BIOTECHNOLOGICALLY RELEVANT ENZYMES AND PROTEINS

A new and promiscuous α/β hydrolase from *Acinetobacter tandoii* DSM 14970^T inactivates the mycotoxin ochratoxin A

Ana Sánchez-Arroyo¹ · Laura Plaza-Vinuesa¹ · María Claudia Abeijón-Mukdsi¹ · Blanca de las Rivas¹ · José Miguel Mancheño² · Rosario Muñoz¹

Received: 17 October 2023 / Revised: 11 February 2024 / Accepted: 13 February 2024 © The Author(s) 2024

Abstract

The presence of ochratoxin A (OTA) in food and feed represents a serious concern since it raises severe health implications. Bacterial strains of the *Acinetobacter* genus hydrolyse the amide bond of OTA yielding non-toxic OT α and L- β -phenylalanine; in particular, the carboxypeptidase PJ15_1540 from *Acinetobacter* sp. *neg1* has been identified as an OTA-degrading enzyme. Here, we describe the ability to transform OTA of cell-free protein extracts from *Acinetobacter tandoii* DSM 14970^T, a strain isolated from sludge plants, and also report on the finding of a new and promiscuous α/β hydrolase (ABH), with close homologs highly distributed within the *Acinetobacter* genus. ABH from *A. tandoii* (*At*ABH) exhibited amidase activity against OTA and OTB mycotoxins, as well as against several carboxypeptidase substrates. The predicted structure of *At*ABH reveals an α/β hydrolase core composed of a parallel, six-stranded β -sheet, with a large cap domain similar to the marine esterase EprEst. Further biochemical analyses of *At*ABH reveal that it is an efficient esterase with a similar specificity profile as EprEst. Molecular docking studies rendered a consistent OTA-binding mode. We proposed a potential procedure for preparing new OTA-degrading enzymes starting from promiscuous α/β hydrolases based on our results.

Key points

- AtABH is a promiscuous $\alpha\beta$ hydrolase with both esterase and amidohydrolase activities
- AtABH hydrolyses the amide bond of ochratoxin A rendering nontoxic OTa
- Promiscuous $\alpha\beta$ hydrolases are a possible source of new OTA-degrading enzymes

Keywords Amidohydrolase · Esterase · Mycotoxin · Ochratoxin A · Promiscuous enzymes

Introduction

Ochratoxin A (OTA) is one of the most prevalent mycotoxins that contaminate food and feed products around the world (Liuzzi et al. 2017; Marin et al. 2013). OTA can have a variety of noxious effects both in humans and in other

- ¹ Bacterial Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040 Madrid, Spain
- ² Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, CSIC, Serrano 119, 28006 Madrid, Spain

l, Spain b

animals (Gan et al. 2017), although it is best known for its nephrotoxic effects (Pfohl-Leszkowicz and Manderville 2007). While a positive association between some mycotoxins, such as aflatoxin, and cancer has been verified (Claeys et al. 2020), the potential link between OTA exposure and cancer risk is not currently established and needs further epidemiological studies. Nonetheless, to avoid its toxic effects, the levels of OTA must be reduced as much as possible. Up to now, the most important measures to control OTA levels have focused on avoiding fungal growth and OTA production (Amézqueta et al. 2009). In this regard, biological approaches have increasingly been considered as an alternative to physical and chemical treatments (Abraham et al. 2022), and currently, it has been reported that microorganisms that adsorb and/or degrade OTA and even some practical procedures have been developed thereafter (Ndiaye et al. 2022). However, some reports describing microbial OTA-degrading activity do not discriminate between

José Miguel Mancheño jm.mancheno@csic.es

Rosario Muñoz r.munoz@csic.es

physical adsorption or enzymatic degradation. In this line, it is now generally accepted that whereas detoxification by lactic acid bacteria mainly proceeds through adsorption of OTA to their cell walls (Del Prete et al. 2007), other organisms, including actinobacteria, bacteria, filamentous fungi, and yeast (Xu et al. 2022), transform OTA through hydrolysis of its amide bond to generate OT α and L- β -phenylalanine, virtually non-toxic compounds.

Only a handful of enzymes involved in the degradation of OTA have been isolated and characterized in detail. The first reported microbial (fungal) ochratoxinase was an Aspergillus niger amidase (Dobritzsch et al. 2014). Later, bacterial proteins annotated as putative carboxypeptidases from Bacillus amyloliquefaciens ASAG1 (Chang et al. 2015), Bacillus subtilis CW14 (Hu et al. 2018; Xu et al. 2021), Lysobacter sp. CW239 (Wei et al. 2020), and Acinetobacter sp. neg1 (Liuzzi et al. 2017) were described. Moreover, bacterial enzymes able to efficiently transform OTA have been identified in Alcaligenes faecalis DSM 16503 (Zhang et al. 2019), and Stenotrophomonas sp. CW117 (Chen et al. 2022; Luo et al. 2022). In this regard, we have recently reported that the salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans inactivates OTA acting as an amidohydrolase and proposed that metallocarboxypeptidases may be a rich source of potential OTA-degrading enzymes (Sánchez-Arroyo et al. 2023). In that study, with the aid of currently available, powerful molecular docking approaches, we proposed an OTA-binding mode and a catalytic mechanism of OTA hydrolysis, which is consistent with those from metalocarboxypeptidases. This very same in silico approach is being used here, combined with the use of AlphaFold2 (Jumper et al. 2021) for predicting the structure of AtABH. In this sense, the accuracy of the predicted models produced by this astonishingly powerful program (Pereira et al. 2021) is such that it has changed the scene of structural biology, and they are used for the generation of convincing hypotheses about interacting proteins (Tunyasuvunakool et al. 2021) or structure solution by molecular replacement (McCoy et al. 2022; see Read et al. 2023).

Bacteria from the genus *Acinetobacter* are widely distributed in nature, being present in soils, freshwater, oceans, sediments, and contaminated sites (Jung and Park 2015). *Acinetobacter* species are metabolically versatile in that they possess numerous catabolic routes aimed at the degradation of compounds from plants, such as routes for the degradation of various long-chain dicarboxylic acids and aromatic and hydroxylated aromatic compounds. For these reasons, the genus *Acinetobacter* has attracted significant attention both in the scientific and the biotechnological fields (Jung and Park 2015), particularly, the strains *A. calcoaceticus* NRRL B551 and *A. calcoaceticus* 396.1 since they are able to transform OTA (De Bellis et al. 2015; Hwang and Draughon 1994). However, the *Acinetobacter* genus includes both non-pathogenic and pathogenic species; for instance, the Acinetobacter baumannii-calcoaceticus complex causes diverse human infections, the nosocomial ones affecting immunocompromised patients being especially relevant (Blossom and Srinivasan 2008; Zarrilli et al. 2023). Hence, it does not seem to be the most adequate bacterial species for biotechnological applications in the food industry. A comparable scenario is found for the Acinetobacter sp. neg1 strain: although it is also capable of degrading OTA (De Bellis et al. 2015), shows the closest match to A. gyllenbergii (Fanelli et al. 2015), a haemolytic species isolated from human clinical specimens (Nemec et al. 2009) that has been described to be the origin of resistance to aminoglycosides of therapeutic importance in Acinetobacter strains (Yoon et al. 2016). Curiously, the recombinant variant of the carboxypeptidase PJ15_1540 from Acinetobacter sp. neg1 exhibited a much lower OTA-degrading activity than that of the host strain (Liuzzi et al. 2017).

