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We consider a quantum Otto cycle with an interacting Bose-Einstein condensate at finite tem-
perature. We present a procedure to evolve this system in time in three spatial dimensions, in
which closed (adiabatic) strokes are described by the Gross-Pitaevskii equation, and open (iso-
choric) strokes are modeled using a stochastic Ginzburg-Landau equation. We analyze the effect on
the thermodynamic efficiency of the strength of interactions, the frequency of the harmonic trap,
and the temperatures of the reservoirs. The efficiency has little sensitivity to changes in the temper-
atures, but decreases as interactions increase. However, stronger interactions allow for faster cycles

and for substantial increases in power.

I. INTRODUCTION

Quantum thermodynamics [I}, 2] has emerged as a cap-
tivating field of research that bridges the fundamental
principles of quantum mechanics and the laws of ther-
modynamics. In recent years, there has been a growing
interest in the study of quantum thermal machines [3-
6], which are devices that utilize quantum systems to
convert heat into work and vice versa. In this context,
how genuine quantum effects, such as quantum coher-
ence [7, 8], correlations [9], and measurements [10HIZ]
can be exploited to improve the performance of these ma-
chines has been the subject of intense study. In addition
to these theoretical studies, several experimental imple-
mentations of different quantum thermodynamic cycles
have also been implemented using single quantum sys-
tems, such as trapped ions and atoms [I3HI5].

Quantum many-body systems have also been proposed
as the working medium for engines and refrigerators.
In this context, Bose-Einstein condensates (BECs) have
emerged as a prominent candidate due to their remark-
able macroscopically observable quantum properties and
controllability. BECs, are formed by cooling a gas of
bosonic particles to extremely low temperatures and are
characterized by a high degree of coherence, where a sig-
nificant fraction of the particles occupy the same quan-
tum state. The precise control achieved over BECs
through techniques such as laser cooling and magnetic
trapping, allows for the manipulation of their properties
and opens up exciting possibilities for exploring quantum
thermodynamics. Recent works have designed various
engines that utilize BECs to extract work. For instance,
in [16] it was considered an endoreversible Otto cycle with
non-interacting Bose gas, showing that the power output
can be enhanced in a regime when the working medium is
in the BEC phase. In [I7], an interacting BEC engine was
explored, and their performance was addressed through
the experimental determination of the equation of state.
Interacting BECs were also considered in [I8], [19], for a

cycle working with a particle reservoir at zero tempera-
ture, and where the interaction strength between atoms is
controlled by Feshbach resonances. In [20], a strategy for
using a mixture of two atomic gases as a quantum refrig-
erator is outlined. Additionally, in [21] there is a proposal
on building quantum engines using one-dimensional ul-
tracold gases and illustrates its use in the cooling process.

In this paper, we study a quantum Otto cycle using a
three dimensional interacting Bose-Einstein condensate
as a working medium. To do so we perform direct numeri-
cal simulations in which the closed (adiabatic) strokes are
described by the Gross-Pitaevskii equation (GPE) and
the open (isochoric) strokes, that occur at finite temper-
ature, are modeled using a stochastic Ginzburg-Landau
equation. This approach allows us to obtain the com-
plete dynamics of the BEC during the whole cycle, and
provides a highly detailed description of the quantum-
many body engine. Therefore, we not only obtain the
whole thermodynamic description of the system, but we
also are able to track the evolution of the different con-
tributions to the energy, as well as the state of the BEC
consistently. We aim to uncover the underlying princi-
ples governing the efficiency, power output, and other
relevant features of these machines. By employing ad-
vanced theoretical models and numerical simulations, we
systematically analyze how various parameters, such as
the interaction strength, frequency of the harmonic trap,
and reservoirs temperatures, affect the performance of a
quantum Otto cycle.

