 (TAR to GAS),
which are used in this section to study the effects of different kinetic parameters on sec-
ondary TAR pyrolysis. It is observed that excluding reaction R4 leads to an overestimation
of TAR and GAS production and a corresponding underestimation of CHAR production.
The yield results for different kinetic parameters for reaction 4 are shown in Table 7.

Table 7. Kinetic coefficients for reaction 4 and yields of products for simulations with Setup 2.

Reference A [1/s] E [J/mol] ηTAR ηGAS ηCH AR

Experiment [55] − − 73.1 ± 0.6 4.2 ± 0.9 23.7 ± 0.4
Liden et al. [51] 4.28 × 106 1.08 × 105 58.2 26.4 15.5
Chan et al. [64] 7.0 × 103 8.36 × 104 75.8 9.9 14.4
Kosstrin [65] 3.26 × 104 7.28 × 104 48.2 36.1 15.7
Diebold [66] 1.55 × 105 8.76 × 104 61.5 23.9 14.7
Boroson et al. [67] 9.53 × 104 9.33 × 104 72.3 12.7 15.0
Lédé [68] 5.9 × 107 1.23 × 105 54.9 29.1 16.0

Regarding CHAR production, the simulation results are lower than those obtained by
Montoya et al. [55] in all cases shown in the table. However, the kinetic parameters from
Chan and Krieger [64] and Boroson et al. [67] provide a better prediction of TAR generation.
The CHAR yield is consistently underestimated, while the GAS yield is overestimated.
Based on this observation, it can be concluded that the proportions suggested for primary
pyrolysis to produce GAS and CHAR in reaction 3 might be the cause of the discrepancies
between the model predictions and the experimental results. A detailed exploration
and adjustment of the kinetic models is still needed to improve the prediction of CHAR
production for the process.

Due to the improved predictions given by kinetic modeling (for example, using the
coefficients from Chan and Krieger [64]), the same modification was made for Setup 1, as
shown in Table 8. The results show a more accurate prediction of the yields of the products,
especially for TAR and CHAR production.
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Table 8. Yields of products for simulations with Setup 1.

Reference ηTAR ηGAS ηCH AR

Experiment [13] 71.7 ± 1.4 20.5 ± 1.3 13.0 ± 1.5
Coefficients from Liden et al. [51] 61.3 17.9 20.8
Coefficients from Chan et al. [64] 70.1 15.0 15.2

Figure 10. Yields of products for different chemical kinetics using ANSYS Fluent for Setup 2 [51,55,64–68].

In any case, the results presented in this section highlight the a priori evident influence
of chemical reaction kinetics, contrasting with the (not entirely obvious) lack of impact
of thermo-hydraulic models and computational codes on the product yields of the fast
pyrolysis process in bubbling fluidized beds.

4. Conclusions

This study focused on modeling the fast pyrolysis of biomass in fluidized-bed reactors
using computational fluid dynamics (CFD) based on an Eulerian multifluid approach.
Simulations were conducted to analyze the influence of various modeling parameters,
including hydrodynamic models, heat transfer correlations, and chemical kinetics, on the
yields of bio-oil (TAR), biochar (CHAR), and syngas (GAS). The numerical framework
integrated both 2D and 3D geometrical setups and utilized OpenFOAM and ANSYS Fluent
for cross-validation.

After performing a grid refinement analysis and adjusting the drag law for the corre-
sponding operational conditions, the results demonstrated that hydrodynamic models and
thermal correlations, such as heat transfer models, had a minimal impact on the predicted
product yields. Similarly, no significant differences were observed in the product distribu-
tions between the computational codes used, emphasizing the robustness of the numerical
setup. However, this study highlighted the critical role of chemical reaction kinetics in
determining the distribution of pyrolysis products. Simplified kinetic schemes, although
computationally efficient, consistently underestimated TAR production and overestimated
GAS and CHAR yields when compared to experimental results.

To address these discrepancies, a detailed analysis of secondary TAR-GAS reactions
was performed using different kinetic parameters. The findings showed that neglecting
certain reactions, such as TAR-to-GAS conversion, led to the overestimation of TAR and
GAS yields and the underestimation of CHAR production. Among the tested kinetic
parameters, those proposed by Chan and Boroson provided better alignment with experi-
mental TAR yields. Further work is still needed to predict CHAR production with higher
accuracy. These results underscore the necessity of an accurate representation of primary
and secondary reaction pathways for achieving reliable predictions.
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