In this study, we analyzed the OTA-degrading ability of the bacterial species A. tandoii (Carr et al. 2003), a non-pathogenic species isolated from sludge plants, and identified a new α/β hydrolase in A. tandoii DSM 14970^T (AtABH) that degrades OTA by hydrolysing its amide bond, producing $OT\alpha$ and L- β -phenylalanine. Modelling of the structure of AtABH with AlphaFold2 and subsequent in silico molecular docking approaches permitted us to propose an OTA-binding mode to AtABH that reveals a substratebinding pocket with two hydrophobic sub-pockets around a catalytic triad. Further structural similarity searches show unexpected relationships of AtABH with esterases, which has been verified experimentally revealing that AtABH is a promiscuous α/β hydrolase with an efficient esterase activity and a second, ancillary amidohydrolase activity. Based on these findings, we propose a structure-based roadmap for finding OTA-degrading enzymes.

Materials and methods

Bacterial strains and OTA-transformation assays

Acinetobacter tandoii DSM 14970^T type strain used in this study was purchased from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures (DSMZ) and was routinely grown in TSB broth at 30 °C as recommended by DSMZ. *Escherichia coli* DH5 α was used for DNA manipulations. *E. coli* BL21 (DE3) cells were used for protein expression in the pURI3-Cter vector (Curiel et al. 2011). *E. coli* strains were cultured in Luria–Bertani (LB) medium at 37 °C and shaking. When required, ampicillin was added to the medium at 100 µg/mL.

A. tandoii DSM 14970 ^T cultures and cell-free protein extract were used to assay their ability to transform OTA.

For the bacterial culture assays, *A. tandoii* was grown in minimal salt medium (MM) (Shabtai and Gutnick 1985), ethanol-minimal salt medium (pH 7.5; 2.5% ethanol; MME) (Hwang and Draughon 1994; Shabtai and Gutnick 1985), and minimal salt medium with Bacto Peptone (0.5% w/v) (MMP) (De Bellis et al. 2015). Cultures were grown for 6 days in the absence or in the presence of OTA (5μ M). Then, the cells were sedimented, and the supernatant was filtered (0.45μ m pore size; Sarstedt, Germany) and analyzed by HPLC for the presence of OTA as previously described (Sánchez-Arroyo et al. 2023).

The OTA transforming activity was also analyzed in cellfree protein extract. For extract preparation, A. tandoii DSM 14970^T cells grown in TSB broth for 24 h were harvested by centrifugation (8000×g for 15 min at 4 °C), washed with 50 mM MOPS buffer, pH 7.0 containing 20 mM NaCl, and resuspended in the buffer used for cell rupture. Bacterial cells were disintegrated by using a French press at 1100 psi pressure (Amicon French pressure cell, SLM Instruments). Cell disruption steps were carried out on ice to ensure the low-temperature conditions required for most enzymes. To remove cell debris, the cell suspension was centrifuged at 4 °C (12,000×g for 20 min). To prepare the final protein extract, the clean supernatant was filtered with sterile filters of 0.45 µm pore size (Sarstedt, Germany). For OTA degradation assays, this protein extract was incubated in the presence of OTA (5 µM final concentration) overnight at 37 °C. Reactions were stopped by heating at 95 °C for 5 min. Subsequently, samples were centrifuged at $14,000 \times g$ for 5 min. The supernatants were filtered through 0.45 µm syringe filters (Millipore, USA) and diluted 1:1 in water/ acetonitrile/glacial acetic acid (89:10:1, v/v)], and analyzed by HPLC as previously described (Sánchez-Arroyo et al. 2023). Controls without proteins were analyzed to evaluate the spontaneous degradation of OTA. Identification of the degradation product as $OT\alpha$ was carried out by comparing its retention time and spectral data with those of $OT\alpha$ from a commercial supplier (LGC Standard, UK).

Production and purification of an α/β hydrolase from A. tandoii

In the *A. tandoii* DSM 14970 ^T genome, the gene encoding a putative α/β hydrolase in the locus Q340_RS0119210 (*At*ABH) was amplified by PCR using primers 1965 (5'-AAC *TTTAAGAAGGAGATATACATatg*aaaccactgatccacttgcgca) and 1966 (5'-*GCTATTAATGATGATGATGATGATG*ttgcctgaatcaactgcttaatcaa) (italics: nucleotides pairing the expression vector; lowercase letters: nucleotides pairing the gene sequence). The 795-bp purified PCR product was inserted into the pURI3-Cter vector as described previously (Curiel et al. 2011). The resultant recombinant protein variants have a six-histidine affinity tag in their C-termini. *E. coli* DH5 α cells were used for preparing the plasmids that were then transformed into *E. coli* BL21(DE3) cells. Protein production and purification of the His-tagged AtABH was carried out essentially as described before (Sánchez-Arroyo et al. 2023). Briefly, *E. coli* cells carrying the recombinant plasmid pURI3-Cter-ABH were grown at 22 °C in LB medium and induced with 0.25 mM isopropyl- β -D-thiogalactopyranoside (IPTG) (Ackerley et al. 2004). The cell lysate obtained by disruption with a French press was centrifuged at 47,000 × g for 40 min at 4 °C to remove the insoluble fraction. *At*ABH was purified by IMAC using TALON superflow resin (Clontech). The eluted His-tagged *At*ABH was dialyzed overnight at 4 °C against 50 mM sodium phosphate buffer, pH 7.0, containing 300 mM NaCl. The purity of the enzyme was checked by SDS-PAGE.

Enzymatic degradation of OTA, OTB, and 4MF

Degradation of the mycotoxins OTA and ochratoxin B (OTB) was followed by HPLC. Stock solutions of OTA and OTB at 1 mg/mL concentration were prepared by dissolving them in methanol and stored at -20 °C. The enzymatic hydrolysis reactions were conducted essentially as described previously, with minor modifications (Sánchez-Arroyo et al. 2023).

Conversely, we also used the OTA analog *N*-(4-methoxyphenylazoformyl)-phenylalanine (4MF) (Bachem, Switzerland) as substrate, to compare the degradation activity of purified *At*ABH with the commercial CPA (Sigma-Aldrich, Germany). Hydrolysis of 4MF was assayed as described (Sánchez-Arroyo et al. 2023).

AtABH activity on synthetic carboxypeptidase substrates

The specificity profile of AtABH was analyzed by using a set of synthetic carboxypeptidase substrates with different amino acid residues at their C-terminal position. We have classified the substrates tested into three different families according to their chemical composition (Fig. S1 in the Supplementary information). Family I is composed of carbobenzyloxy- β -alanyl-L-alanine (ZAA); this compound is the only substrate containing a β -amino acid. Family II is composed of six potential carbobenzyloxy-derived substrates: carbobenzyloxy-L-alanine (ZA), carbobenzyloxy-L-alanyl-L-leucine (ZAL), carbobenzyloxy-L-alanyl-L-phenylalanine (ZAF), carbobenzyloxy-L-isoleucyl-Lphenylalanine (ZIF), carbobenzyloxy-L-phenylalanine (ZF), and carbobenzyloxy-L-phenylalanyl-L-isoleucine (ZFI). As can be observed, this family contains potential substrates with one (ZA, and ZF) or two (ZAL, ZAF, ZIF, ZFI) amino acids, together with the N-terminal carbobenzyloxy moiety. Finally, family III is made up of the hippuryl-derived compounds: hippuryl-phenylalanine (N-benzoyl-glycylphenylalanine) (HF), and hippuryl-arginine (N-benzoylglycyl-arginine) (HR). All these substrates were purchased from Sigma-Aldrich (Germany) and were manipulated as described previously (Sánchez-Arroyo, et al. 2023).