II. METHODS
A. Thermodynamic cycle

We will consider a finite-time Otto cycle using an in-
teracting Bose-Einstein condensate as a working medium.
The thermodynamic cycle starts with the gas at temper-
ature T}y, in an spherical trap with frequency wy. The



first stroke is an adiabatic expansion that turns wy to
we, With wp, > w,, thus expanding the condensate. Dur-
ing the second stroke the system is put in contact with an
external cold source, and the gas cools down to reach a
thermalized state at temperature T, < T} in an isochoric
process. The third stroke is an adiabatic compression,
changing the trap potential from w, to wp. Finally, in
the last stroke the system undergoes an isochoric process
in contact with a hot source at temperature T}. Thus,
the cycle is completely described by prescribing the time
taken during each of the strokes, respectively 7. (for the
expansion), Teold, Te (for the compression), and Thet; to-
gether with the time dependence of the trap potential
during the adiabatic strokes. In the following, we will
use the same expansion and contraction times so that
Te,e = Te = T
We can define W, and W, respectively as the works
extracted in the compression and the expansion, and @y,
as the heat absorbed in the isochoric hot process,
Wc,e = Eéfg - E(fe ) (1)

C,

Qn=E —EY. (2)

Here E is the system total energy, the subindices e
and ¢ denote respectively the expansion and contrac-
tion strokes, and the superindices ¢ and f denote respec-
tively the initial and final states of these strokes. The
efficiency of a heat engine is defined as the net yielded
work (W = W, + W,) divided by the absorbed heat.
In practice, extended systems display heat fluctuations,
and variations in the work as the cycle is repeated. The
efficiency of the cycle is defined as

_w
Qn

This efficiency will fluctuate in different realizations of
the cycle, so one usually is concerned with the mean effi-
ciency. For non-interacting condensates in the adiabatic
regime, the efficiency reduces to the Otto efficiency [16]

n (3)

no=1-—. (4)

B. Adiabatic evolution

We will describe the state of the Bose-Einstein conden-
sate in terms of a single wave function ¥(r,t). For the
expansion and the contraction strokes we solve numeri-
cally the Gross-Pitaevskii equation (GPE) with a time-
dependent harmonic trapping potential V (r,¢),

,haw(r,t) B V2
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+ gl (e, )] + V(r,t)| v(r,t).
(5)

Here m is the atomic mass, the interaction is controlled
by g = 4wah?/m, and a is the s-wave scattering length.
The spherical potential is given by V (r,t) = mw?(t)(2%+

y* + 2?)/2, and the frequency w(t) during the adiabatic
strokes changes linearly in time from the initial to the
final value. In order to evaluate the total energy of the
condensate we will consider the Hamiltonian associated

to Eq. :

h2
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where the star denotes the complex conjugate.

C. Thermal baths

During the isochoric strokes the system is coupled to a
thermal bath, and in principle it can exchange both par-
ticles and energy. Under these conditions the possible
equilibria will be characterized by a volume V), a chem-
ical potential u, and a temperature T'. The probability
of these equilibrium states is then given by the Grand
canonical ensemble,

e~ BH—pN)

where = 1/(kgT), kp is the Boltzmann constant, Z
is the Grand canonical partition function, and N is the
number of particles in the system.

The evolution of the system towards these equilibria,
while in contact with a thermal bath at temperature T,
can be done in terms of the approach described in [22]
23]. Thus, by adding white-noise to Eq. we solve the
following stochastic Ginzburg-Landau equation:

W _ | hgr 9y I
ot {2mV gl =V 4 vt
2
—VhﬂC(r,t). (8)

Where ((r,t) is a delta correlated random process such
that (C(r,t)¢*(r',¢')) = §(r — r')é(t — t'), and the fac-
tor \/2/(Vhp) controls the amplitude of the fluctuations
through the temperature 7. This equation can be ob-
tained by performing a Wick rotation ¢ — it to Eq. ,
and by adding both the chemical potential and the delta
correlated random forcing term. In the absence of forcing
this equation evolves into solutions that are stationary
solutions of GPE [24]. Note that the Ginzburg-Landau
equation is also used to study non-isolated dissipative
dynamics, e.g., in superconductivity [25].

We can explicitly verify that the solutions of Eq.
result in equilibria compatible with Eq. . Defining
the free energy F' = H — uN, Eq. can be written as a
Langevin equation for the evolution of each Fourier mode

of v [22],
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where F' = F[{{)(k,t),0*(k,t)}] (i.e., it is a functional
of the set of Fourier amplitudes of ¢, where a Galerkin
truncation up to a maximum wave-number is applied to
the set of Fourier modes such that |k| < kmax). The
resulting stochastic process has a total state probability

P[{¢)(k,t),1* (k,t)}] whose evolution is described by a
corresponding multivariate Fokker-Planck equation [20]
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where 1, is shorthand for z/;(k:,t), and c.c. denotes the
complex conjugate. This equation evolves into the Grand
canonical distribution in Eq. provided that SF is pos-
itive defined. Thus, by integrating numerically Eq.
we can evolve the system towards states with different
temperatures T under the Grand canonical constraints.