Esterase enzymatic assay

The esterase activity of *At*ABH was determined by a spectrophotometric method using *p*-nitrophenyl esters of different chain lengths (Sigma-Aldrich) as substrates: *p*-nitrophenyl acetate (C2), *p*-nitrophenyl butyrate (C4), *p*-nitrophenyl caprylate (C8), *p*-nitrophenyl laurate (C12), *p*-nitrophenyl myristate (C14), and *p*-nitrophenyl palmitate (C16), as described previously (Esteban-Torres et al. 2013). Stock solutions (25 μ M) of the *p*-nitrophenyl esters were prepared in acetonitrile-isopropanol (1/4, v/v).

The enzymatic reactions were done in 50 mM sodium phosphate buffer (pH 7.0) containing the substrate at 0.5 mM final concentration, and 30 µg of AtABH (3.8 µM). After 10 min of incubation at 37 °C, the reaction was stopped by chilling on ice, and the amount of *p*-nitrophenol released was determined as described before (Esteban-Torres et al. 2013). Enzyme assays were performed in triplicate.

Molecular docking studies

Molecular docking was performed with the docking program AutoDock Vina (Forli et al. 2016) using UCSF Chimera 1.17 (Pettersen et al. 2004) as interface. We used the predicted structure of AtABH with AlphaFold2 (Jumper et al. 2021) as the receptor. Before its use in docking assays, the PDB file from AlphaFold2 was processed with Phenix (Liebschner et al. 2019), first with *phenix.process_predicted_model*, and then with *phenix.geometry* minimization. The final, minimized model of AtABH was checked with Molprobity (Williams et al. 2018) and it showed excellent stereochemistry. In this regard, as expected for a canonical nucleophile serine residue of α/β hydrolases such as AtABH, its predicted catalytic serine residue (Ser75) is an outlier in the Ramachandran plot (there are 3 outliers out of 262 amino acids). The other two outlier residues are Pro35 and Phe225, which are far from the active site of AtABH and therefore are not relevant in the docking assays. On the other hand, the atomic coordinates of OTA (PubChem CID: 442,530) and OTB (PubChem CID: 20,966) were taken from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/). The atomic coordinates for the OTA homolog 4MF were prepared with Chimera (Pettersen et al. 2004) by modifying those of OTA. The preparation of the structure of the receptor for docking assays involved the addition of polar hydrogens and the merging of the charges, and the preparation of the ligand involved the addition of hydrogens and Gasteiger charges. Additional parameters were: search exhaustiveness of 8, a maximum energy difference of 3 kcal/mol, and the number of binding modes was 10. The molecular docking was done using a grid box search space with dimensions x=15 Å, y=15 Å, and z=15 Å centered at the coordinates of the oxygen atom of the Ser75 side chain. Evaluation of the best-docked poses was carried out considering that the scissile amide bond must be in close proximity and in the correct orientation to the nucleophile Ser75 side chain. UCSF Chimera (Pettersen et al. 2004), COOT (Emsley et al. 2010), and PyMOL (Schrödinger and DeLano 2020) were used for the visualization of the structures, analysis of the interactions, and figure preparation.

Prediction of the structure of the carboxypeptidase PJ15_1540 from *Acinetobacter* sp. *neg1* was also done with AlphaFold2 (Jumper et al. 2021). The resultant PDB file was processed with Phenix (Liebschner et al. 2019) as described above for *At*ABH. Structural similarity searches were done with the DALI Protein Structure Comparison Server (Holm 2022) (http://ekhidna2.biocenter.helsinki.fi/dali/). Pairwise structural superpositions were done with FATCAT (Li et al. 2020). Analyses of protein sequences for the presence of signal peptides were done with SignalP—6.0 (Almagro Armenteros et al. 2019) (https://services.healthtech.dtu.dk/ services/SignalP-6.0/).

Results

Ochratoxin transformation by A. tandoii DSM 14970^T

We observe that *A. tandoii* DSM 14970^T was unable to grow in minimal-salts media devoid of carbon source, even in the presence of OTA. However, evident growth was detected when it was cultured in minimal media containing ethanol or peptone, regardless of the presence of OTA. Supernatants from these OTA-containing cultures were analyzed by HPLC for the presence of this mycotoxin. Although a slight reduction in OTA concentration with respect to controls was observed, the majority of OTA remained untransformed in the culture supernatant (data not shown), so it cannot be ruled out that the reduction observed could be due to degradation or a phenomenon of OTA adsorption to the bacterial cell walls.

Since the results obtained with bacterial cultures from *A*. *tandoii* DSM 14970^T were not conclusive, OTA degradation was assayed in a cell-free protein extract. As shown in Fig. 1, when protein extract from this strain was assayed, the OTA present in the reaction was hydrolysed, and the presence of OT α was detected in the *A*. *tandoii* protein extract reaction (Fig. 1). This result confirmed that *A*. *tandoii* DSM 14970^T hydrolyses the amide bond of OTA, producing the innocuous products OT α and L- β -phenylalanine.

Fig. 1 Amidase activity of *A. tandoii* DSM 14970^T cell-free protein extract on OTA. HPLC chromatograms of *A. tandoii* extract incubated at 37 °C for 16 h in the presence of OTA (5 μ M). A control reaction without extract is indicated (A). The fluorescence wavelengths were 340 nm for excitation and 436 nm for emission

OTA-hydrolyzing activity of an α/β hydrolase from A. *tandoii*

With the aim to identify putative OTA-degrading enzymes from *A. tandoii* DSM 14970 ^T, we performed a protein search in the *A. tandoii* DSM 14970 ^T genome. In particular, we focused our attention on genes coding for hydrolases or lactamases since they have been predicted as good OTA-degrading candidates (Xu et al. 2021). From the proteins annotated as hydrolases in the *A. tandoii* DSM 14970 ^T genome, the " α/β hydrolase" encoded in the locus Q340_RS0119210 (WP_026441294), herein referred as *At*ABH, was chosen to check its OTA-transforming activity because it is widely distributed in *Acinetobacter* species, including the *Acinetobacter* sp. *neg1* strain (locus PJ15_ RS15480, WP_047432341) (Fig. S2 in the Supplementary information).

Hence, the gene encoding *At*ABH was cloned into the pURI3-Cter vector as described previously (Curiel et al. 2011). The C-terminally His-tagged *At*ABH protein thus produced was purified by IMAC chromatography. Fig. S3 in the Supplementary information shows that the band of purified *At*ABH in SDS-PAGE corresponded to the molecular size expected for the enzyme (\approx 30 kDa). This final production yield was 6.9 mg of *At*ABH per liter of culture.