For the isochoric strokes, the system evolves at con-
stant volume V and fixed number of particles N (or
equivalently, at fixed mean density p in the total volume
that contains the gas). This corresponds to working on
the Canonical ensemble, and can be achieved by solving
Eq. coupled with [22] 23]

op
Tl —Y(P — Pm)- (11)

This equation adjust the chemical potential such that the
mean density p remains close to the target mean density
in the trap p,,; v is a parameter that controls how fast
convergence to the desired mean density takes place.

It is worth noting that there exist other formulations
to describe condensates at finite temperature, such as
the stochastic Gross-Pitaevskii equation [27] 28], or cou-
pled kinetic equations [29]. While the method used here
generates the correct thermal states and has long been
used to study the dynamics of dissipative systems at fi-
nite temperature [30], a stochastic Gross-Pitaevskii or
kinetic formulation could better describe nonequilibrium
dynamics although at a larger computational cost. For a
comparison between these methods see [31].

D. Energetics

The total energy of the system can be decomposed into
several components that provide information on excited
ordered and disordered modes in the gas, such as poten-
tial and internal energies, or a compressible kinetic en-
ergy that can be associated to sound waves and phonons.
To this end we use the Madelung transformation,

D(r.t) = /p(r,t) fm e, (12)

which maps GPE to the Euler equation for an isentropic,
compressible and irrotational gas with an extra term that
accounts for quantum pressure [24]. This allows for a
continuum medium description of the system. In Eq.

the transformation p(r,t) is the fluid mass density, and
S(r,t) is the phase of the order parameter. Using the
momentum density

the gas velocity can then be defined as v(r,t) =
3, 6)/p(r,t) = (1/m)VS(x, 1)

Thus, in terms of the fluid mass density, the total en-
ergy of the system per unit volume (see Eq. @) can be
decomposed as

E = Ex+ Eq+ Ein + Ev, (14)

where the kinetic energy is Fy = (pv?)/2, the quantum
energy is Eq = h?/(2m?)((V/p)?), the gas internal (or
interaction) energy is F; = g/(2m?)(p?), and the trap
potential energy is Ey = (pV). In all cases the angle
brackets denote volume average. Using the Helmholtz
decomposition (,/pv) = (y/pv) + (,/pv)D [24], where
the superindices ¢ and i denote respectively the com-
pressible and incompressible components (i.e., such that
V- (/pv)® = 0), the kinetic energy can be further de-

composed into the compressible El((c) and incompressible

EI(:) kinetic energy components. This decomposition is
used to study classical compressible gasses [32], as well
as quantum fluids [23], 33| [34], and thus provides infor-
mation that can be compared with the classical picture
of thermal engines.

E. Numerical methods

We solve numerically Egs. and to simulate re-
spectively the adiabatic and isochoric strokes of the cycle.
In order to do so we use a pseudospectral Fourier-based
method in a spatial grid of N3 = 643 points, with the 2/3
rule for dealiasing, a fourth-order Runge-Kutta method
for the time evolution of GPE, and an Euler time step-
ping method for the stochastic Ginzburg-Landau equa-
tion. In all cases we use the parallel code GHOST, which
is publicly available [35], in a cubic domain of dimensions
[-7, 7L x [-m, 7| L x [—7,w|L, so that the domain has
length 27 L (with L a unit length). To deal with the non-
periodic trapping potential in the Fourier representation,
while avoiding Gibbs phenomenon, we use a continuation
method as described in [34] [36].

Results are shown in units of a characteristic speed U
(the speed of sound), the unit lenght L (proportional to
the condensate mean radius), and a unit mean density
po. Temperatures are written in units of T, the conden-
sate critical temperature (see the Appendix for its esti-
mation, and for the range of temperatures considered in
this study). Except when explicitly stated (e.g., when we
study the effect of varying T},), we consider T}, ~ 0.012T),
and T, ~ 0.0037. Thus, the simulations have T < T}.
The speed of sound is ¢ = (gpo/m)'/? = 1U and the con-
densate healing length is £ = h/(2mpog)'/? = 0.0707L,



except in simulations in which we artificially decrease the
interaction strength. In most simulations we use trapping
frequencies w, ~ 0.334638 U/L and wy, = 0.337613U/L.
These frequencies are chosen close enough to reduce the
computational cost of performing the slow expansions
and contractions, and we indicate explicitly when other
values of w. and wy, are used. Quantities can be scaled
using dimensional values for U, L, and M. In exper-
iments typical dimensional values are L ~ 10~* m and
c=U ~2x1073m/s [37]. Thisresultsin & ~ 1.12x107°6
m and a mean trap frequency w =~ 4.7 Hz. For the typical
mass of a gas of 3"Rb atoms in a BEC, peak densities of
~ 10'3 cm ™3 atoms are also compatible with our simula-
tions and with experiments [38].