Pure AtABH was incubated overnight in the presence of OTA or OTB (a nonchlorinated form of OTA), and then the reaction mixtures were analyzed by DAD-FL-HPLC. As shown in Fig. 2, both mycotoxins were hydrolysed, yielding the expected products. In particular, the molecular species with a retention time of 1.4 min (Fig. 2B) was identified as OT α since both the retention time and its spectral properties

Fig. 2 Amidase activity of Amidase activity of ABH from *A. tandoii* DSM 14970^T on OTA (A) and OTB (B). HPLC chromatograms of *At*ABH incubated at 37 °C for 16 h in the presence of OTA (B) and OTB (D) at 5 μ M concentration. Control reactions without *At*ABH are indicated (A and C). The fluorescence wavelengths were 340 nm for excitation and 436 nm for emission

are identical to those from the commercial standard. Therefore, AtABH behaves as an amidohydrolase since it hydrolysed OTA producing OT α and L- β -phenylalanine.

Analysis of the specificity profile of AtABH

To explore the hydrolase specificity profile of AtABH, we used three structural families of substrates (Fig. S1 in the Supplementary information), which permitted us to probe the effects on the hydrolase activity of different substituents at both the N- and the C-terminal sides around the scissile amide bond. In this regard, since OTA, OTB, as well as the OTA analog N-(4-methoxyphenylazoformyl)-phenylalanine 4MF (not shown) are hydrolysed by AtABH and all of them contain a phenylalanyl moiety at their C-terminal end and an aromatic ring at the N-terminal end, it is expected that AtABH exhibited a preference for hydrophobic moieties at both the N- and C-terminal sides of the amide bond, a fact that is well supported by our modelling studies about the OTA-binding mode to AtABH (see below). The results obtained with the family composed of the substrates HF and HR (Fig. 3) agree well with this hypothesis since the presence in HR of a large, cationic moiety at the C-terminal side of the amide bond makes this compound a poorly hydrolysed substrate (3%) when compared to HF that presents a Phe residue (74%). Nonetheless, the presence of aromatic rings at both ends of the structure of a (putative) substrate is not a necessary condition for efficient hydrolysis as can be deduced from ZAA (100%) that contains only one aromatic ring at the N-terminal end, a C-terminal methyl group and a

Fig. 3 Substrate profile of *A. tandoii* ABH amidase activity on carboxypeptidase synthetic substrates harbouring different substitutions around the scissile amide bond. The substrates are HF, HR, ZAA, ZA, ZAL, ZAF, ZF, ZIF, and ZFI (see Fig. S1 in the Supplementary information for structural details). The error bars represent the standard deviation estimated from the three independent assays. The observed maximum activity was defined as 100%. Colour code is as in Fig. S1

 β -alanyl bridge in the central part of the molecule (Fig. S1 in the Supplementary information). Yet, the combined absence of a central bridge and a C-terminal Phe, as in ZA, was crucial for hydrolysis since this compound was not hydrolysed (Fig. 3). Since all the rest of the compounds from the ZA family were efficiently hydrolysed (excluding ZIF, which has a rigid Ile residue within the central bridge), it can be deduced that, for members of this family, the presence of both a central bridge and a C-terminal aromatic/aliphatic residue are sufficient conditions to define a good substrate for *At*ABH. As indicated below, these results are in agreement with the in silico model of the structure of *At*ABH that predicts a substrate-binding pocket composed of two hydrophobic sub-pockets around its canonical catalytic triad.

In silico structural model of AtABH

In agreement with the genomic annotation of the locus Q340_RS0119210 from A. tandoii DSM 14970 $^{\rm T}$, the predicted structure of AtABH obtained with AlphaFold2 (Jumper et al. 2021) indicates that this enzyme belongs to the α/β hydrolase superfamily of enzymes (Heikinheimo et al. 1999; Nardini and Dijkstra 1999; Ollis et al. 1992). The predicted structure of AtABH indicates that when compared to the canonical α/β hydrolase fold, whose core structure is based on an eight-stranded mostly parallel β -sheet, AtABH lacks the first two, N-terminal canonical β-strands, and therefore its structural core is a parallel, six-stranded β -sheet (Fig. 4a). The catalytic machinery of AtABH supported by this structural framework, as it is typical in the α/β hydrolases (Rauwerdink and Kazlauskas 2015), is based on a catalytic triad made up of residues Ser75, Asp99, and His244 (Fig. 4b). The nucleophile Ser75 is situated in a Gly-Xxx-Ser-Xxx-Gly canonical sequence motif (73-Gly-His-Ser-Leu-Gly-77), which is predicted to adopt a sharp turn, known as nucleophile elbow, between strand β 3 and helix α 3. Conversely, His244 and Asp99 are located in the β 9- α 12 and the β 4- α 4 connecting loops, respectively. The large insertion between the β 4 and β 5 strands forming the cap domain of AtABH is made up of the segment between residues Asp99 and Pro209 that, as shown in Fig. 4a, configures the walls of the substrate binding pocket of the enzyme.

OTA-binding mode

Following the same experimental procedure that we have recently used for the analysis of the OTA-binding mode to the salicylate 1,2-dioxygenase from *Pseudaminobacter salicylatoxidans* (Sánchez-Arroyo et al. 2023), we analyzed the binding mode of OTA, OTB, and 4MF to the predicted structure of *At*ABH. The grid box search space was centred around the residue Ser75, whose identification as the nucleophile was straightforward since, as indicated

Fig. 4 Predicted model of the structure of *At*ABH with AlphaFold2 and in silico molecular docking of ochratoxin A OTA, OTB, and 4MF (see Fig. S1 in the Supplementary information for structural details). The structure of *At*ABH (A) shows an $\alpha\beta$ hydrolase fold formed by a parallel, six-stranded β -sheet (β -strands in *yellow*) surrounded by α -helices (in *red*) with a large cap domain (*blue ribbon*). The cap domain is comprised of the segment between residues Asp99 and Pro209 and is shown as *blue ribbon*. The OTA-binding mode (B, C) reveals that its amide bond is situated in close proximity to the

above, a catalytic triad defines the catalytic machinery of α/β hydrolases (Fig. 4b). The catalytic triad residues of AtABH (Ser75, Asp99, and His244) are situated at the bottom of a crevice (Fig. 4c) where the three substrates get access. The combined analysis of the docked poses of these three substrates permitted us to infer a consistent substrate-binding mode that places their corresponding scissile amide bonds in close proximity to the Ser75 side chain. As expected, the binding of OTA (Fig. 4b and c) and OTB (Fig. 4d) is almost identical: the (3R)-5-chloro-8-hydroxy-3-methyl-1-oxo-3,4-dihydroisochromene moiety of OTA (OTB lacks the 5-chloro substituent) is sandwiched between the side chains of the two pairs of residues Pro127, Phe192, and Pro101, Phe220, respectively, and it reaches a sub-pocket formed by the side chains of Ile103, Phe 111, Thr126, and Thr195. On the other hand, the aromatic ring of the Phe residue of OTA (or OTB) occupies another sub-pocket where it interacts with the Val13, Leu153, and Met245 side chains. Finally, the binding of 4MF places its amide bond in the same position and orientation observed for OTA or OTB, and its two aromatic rings occupy the two sub-pockets indicated above (Fig. 4e). The carboxylate moiety occupies the same location in all three cases and protrudes toward the solvent.

nucleophile Ser75 that together with Asp99 and His244 made up the catalytic triad of AtABH (*green sticks*). The substrate-binding pocket is formed by a crevice (C) which has two hydrophobic sub-pockets around the nucleophile Ser75, where the two ends of the substrates bind. OTB (D) and 4MF (E) binding modes are almost identical to the one of OTA (B). Amino acid side chains that form the substrate-binding pocket are shown as *blue sticks* model. OTA, OTB, and 4MF are shown as *yellow*, *orange*, and *grey sticks*, respectively

Structural similarity searches

Once an OTA-binding mode compatible with the predicted structure of *At*ABH has been determined, we carried out structural similarity searches using the DALI server (Holm 2022) with the aim of finding other potential OTA-hydrolysing enzymes, structurally similar to *At*ABH. The results show that the hits with the highest Z-score values (see Table 1) not only presented the conserved α/β hydrolase fold but also very similar cap domains (Fig. 5).

Esterase activity in AtABH

Based on the structural similarity found between *At*ABH and the marine esterase EprEst (Zhu et al. 2021) (PDB entry: 7c4d; see Table 1) and also in the fact that many α/β hydrolases have multiple catalytic activities (Bauer et al. 2020), we consider the potential esterase activity of *At*ABH using different *p*-nitrophenyl (*p*NP) esters of various acyl chain lengths (C2 to C16) as substrates. Substrate specificity was assayed after a 10-min incubation at 37 °C. Our results indicate that *At*ABH hydrolysed water-soluble *p*-NP esters, with a marked preference for the shortest substrates C2 > C4 > > C8 (Fig. 6), and remarkably, also *p*-NP
 Table 1
 Structurally similar

 proteins to AtABH determined
 with DALI

Protein	Z-score	rmsd (Å)	lali ¹	%id ²	Catalytic triad residues	Cap domain	
AtABH	_	_	_	_	Ser75/His244/Asp99	Asp99-Pro209	
2y6v	20.6	2.8	242	17	Ser145/His323/Glu169	Glu169-Arg284	
7dbl	20.1	2.8	242	22	Ser139/His365/Asp163	Asp163-Arg315	
7c4d	19.4	3.1	230	13	Ser85/His242/Asp109	Asp109-Pro205	
1m33	19.1	2.7	210	14	Ser82/His235/Asp207	Ala106-Pro198	

Applied Microbiology and Biotechnology

(2024) 108:230

¹lali, number of aligned residues; ²%id, sequence identity to AtABH

Fig. 5 Analysis of the structural similarity between the cap domains of *At*ABH and its close homologs as determined with DALI. The cap domains of the $\alpha\beta$ hydrolase Lpx1 from *Saccharomyces cerevisiae* (*cyan ribbon* model, A; PDB entry: 2y6v), the acyl-CoA hydrolase MpaH from *Penicillium brevicompactum* (*magenta ribbon* model, B; PDB entry: 7dbl), the marine esterase EprEst (*yellow ribbon* model, C; PDB entry: 7c4d), and the carboxylesterase BioH from *E. coli*

myristate (C14) and *p*-NP palmitate (C16), long-chain, water-insoluble esters. Therefore, *At*ABH behaves as an esterase since it hydrolysed monomeric, water-soluble esters and as a lipase since hydrolysed aggregated, water-insoluble esters (Fojan et al. 2000).

Discussion

A great variety of microorganisms have been reported to be able to transform OTA (Wang et al. 2022), among others some *Acinetobacter* species such as two strains from the *Acinetobacter* calcoaceticus species, namely, *A. calcoaceticus*

(*orange ribbon* model, D; PDB entry: 1m33) are shown superimposed to the cap domain of *At*ABH (*blue ribbon* model). Structural differences are indicated with a red star. The corresponding structure-based sequence alignment is shown for each structural superposition. Conserved amino acids are shown with white, bold characters and red background and similar residues as red, bold characters

NRL B551 and *A. calcoaceticus* 396.1 (De Bellis et al. 2015; Hwang and Draughon 1994) and also the strain *Acinetobacter* sp. *neg1* (De Bellis et al. 2015), that shows the closest match to *A. gyllenbergii* (Fanelli et al. 2015). Regarding *A. calcoaceticus* NRRL B-551, previous studies revealed that it did not grow in minimal-salts medium containing OTA, indicating that this strain was unable to use OTA as a sole carbon source (Hwang and Draughon 1994). However, when ethanol was added to the minimal-salts medium to provide a carbon source, it was able to grow and degrade OTA at 0.1 µg/mL/h at 30 °C (Hwang and Draughon 1994). Similarly, when peptone was used as the carbon source in the minimal-salts medium, *A. calcoaceticus* 396.1 and

Fig. 6 Substrate profile of *A. tandoii* ABH esterase activity on chromogenic substrates (*p*-nitrophenyl esters) with different acyl chain lengths (C2, acetate; C4, butyrate; C8, caprylate; C12, laurate; C14, myristate; C16, palmitate). The figure shows the relative specificities obtained toward different substrates. The error bars represent the standard deviation estimated from the three independent assays. The observed maximum activity was defined as 100%

Acinetobacter sp. nov. strains also degrade OTA in aerobic conditions and at moderate temperatures (De Bellis et al. 2015). Since these OTA-transforming *Acinetobacter* species are related to clinical environments, in this work we focused our attention on the non-pathogenic strain *A. tandoii* DSM 14970^T with the aim to evaluate its OTA-degrading capacity. Here we showed that cell-free protein extracts of *A. tandoii* DSM 14970^T were competent in OTA degradation (Fig. 1), in contrast to bacterial cultures, which rendered inconclusive results.

In this sense, previous studies identified the carboxypeptidase PJ15 1540 from the Acinetobacter sp. neg1 strain as an enzyme exhibiting hydrolytic activity against OTA. Although the recombinant variant of PJ15_1540 produced in E. coli BL21 (DE3) cells hydrolysed OTA, it was poorly efficient since it degraded a low percentage of the OTA present in the cell lysate (Liuzzi et al. 2017); in fact, the activity of this enzyme was much lower than that of the host strain. In this sense, PJ15_1540 is annotated as a D-alanyl-D-alanine carboxypeptidase and therefore potentially involved in the synthesis and remodelling of the peptidoglycan (Egan et al. 2020). In agreement with this, it has a signal peptide (residues Met1-Ala19), and the prediction of its structure with AlphaFold2 (Jumper et al. 2021) reveals an architecture based on an N-terminal D,D-carboxypeptidase domain, and an elongated C-terminal region (Fig. S4 in the Supplementary information), typical of penicillin-binding proteins (PBPs). In fact, the most structurally similar proteins are PBPs (Table S1 in the Supplementary information). A distinct characteristic of the proposed structure for PJ15_1540 is the presence of a large, amphipathic C-terminal helix (Fig. S4 in the Supplementary information), a structural motif involved in the association of PBPs with the membrane. We consider that this characteristic could make PJ15_1540 and other similar carboxypeptidases sub-optimal enzymes for biotechnological applications aimed at the degradation of OTA since it compromises their solubility. In fact, we think that the presence of this motif may explain the much lower OTA-degrading activity observed for recombinant PJ15_1540 versus the host strain (Liuzzi et al. 2017).