For a given set or parameters, each cycle is repeated
4 times. This results in several values for the energies
Ei(J) (with ¢ = cor e, and j = ¢ or f), and thus for W
and @}, at the end of each cycle. To compute efficiencies
we assume these quantities have a Gaussian distribution,
and use a Montecarlo method to generate a random set
of W and Q) values compatible with the fluctuations
observed in the 4 explicitly integrated cycles. From these
values, the distribution of the efficiency n and its mean
value are finally obtained.

Each realization of the cycle is performed with the fol-
lowing protocol: Given a state at temperature T}, (which
can be generated for the first cycle by integrating the
stochastic Ginzburg-Landau equation, or can be the re-
sult of the final state of a previous cycle), we integrate the
expansion stroke using GPE. The frequency of the trap
is decreased linearly in time from wy to w. with a time
step dt = 2.5 x 1073L/U; the length of this simulation
depends on the speed of the expansion. When the ex-
pansion finishes, the system is evolved towards the lower
temperature T, using the stochastic Ginzburg-Landau
equation. Time integration is performed until the sys-
tem reaches a stationary regime. Then, the contraction
is integrated using GPE with a linear ramp in the trap
frequency from w, to wy, with the same dt and total time
as in the expansion. Finally, the system is again coupled
to the hot source at temperature T}, and integrated us-
ing the stochastic Ginzburg-Landau equation until a new
stationary state is reached.

III. RESULTS
A. Analysis of the system evolution on a cycle

We first analyze the evolution of the system in each
stroke, and the evolution of the different energy compo-
nents, for the set of parameters introduced in Sec. [[TE}
Then, we evaluate the efficiency of the cycle in terms of
the variation of these parameters.

A diagram of several consecutive cycles in the energy-
frequency plane, and their time evolution (with the time
t = 0 set arbitrarily at the beginning of each cycle ex-
pansion, and with the time given in units of the inverse
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FIG. 1. Top panel: Energy as a function of the trap frequency,
w, for several consecutive cycles. Expansions and contractions
are plotted in gray, cooling and heating strokes are in cyan
and orange, respectively. Bottom panel: Time evolution (with
time in units of the inverse of Aw = wp — w.) of the total
energy in the same cycles, setting time ¢ = 0 for all at the
beginning of the expansion. The inset shows the probability
density function (PDF) of the condensate mass density in the
trap at different times; colors of the lines match the times of
the diamond markers in the main figure.

of the frequency difference Aw = wy, — w,.), are shown in
Fig. [l The numerical simulations agree with the usual
picture of an Otto cycle. An abrupt change in energy
can be seen as soon as the condensate gets in contact
with the thermal sources. The full dynamics allows us to
see fluctuations, both in the energy after the adiabatic
phases, as well as those produced by the thermalization
process. These fluctuations also result in slightly differ-
ent values of the energy along each of the expansions and
contractions in the different cycles.

During the isochoric strokes a long integration time is
necessary for the system to thermalize at the new tem-
perature. The inset in Fig.[l|shows the tails of the proba-
bility density functions (PDF's) of the mass density in the
trap at different times after the system is coupled to the
cold source. At early times, as the condensate is still hot,
the PDF displays strong tails, associated to strong fluc-
tuations in the mass density. Shortly after these regions
with strong fluctuations disappear and as the condensate
cools down, the PDFs converge to new stationary solu-
tions with weaker tails. Similar results are obtained for
the evolution with the hot source. In the next subsec-
tion we vary the strength of the interaction in the BEC
and verify that even for weak interactions the system
thermalizes. We also ensured that the isochoric branches
were integrated long enough to achieve stationary and
accurate convergence of the PDFs.