Likewise, similar carboxypeptidases from other sources such as Bacillus amyloliquefaciens ASAG1 (Chang et al. 2015), Bacillus subtilis CW14 (Hu et al. 2018; Xu et al. 2021), and Lysobacter sp. CW239 (Wei et al. 2020) also exhibited a low OTA-degrading activity. Conversely, the presence of OTA-degrading activity in a cp4 carboxypeptidase knock-out Lysobacter sp. CW239 strain (Qian et al. 2021) as well as in an amidohydrolase NA deficient Stenotrophomonas sp. CW117 strain (Chen et al. 2022) suggests that some strains could contain multiple enzymes for OTA degradation. In agreement with this idea, proteins possessing amidohydrolase (Chen et al. 2022; Dobritzsch et al. 2014; Luo et al. 2022; Zhang et al. 2019) or carboxypeptidase activity (Chang et al. 2015; Hu et al. 2018; Liuzzi et al. 2017; Wei et al. 2020; Xu et al. 2022) have been described elsewhere to be able to hydrolyse the amide bond present in the OTA molecule.

Although *A. tandoii* DSM 14970 ^T possesses a close homolog of the carboxypeptidase PJ15_1540 from the *Acinetobacter* sp. *neg1* strain (Q340_RS0101740), that may contribute to the observed OTA hydrolysis exhibited by protein cell extracts of *A. tandoii* DSM 14970 ^T, we identified *At*ABH as an α/β hydrolase that hydrolyses OTA (Fig. 2).

The predicted structure of AtABH (Fig. 4) shows that it belongs to the α/β hydrolase superfamily of enzymes (Heikinheimo et al. 1999; Nardini and Dijkstra 1999; Ollis et al. 1992). The members of this superfamily exhibit an inner structural core based on an eight-stranded mostly parallel β -sheet surrounded on both sides by α -helices, which is decorated with additional structural elements. Typically, one such additional element is an insertion, highly variable both in size and in structure, between canonical $\beta 6$ and $\beta 7$ strands (β 4 and β 5 in AtABH) that configures the so-called cap domain (Alvarez et al. 2014; Bauer et al. 2020), and that together with other connecting loops between β-strands of the central β -sheet, is key in modulating the entrance of substrates into the binding site of the enzyme. In this regard, the observed hydrolytic activity of AtABH against OTA, OTB, and 4MF reveals that the conformation and dynamics of this cap domain are compatible with the binding of these substrates. Considering this point, we raised the hypothesis that searching for α/β hydrolases with cap domains similar to that of *At*ABH maybe a good starting point for a roadmap aimed at finding novel OTA-degrading enzymes.

The molecular docking studies with OTA, OTB, and 4MF provide a consistent binding mode common to the three substrates. This binding reveals the presence of two hydrophobic sub-pockets around the catalytic triad of AtABH. This result explains well the specificity profile of the enzyme. This latter specificity can be explained assuming that each end of the substrates (N- and C-terminal) binds to a hydrophobic sub-pocket, with their amide bond being located in close proximity to the nucleophile Ser75. Efficient binding would result from a balance between the binding of each end of the substrate to a hydrophobic sub-pocket and the structure of the internal bridge of the molecule between the N- and C-terminal ends. These requirements would not be satisfied by ZA which lacks an internal bridge and a C-terminal large hydrophobic or aromatic residue, HR which has a C-terminal large cationic residue, and ZIF that most probably does not satisfy steric requirements around the nucleophile due to the internal, rigid aliphatic side chain of an Ile residue (Fig. 3). As a whole, these structural results support the binding of the mycotoxins and carboxypeptidase substrates, and in particular, reveal that the conformation of the cap domain permits these substrates to get access into the binding pocket of AtABH that is configured by two hydrophobic sub-pockets. Interestingly, the structure of this cap domain is similar to the one from the esterase EprEst (PDB entry: 7c4d; see Table 1) as deduced from structural similarity searches (Fig. 5). This finding is somehow supported by the unexpected esterase activity of AtABH and in particular its dependence on the *p*-NP ester chain length that clearly paralleled the one observed for EprEst (Zhu et al. 2021).

These functional results revealing that AtABH has both amidohydrolase and esterase activities, indicate that AtABH is a promiscuous enzyme (Aharoni et al. 2005; Hult and Berglund 2007; Kourist et al. 2008), which is a relatively common characteristic of members from the $\alpha\beta$ hydrolase superfamily most probably supported by the high versatility of the catalytic triad as catalytic machinery (Kourist et al. 2008; Rauwerdink and Kazlauskas 2015). In this sense, taking into account the time scales of the amidohydrolase and esterase reactions, and in the absence of kinetic analyses, it can be claimed that AtABH is operatively much more efficient as esterase than amidohydrolase, in agreement with the observation that promiscuous enzymes exhibit a main, native activity and a second much less efficient one (Aharoni et al. 2005). Thus, we can consider AtABH as an esterase with an ancillary amidohydrolase activity.

In summary, our biochemical and structural results indicate that AtABH is a promiscuous $\alpha\beta$ hydrolase with a primary esterase activity and a secondary, less efficient amidohydrolase activity that endows AtABH with OTAdegrading capacity. The predicted substrate-binding pocket of AtABH reveals two hydrophobic sub-pockets around the nucleophile Ser75, which explains its specificity profile. Also, the prediction of the structure of the carboxypeptidase PJ15_1540 from Acinetobacter sp. neg1 reveals a C-terminal amphipathic α -helix, most probably involved in the association with the membrane, which may explain previous results reporting low activity. Finally, we propose the following procedure for preparing OTAdegrading enzymes: (i) identification of promiscuous $\alpha\beta$ hydrolases with OTA-degrading activity; (ii) prediction of their structures with AlphaFold2, followed by molecular docking studies to determine a plausible OTA-binding mode; (iii) identification and selection of proteins with similar cap domains and substrate-binding pockets; (iv) optimization of OTA-degrading activity through structureguided preparation of protein variants.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00253-024-13073-x.

Author contribution R.M., and A.S.A. designed the experiment. A.S.A, C.A.M., and L.P.V. performed the experiments. J.M.M. performed the structural analysis. R.M., A.S.A., J.M.M., B.R., and L.P.V prepared the manuscript. All authors contribute to data analysis.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was financially supported by grant PID-2021-123291OB-I00 funded by MCIN/AEI/https://doi.org/10.13039/501100011033 and by ERDF A Way of Making Europe. Ana Sánchez Arroyo is a recipient of the PRE2018-083862 FPI contract funded by MCIN/AEI/https://doi.org/10.13039/501100011033 and by ESF Investing in Your Future.

Data availability The authors declare that the data supporting the results of this study are available within the paper and its Supplementary information. Should any raw data be needed, they are available from the corresponding author upon reasonable request.

Declarations

Ethics approval This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication All the authors agreed for publication.