The final states of the isochoric strokes are shown in
Fig. The top panels show the mass density in a two-
dimensional slice in the zy plane, at the end of the hot
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FIG. 2. Top panel: Two-dimensional slices of the mass

density in the zy plane, p(x,y,z = 0), for temperatures
Thn/T» =~ 0.012 and T./Tx =~ 0.003. Bottom panel: Spectrum
of the compressible kinetic energy in the hot and cold cases.
A ~ E? power law corresponding to equipartition of compress-
ible three-dimensional modes is shown as a reference.

and cold branches solved with the stochastic Ginzburg-
Landau equation. At higher temperature the gas displays
stronger fluctuations in the mass density at the center of
the trap as well as in the borders of the condensate where
irregularities can be seen. Density fluctuations are asso-
ciated with more energy in compressible modes (sound
waves or phonons), and with an increase in the quantum
energy (caused by gradients in the mass density). The
bottom panel shows the compressible kinetic energy spec-
trum in both cases. Note that this spectrum measures
the energy in sound waves. Two interesting features are
worth mentioning. First, the spectra are proportional to
a k2 power law, which corresponds to the equipartition
of energy in 3D modes (i.e., thermalisation). Second, the
amplitude of sound waves increases with temperature.

Now, we will analyse the behaviour of the energy com-
ponents during the adiabatic strokes. Naturally, this de-
pends on whether we consider a compression or an expan-
sion, as well as on the speed of the stroke. For the sake
of clarity we now consider shorter strokes than in Fig.
(i.e., faster compressions and expansions), as they result
in more evident effects. Figure |3 shows the time evolu-
tion of the different energy components, averaged over
four cycles. The energy variations are normalized by the
absolute value of the total energy difference during the
stroke. During the expansion, the interaction and trap
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FIG. 3. Time evolution of the different energy components,
averaged over an ensemble of four cycles, during the adia-
batic expansion (left) and contraction (right). The value of
each energy component at the beginning of the strokes (here
arbitrarily labeled as ¢ = 0) is subtracted from the energies,
and the energy variations are then normalized by the absolute
value of the total energy difference during the entire stroke.

potential energies decay rapidly as the condensate ex-
pands. Both quantities also oscillate with the frequency
of the breathing mode of the condensate in the trap and
have, due to the nature of each energy, almost oppo-
site phases. Meanwhile, the compressible kinetic energy
grows as sound waves are excited during the expansion.
The incompressible and quantum energies remain almost
constant. During the compression, the interaction and
trap potential energies grow as the condensate contracts.
In this case the compressible kinetic energy remains al-
most constant, with a small increase of the quantum en-
ergy as density gradients grow due to the contraction.

B. Efficiency

Now, we will analyze the efficiency of the cycle. In
particular, we will be focused on its behaviour in terms
of the speed of the expansion and compression (i.e. ¢ c),
the temperature, and the interaction strength.

Let us first consider the impact of the speed of the
adiabatic stroke. To this end, for the set of parame-
ters introduced in Sec. [[TE] we performed several cycles
with adiabatic strokes of different lengths 7. . (longer ¢ .
corresponds to slower expansions and contractions). In
this case, we expect to attain the utmost efficiency for
grater values of 7, ., since the dynamics gets closer to
the adiabatic limit. Figure [4] shows the efficiency distri-
bution of the cycles for different values of 7. . (in units
of Aw™!). As expected, we find that the mean efficiency
grows with this time and, for times 7. . much longer than
the characteristic time associated to the adiabatic limit
for non-interacting gases (~ w,?l), the efficiency reaches
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FIG. 4. Efficiency of the cycles in units of the ideal Otto ef-
ficiency no, as a function of 7. ., for the parameters listed in
Sec. [TEl The shaded areas indicate the PDFs of the efficien-
cies, and the error bars indicate the minimum and maximum
efficiencies obtained. The vertical dashed line indicates the
time w; . In a non-interacting condensate, the expansion
and contraction times must be much larger than this value to
achieve adiabaticity.
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FIG. 5. Efficiency (in units of the ideal Otto efficiency) as
a function of the hot temperature 7}, using parameters the
same parameters of Sec. [[TE] Labels for the markers are the
same as in Fig. [

a value that is independent of 7, .. In this regime, the
efficiency is roughly half that of the ideal Otto efficiency
for a non-interacting gas.