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Abraham N, Chan ETS, Zhou T, Seah SYK (2022) Microbial detoxification of mycotoxins in food. Front Microbiol 13:1–18. https:// doi.org/10.3389/fmicb.2022.957148
- Ackerley DF, Gonzalez CF, Park CH, Blake R, Keyhan M, Matin A (2004) Chromate-reducing properties of soluble flavoproteins from *Pseudomonas putida* and *Escherichia coli*. Appl Environ Microbiol 70:873–882. https://doi.org/10.1128/AEM.70.2.873-882.2004
- Aharoni A, Gaidukov L, Khersonsky O, Gould SMQ, Roodveldt C, Tawfik DS (2005) The "evolvability" of promiscuous protein functions. Nat Genet 37:73–76. https://doi.org/10.1038/ng1482
- Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423. https://doi.org/10.1038/ s41587-019-0036-z
- Alvarez Y, Esteban-Torres M, Cortés-Cabrera A, Gago F, Acebrón I, Benavente R, Mardo K, De Las Rivas B, Muñoz R, Mancheño JM (2014) Esterase LpEst1 from *Lactobacillus plantarum*: a novel and atypical member of the αβ hydrolase superfamily of enzymes. PLoS One 9:e92257. https://doi.org/10.1371/journal. pone.0092257
- Amézqueta S, González-Peñas E, Murillo-Arbizu M, López de Cerain A (2009) Ochratoxin A decontamination: a review. Food Control 20:326–333. https://doi.org/10.1016/j.foodcont.2008.05.017
- Bauer TL, Buchholz PCF, Pleiss J (2020) The modular structure of α/β-hydrolases. FEBS J 287:1035–1053. https://doi.org/10.1111/ febs.15071
- Blossom DB, Srinivasan A (2008) Drug-resistant Acinetobacter baumannii-calcoaceticus Complex. Inf Dis Clin Pr 16:1–3
- Carr EL, Kämpfer P, Patel BKC, Gürtler V, Seviour RJ (2003) Seven novel species of *Acinetobacter* isolated from activated sludge. Int J Syst Evol Microbiol 53:953–963. https://doi.org/10.1099/ijs.0. 02486-0
- Chang X, Wu Z, Wu S, Dai Y, Sun C (2015) Degradation of ochratoxin A by *Bacillus amyloliquefaciens* ASAG1. Food Addit Contam -Part A Chem Anal Control Expo Risk Assess 32:564–571. https:// doi.org/10.1080/19440049.2014.991948
- Chen N, Fei Q, Luo H, Fang Z, Xiao Y, Du Z, Yu Z (2022) Isoenzyme N -Acyl-L-amino acid amidohydrolase NA increases ochratoxin A degradation efficacy of *Stenotrophomonas sp.* CW117 by enhancing amidohydrolase ADH3 stability. Microbiol Spectr 10:e02205-e2222
- Claeys L, Romano C, De Ruyck K, Wilson H, Fervers B, Korenjak M, Zavadil J, Gunter MJ, De Saeger S, De Boevre M, Huybrechts I (2020) Mycotoxin exposure and human cancer risk: a systematic review of epidemiological studies. Compr Rev Food Sci Food Saf 19:1449–1464. https://doi.org/10.1111/1541-4337.12567
- Curiel JA, De Las RB, Mancheño JM, Muñoz R (2011) The pURI family of expression vectors: a versatile set of ligation independent cloning plasmids for producing recombinant His-fusion proteins. Protein Expr Purif 76:44–53. https://doi.org/10.1016/j.pep.2010. 10.013
- De Bellis P, Tristezza M, Haidukowski M, Fanelli F, Sisto A, Mulè G, Grieco F (2015) Biodegradation of ochratoxin a by bacterial strains isolated from vineyard soils. Toxins (basel) 7:5079–5093. https://doi.org/10.3390/toxins7124864
- Del Prete V, Rodriguez H, Carrascosa AV, De Las RB, Garcia-Moruno E, Muñoz R (2007) In vitro removal of ochratoxin A by wine

lactic acid bacteria. J Food Prot 70:2155–2160. https://doi.org/ 10.4315/0362-028X-70.9.2155

- Schrödinger L, DeLano WL (2020) *PyMOL*. Available at: http://www.pymol.org/pymol
- Dobritzsch D, Wang H, Schneider G, Yu S (2014) Structural and functional characterization of ochratoxinase, a novel mycotoxindegrading enzyme. Biochem J 462:441–452. https://doi.org/10. 1042/BJ20140382
- Egan AJF, Errington J, Vollmer W (2020) Regulation of peptidoglycan synthesis and remodelling. Nat Rev Microbiol 18:446–460. https://doi.org/10.1038/s41579-020-0366-3
- Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr Sect D Biol Crystallogr 66:486–501. https://doi.org/10.1107/S0907444910007493
- Esteban-Torres M, Reverón I, Mancheño JM, De las Rivas B, Muñoz R (2013) Characterization of a feruloyl esterase from *Lactobacillus plantarum*. Appl Environ Microbiol 79:5130-5136. https://doi.org/10.1128/AEM.01523-13
- Fanelli F, Chiara M, Liuzzi VC, Haidukowski M, Tristezza M, Caterina M, D'Erchia AM, Pesole G, Horner DS, Mule G (2015) Draft genome sequence of *Acinetobacter sp. neg1* capable of degrading ochratoxin A. FEMS Microbiol Lett 362:1–4. https:// doi.org/10.1093/femsle/fnv004
- Fojan P, Jonson PH, Petersen MTN, Petersen SB (2000) What distinguishes an esterase from a lipase: a novel structural approach. Biochimie 82:1033–1041. https://doi.org/10.1016/S0300-9084(00)01188-3
- Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ (2016) Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 11:905–919. https://doi.org/10.1038/nprot.2016.051
- Gan F, Zhou Y, Hou L, Qian G, Chen X, Huang K (2017) Ochratoxin A induces nephrotoxicity and immunotoxicity through different MAPK signaling pathways in PK15 cells and porcine primary splenocytes. Chemosphere 182:630–637. https://doi.org/10. 1016/j.chemosphere.2017.05.030
- Heikinheimo P, Goldman A, Jeffries C, Ollis DL (1999) Of barn owls and bankers: a lush variety of α/β hydrolases. Structure 7:141–146. https://doi.org/10.1016/S0969-2126(99)80079-3
- Holm L (2022) Dali server : structural unification of protein families. Nucleic Acids Res 50:W210–W215
- Hu HN, Jia X, Wang YP, Liang ZH (2018) Removal of ochratoxin A by a carboxypeptidase and peptides present in liquid cultures of *Bacillus subtilis* CW14. World Mycotoxin J 11:559–570. https:// doi.org/10.3920/WMJ2017.2296
- Hult K, Berglund P (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol 25:231–238. https://doi.org/10. 1016/j.tibtech.2007.03.002
- Hwang C-A, Draughon FA (1994) Degradation of ochratoxin A by Acinetobacter calcoaceticus. J Food Prot 57:410–414. https:// doi.org/10.4315/0362-028x-57.5.410
- Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2
- Jung J, Park W (2015) Acinetobacter species as model microorganisms in environmental microbiology: current state and perspectives. Appl Microbiol Biotechnol 99:2533–2548. https://doi.org/ 10.1007/s00253-015-6439-y
- Kourist R, Bartsch S, Fransson L, Hult K, Bornscheuer UT (2008) Understanding promiscuous amidase activity of an esterase

from *Bacillus subtilis*. ChemBioChem 9:67–69. https://doi.org/ 10.1002/cbic.200700521