On the other hand, when only the temperature of the
hot reservoir, Ty, is varied we find that the efficiency
remains approximately constant (i.e., within error bars,
see Fig. p). However, increasing T}, (and therefore, the
difference between T}, and T.) results in a reduction of
fluctuations. Thus, larger temperature gradients leads to
a better determination of the averaged efficiency. Note
that this is also what happens with the ideal Otto cycle,
where the efficiency is independent of the temperatures.

We will now analyse the efficiency in terms of the inter-
action strength. In this case, we expect that in the limit
of a non-interacting gas the efficiency should approach
no as defined in Eq. [16]. However, our method can
only attain this limit asymptotically. This is due to the
fact that when the interaction is removed, g = 0, the
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FIG. 6. Efficiency of the cycle n as a function of no =1 —
wWe/wp, as we vary we/wp, (symbols with the same color). For
an ideal Otto cycle we expect 1 = no. Different colors of the
symbols correspond to different interaction strengths: gray
for « = 1 (g = go) and purple for @ = 0.064 (g = 0.064¢o).
Two slopes are indicated as references.

thermalization time extends to infinity (as illustrated in
Fig. . Therefore, we will evaluate the efficiency as the
interaction strength is reduced. Reducing the interaction
strength leads to a decrease of the speed of sound, and
an increase in the healing length (i.e., a more dilute gas).
In the following, we express the results with respect to a
coefficient a defined as

g = ago, (15)

where 0 < a < 1, and gg corresponds to setting
the speed of sound ¢ = (gopo/m)*/? = 1U and & =
hi/ (2mpogo)t/? = 0.0707L (i.e., the value used so far in
this work).

First, we performed several cycles with different values
of we/wp, varying w. for two interaction strengths o = 1
and a = 0.064 (the other parameters are the same as in
Sec. [[TE).

Fig. [6] shows the efficiency as a function of the ideal
Otto efficiency 1o = 1 — w./wp,. We can see that it re-
mains smaller than the Otto efficiency (which is indicated
as a reference by a black dashed line). However, it still
scales linearly with 1 — w./wy, and also gets closer to no
when « decreases. Interestingly, the behavior in Figs.
and [0] indicate that the efficiency is independent of the
temperature and the dependence with « can be factor-
ized. This, at least in the regime of parameters that we
are exploring, suggests that efficiency for the interacting
gas is proportional to the ideal non-interacting Otto effi-
ciency, with a proportionality factor that decreases with
the interaction strength.

Then, we fix the value of w./w, and vary the interac-
tion strength. Note that the volume of the condensate
depends on g. In this case, as we consider repulsive in-
teractions, the volume decreases with g at a fixed poten-
tial. We considered two cases different situations: one in
which the total mass of the condensate is kept constant
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FIG. 7. Top: Efficiency in units of no for different interaction
strengths @ = ¢g/go. We compare situations in which the total
mass in the condensate is constant (labeled as M), and in
which the density in the center of the trap is constant (labeled
as po). Labels for the markers are the same as in Fig.
Bottom: Mean work extracted by the engine as a function of
«, in units of the work W* for the fully interacting case with
a=1.

as the interaction strength is changed, and the other in
which the density in the center of the trap is kept con-
stant. We can appreciate from the top panel of Fig.[7]that
both cases display similar efficiencies. However, when the
mass is constant the fluctuations are larger than when the
density is kept constant. This stems from the fact that as
the interaction strength is reduced, the concentration of
particles at the center of the trap decrease substantially,
thus increasing the amount of fluctuations. In general,
we observe that the efficiency grows slowly for small a.
In both cases, as « decreases the efficiency increases at-
taining a mean value ~ 65% of 1o for the minimum «
considered in the simulations. As previously stated, we
are unable to reduce the value of o any further as cal-
culating isochoric strokes becomes excessively expensive
with a progressively increasing thermalisation time.
Finally, we analyze the power of this engine. Let us
first look at the bottom panel of Fig. [7] where the mean
extracted work as a function of the interaction strength «
is shown. In this case, we compare the extracted amount
of work for a given value of o with the work W* ex-
tracted in the fully interacting case with o = 1. Note
that W/W* increases by ~ 50% for decreasing «, and
becomes approximately constant for o < 10~!. The ac-
tual power of the cycle is determined by the ratio of the
work to the time required to complete the cycle. As it
occurs in both numerical simulations and in a real gases,
we consider that the thermalization times in the isochoric
strokes are longer than the times required for the expan-
sion and compression. Thus, we can approximate the
length of the cycle as twice the length of the thermaliza-
tion process. Note that, in our simulations we use the

stochastic Ginzburg-Landau equation as a multivariate
Fokker-Plank equation to obtain the new equilibria (at
a given temperature) of the Grand canonical ensemble,
therefore the time in the simulation should not be di-
rectly associated to an actual thermalization time. How-
ever, in the non-interacting limit the thermalization time
effectively goes to infinity, as the time between collisions
diverges.

We can still estimate the order of the thermalization
time for the interacting case from kinetic theory. Note
that g ~ a, i.e., it is linearly proportional to the scatter-
ing length, and thus g ~ a ~ /o where o is the collision
cross section. As o ~ 1/7 where 7 is the time between
collisions, for a fixed number of particles the time it takes
for the system to thermalize with a = 1 compared with
the time when a < 1 is proportional to the ratio of the
times between collisions,

To <9>2 — a2 (16)

T gdo

where ¢ is the value of 7 when « = 1. This indicates (in
qualitative agreement with the results from the numer-
ical simulations) that interactions allow for much faster
cycles, and extraction of significantly more power (e.g.,
from the cycles in the plateau of W for o < 10~! in Fig.
even with the reduction of the extracted work of ~ 50%
with respect to a = 1). In other words, interacting gases
allow to get higher power in a finite time cycle. More-
over, in principle by adjusting the interaction strength of
the condensate, a power enhancement at nearly constant
efficiency can be achieved (see Figs. [6] and [7)).

IV. CONCLUSIONS

In this work, we performed numerical simulations of
quantum Otto engines that have an interacting BEC as
its working medium. We were able to recover not only
the thermodynamics of the system, but also its complete
dynamics, which enable in turn to perform a detailed
analysis of the engine. Analyzing, for instance, the dif-
ferent contributions to the energy along the adiabatic
strokes.

We characterized the efficiency of the engine by per-
forming several simulations in which we independently
changed the temperatures, the trap frequencies, and the
interaction strength of the gas. We found that the effi-
ciency is independent of the temperature. However, fluc-
tuations in the efficiency and in other observables are re-
duced as the difference between the temperatures of the
reservoirs increases. Also, their dependence on the trap
frequencies turns out to be similar to the non-interacting
case, but with a proportionality factor that depends on
the interaction strength.

We also show that the efficiency and work output of
the engine decrease as the interaction strength of the
BEC becomes larger. However, the timescale it takes



to the system to thermalize is inversely proportional to
the square of the interaction strength. Thus, for small
interactions, we find a regime in which increasing the in-
teraction of the BEC allows for a considerable increase
in power, while the efficiency is only slightly reduced.
Since the interaction strength of the BEC can be exper-
imentally tuned, our results provide a possible way to
improve the power of a quantum engine at a small cost
in efficiency.
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Appendix: Estimation of T)

In order to estimate the critical temperature T of the
condensate, we performed a series of simulations of the
stochastic Ginzburg-Landau equation with parameters as
listed in Sec. (i.e the most interacting case in our pa-
per), at constant frequency of the trap w., varying the
temperature 7. In mean field theory, critical tempera-
ture decreases with increasing interaction, a result that
has been confirmed experimentally where higher order
corrections where also observed [39, 40]. This guarantees
that temperatures used in this study, as they are far be-
low T of the most interacting case, are sufficiently small
so that all the simulations are below critical tempera-
ture. This is enhanced by the fact that to determine T)
we use the smallest value of w for the trap. To obtain
the condensed fraction in the gas as a function of the
temperature we use an approach similar to that used in
experiments [4I]. We consider the mean mass density in
the vicinity of the center of the trap as the order param-
eter, (pg), averaged in time once the system reaches the
equilibrium.

Figure [§ shows the result as a function of the temper-
ature. Temperature is shown in units of the transition
temperatures T}, i.e., it is rescaled in such a way that the
transition in the behavior of (pg) happens at T'/T) = 1.
Note that this parameter has an abrupt change of behav-

ior at this temperature, as it decreases from 1 monoton-
ically, and then remains approximately constant. This
is compatible with a second order phase transition. All
the temperatures considered in this study lie in the light-
blue shaded region of Fig.|§] i.e., far away from the phase
transition.
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FIG. 8. Mean value for different times of the mean density
in the center of the trap as a function of the temperature for
thermal states. The shaded part shows where all the temper-
atures mentioned in this work lay showing that they are far
away from the transition so the non-condense fraction can be
neglected.
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