- Li Z, Jaroszewski L, Iyer M, Sedova M, Godzik A (2020) FATCAT 2.0: towards a better understanding of the structural diversity of proteins. Nucleic Acids Res 48:W60–W64. https://doi.org/ 10.1093/nar/gkaa443
- Liebschner D, Afonine PV, Baker ML, Bunkoczi G, Chen VB, Croll TI, Hintze B, Hung L-W, Jain S, McCoy AJ, Moriarty NW, Oeffner RD, Poon BK, Prisant MG, Read RJ, Richardson JS, Richardson DC, Sammito MD, Sobolev OV, Stockwell DH, Terwilliger TC, Urzhumtsev AG, Videau LL, Williams CJ, Adams PD (2019) Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr Sect d, Struct Biol D75:861–877. https://doi.org/10.1107/S2059798319011471
- Liuzzi VC, Fanelli F, Tristezza M, Haidukowski M, Picardi E, Manzari C, Lionetti C, Grieco F, Logrieco AF, Thon MR, Pesole G, Mulè G (2017) Transcriptional analysis of *Acinetobacter sp. neg1* capable of degrading ochratoxin A. Front Microbiol 7:1–9. https://doi.org/ 10.3389/fmicb.2016.02162
- Luo H, Wang G, Chen N (2022) A superefficient Ochratoxin A hydrolase with promising potential for industrial applications. Appl Environ Microbiol 88:e01964-e2021. https://doi.org/10.1128/AEM. 01964-21
- Marin S, Ramos AJ, Cano-Sancho G, Sanchis V (2013) Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol 60:218–237. https://doi.org/10.1016/j.fct.2013.07.047
- McCoy AJ, Sammito MD, Read RJ (2022) Implications of AlphaFold2 for crystallographic phasing by molecular replacement. Acta Crystallogr Sect d, Struct Biol 78:1–13. https://doi.org/10.1107/S2059 798321012122
- Nardini M, Dijkstra BW (1999) α/β hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732–737. https://doi.org/10. 1016/S0959-440X(99)00037-8
- Ndiaye S, Zhang M, Fall M, Ayessou NM, Zhang Q, Li P (2022) Current review of mycotoxin biodegradation and bioadsorption: microorganisms, mechanisms, and main important applications. Toxins (Basel) 14:729. https://doi.org/10.3390/toxins14110729
- Nemec A, Musílek M, Maixnerová M, De Baere T, van der Reijden TJK, Vannechoutte M, Dijkshoorn L (2009) Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. Int J Syst Evol Microbiol 59:118–124. https:// doi.org/10.1099/ijs.0.001230-0
- Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KHG, Goldman A (1992) The α/β hydrolase fold. Protein Eng 5:197–211
- Pereira J, Simpkin AJ, Hartmann MD, Rigden DJ, Keegan RM, Lupas AN (2021) High-accuracy protein structure prediction in CASP14. Proteins 89:1687-1699. https://doi.org/10.1002/prot.26171
- Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084
- Pfohl-Leszkowicz A, Manderville RA (2007) Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res 51:61–99. https://doi.org/10.1002/mnfr.200600137
- Qian Y, Zhang X, Fei Q, Zhou Y (2021) Comments on the ochratoxin A degradation mechanism by *Lysobacter* sp CW239 — Wei Wei et al. (2020). Environ Pollut 281:117063. https://doi.org/10.1016/j. envpol.2021.117063
- Rauwerdink A, Kazlauskas RJ (2015) How the same core catalytic machinery catalyzes 17 different reactions: the Serine-Histidine-Aspartate catalytic triad of alpha/beta-Hydrolase Fold Enzymes. ACS Catal 5:6153–6176. https://doi.org/10.1021/acscatal.5b015 39

- Read RJ, Baker EN, Bond ChS, Garman EF, van Raaj MJ (2023) Alpha-Fold and the future of structural biology. Acta Crystallogr Sect d, Struct Biol 79:556–558. https://doi.org/10.1107/S20597983004928
- Sánchez-Arroyo A, Plaza-Vinuesa L, Rivas B de las, Mancheño JM, Muñoz R (2023) The salicylate 1,2-dioxygenase from *Pseudaminobacter salicylatoxidans* DSM 6986T is a bifunctional enzyme that inactivates the mycotoxin ochratoxin A by a novel amidohydrolase activity. Int J Biol Macromol 237:124230. https://doi.org/10.1016/j. ijbiomac.2023.124230
- Shabtai Y, Gutnick DL (1985) Exocellular esterase and emulsan release from the cell surface of Acinetobacter calcoaceticus. J Bacteriol 161:1176–1181. https://doi.org/10.1128/jb.161.3.1176-1181.1985
- Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A, Velankar S, Kleywegt GJ, Bateman A, Evans R, Pritzel A, Figurnov M, Ronneberger O, Bates R, Kohl SAA, Potapenko A, Ballard AJ, Romera-Paredes B, Nikolov S, Jain R, Clancy E, Reiman D, Petersen S, Senior AW, Kavukcuoglu K, Birney E, Kohli P, Jumper J, Hassabis D (2021) Highly accurate protein structure prediction for the human proteome. Nature 596:590–596. https://doi.org/10.1038/S41586-021-03828-1
- Wang L, Hua X, Shi J, Jing N, Ji T, Lv B, Liu L, Chen Y (2022) Ochratoxin A: occurrence and recent advances in detoxification. Toxicon 210:11–18. https://doi.org/10.1016/j.toxicon.2022.02.010
- Wei W, Qian Y, Wu Y, Chen Y, Peng C, Luo M, Xu J, Zhou Y (2020) Detoxification of ochratoxin A by Lysobacter sp. CW239 and characteristics of a novel degrading gene carboxypeptidase cp4. Environ Pollut 258:113677. https://doi.org/10.1016/j.envpol.2019.113677
- Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, Keedy DA, Hintze BJ, Chen VB, Jain S, Lewis SM, Arendall WB, Snoeyink J, Adams PD, Lovell SC, Richardson JS, Richardson DC (2018) MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 27:293–315. https://doi.org/10.1002/pro.3330
- Xu H, Wang L, Sun J, Wang L, Guo H, Ye Y, Sun X (2022) Microbial detoxification of mycotoxins in food and feed. Crit Rev Food Sci Nutr 62:4951–4969. https://doi.org/10.1080/10408398.2021.18797 30
- Xu X, Pang M, Liu J, Wang Y, Wu X, Huang KL, Liang Z (2021) Genome mining reveals the genes of carboxypeptidase for OTAdetoxification in *Bacillus subtilis* CW14. Int J Biol Macromol 186:800–810. https://doi.org/10.1016/j.ijbiomac.2021.07.085
- Yoon EJ, Goussard S, Nemec A, Lambert T, Courvalin P, Grillot-Courvalin C (2016) Origin in Acinetobacter gyllenbergii and dissemination of aminoglycoside-modifying enzyme AAC(6')-Ih. J Antimicrob Chemother 71:601–606. https://doi.org/10.1093/jac/dkv390
- Zarrilli R, Visca P, Bonnin RA, Dé E (2023) Editorial: drug resistance, global epidemiology and virulence of *Acinetobacter*. Front Microbiol 14:28–30. https://doi.org/10.3389/fmicb.2023.1151462
- Zhang H, Zhang Y, Yin T, Wang J, Zhang X (2019) Heterologous expression and characterization of a novel Ochratoxin A degrading enzyme, N-acyl-L-amino acid amidohydrolase, from *Alcaligenes faecalis*. Toxins (basel) 11:1–8. https://doi.org/10.3390/toxins1109 0518
- Zhu C, Chen Y, Isupov MN, Littlechild JA, Sun L, Liu X, Wang Q, Gong H, Dong P, Zhang N, Wu Y (2021) Structural insights into a novel esterase from the East Pacific rise and its improved thermostability by a semirational design. J Agric Food Chem. https://doi.org/10. 1021/acs.jafc.0c06338

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.